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Abstract. It is well known that, as non-continuum gas flows through microscale porous
media, the gas permeability derived from Darcy law is larger than the absolute perme-
ability, which is caused by the so-called Klinkenberg effect or slippage effect. In this
paper, an effective definition of Knudsen number for gas flows through square arrays
of circular cylinders and a local boundary condition for non-continuum gas flows are
first proposed, and then the multi-relaxation-time lattice Boltzmann equation includ-
ing discrete effects on boundary condition is used to investigate Klinkenberg effect on
gas flow through circular cylinders in square arrays. Numerical results show that the
celebrated Klinkenberg equation is only correct for low Knudsen number, and second-
order correction to Klinkenberg equation is necessary with the increase of Knudsen
number. Finally, the present numerical results are also compared to some available
results, and in general an agreement between them is observed.

PACS: 44.05.+e, 47.11.-j, 47.56.+r

Key words: Klinkenberg effect, multi-relaxation-time lattice Boltzmann equation, Knudsen num-
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1 Introduction

Gas flow in porous media has received an increasing attention for its importance and
wide applications in science and engineering [1]. The study on physics of gas flow
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through porous media is necessary to understand deeply some abnormal transport phe-
nomena (e.g., Klinkenberg effect or slippage effect) appeared in petroleum and natural
gas industries. Gas slippage phenomena is usually observed in the experiments when gas
flow through porous media under low pressure, at which condition the mean free path of
the gas molecules is comparable with pore throat radius. Physically speaking, this slip-
page effect yields a larger effective gas permeability compared to that at high pressure.
In the year 1941, Klinkenberg first proposed a formula on the effective gas permeability
(K) as [2]

K =K∞

(

1+
bK

P

)

, (1.1)

which is also called Klinkenberg equation, K∞ is the absolute or true permeability derived
under very large pressure, bK =4C0Pλ/r is the Klinkenberg factor, λ is mean free path of
gas molecules, r is the effective pore radius, C0 is a constant and P is pore pressure. By
introducing the Knudsen number (Kn) which is defined as the ratio of molecular mean
free path to effective pore diameter (Dh =2r), the Klinkenberg equation can be rewritten
as

K =K∞(1+8C0×Kn). (1.2)

Since the famous experiment conducted by Klinkenberg, many experimental and the-
oretical studies were carried out to study Klinkenberg effect, and the main focus is to
present an explicit expression on Klinkenberg factor bK [3–12], here some expressions
on bK derived by different authors are summarized in Table 1. With the help of origi-
nal Klinkenberg equation or these modified equations, some macroscopic properties of
flow in porous media can be derived with extended Darcy law. Due to the complexity
of porous structure, however, these macroscopic expressions (e.g., extended Darcy law)
have no capacity to present detailed resolutions for flow through porous media. As an
efficient mesoscopic approach, the lattice Boltzmann equation (LBE) has been a new po-
tential tool and gained much success in simulating flow through porous media at pore
scale level for its distinct implementation on boundary conditions [14–21]. On the other
hand, due to the kinetic background of LBE, it is also applied to study microscale gaseous
flow with non-continuum effect in recent years [22–31]. Above two distinguished char-
acteristics of LBE may make it be very suitable to investigate non-continuum gas flow in
porous media.

In the past years, although many works have shown that LBE is capable of simulat-
ing flow in porous media, most of the available LBE models are constructed under the
continuum assumption, and much less attention has been paid to non-continuum gas
flow in porous media. To the authors’ knowledge, there is only little work on apply-
ing LBE to study non-continuum gas flow in porous media [19–21]. In these published
works [19–21], two basic problems have not been solved. One is how to define an ef-
fective Knudsen number for gas flow in porous media, and another is how to propose
a local boundary condition for non-continuum gas flow and include its discrete effects
in LBE [29–31]. Therefore, the objectives of present work are twofold. The first is to
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Table 1: The expressions on Klinkenberg factor bK, [σ is tangential momentum accommodation coefficient].

Literature bK unit

Heid 1950 [3] bk =0.11K−0.39
∞ Pa

Jones 1972 [4] bk =6.9K−0.36
∞ psi

Jones and Owen 1979 [5] bk =0.86K−0.33
∞ Pa

Sampath and Keighin 1982 [6] bk =0.0955(K∞/ǫ)−0.53 MPa
Jones 1987 [7] bk =16.4K−0.382

∞ psi

Woudberg and Du Plessis 2008 [11] bk =12 2−σ
σ Kn×P×K∞ —

Tanikaw and Shimamoto 2009 [12] bk =(0.15±0.06)K−0.37±0.038
∞ Pa

present an effective definition on Knudsen number based on theory of hydraulic diame-
ter. The second is to propose a combination of bounce-back and full diffusive boundary
condition, and present a strategy to adjust the parameters in this combination bound-
ary conditions such that an accurate slip boundary condition can be implemented. The
remainder of the paper is organized as follows. In following Section 2, we extend multi-
relaxation-time LBE (MRT-LBE) to study non-continuum gas flow in porous media, and
present a detailed discussion on discrete effects on combination of bounce-back and full
diffusive (CBBFD) boundary condition. In Section 3, an effective definition on Knund-
sen number is first proposed, subsequently, the numerical results and related discussions
on non-continuum gas flows through square arrays of circular cylinders are presented.
Finally, a brief summary of the present work is given in Section 4.

2 Numerical method and boundary condition

As a new numerical method for fluid flows, LBE is first viewed as a successor of lat-
tice gas automata, but it can also be served as a special discrete form of the continuous
Boltzmann equation. The most popular LBE used in simulating porous flows is the lat-
tice Bhatnagar-Gross-Krook (BGK) model [32] (see [16, 17, 19–21]). As pointed out in
previous works [18, 33], however, a viscosity-dependent permeability is usually derived
when lattice BGK model is used in numerical simulations [16, 18]. In fact, the viscosity
effect on permeability is induced by numerical slip velocity on solid surface, we refer the
reader to [38] for details. In order to overcome the defect inherent in lattice BGK model,
the multi-relaxation-time (MRT) model [34–36] and two-relaxation-time (TRT) model [37]
has been proposed recently to simulate flows through porous media [18, 33], but to our
knowledge, the MRT-LBE has not been extended to simulate non-continuum gas flows in
porous media. In following parts, we will limit our attention to MRT-LBE and boundary
condition for non-continuum gas flow in porous media.

2.1 Multi-relaxation-time lattice Boltzmann method

For simplicity but without losing generality, here we only consider a two-dimensional
MRT-LBE with nine velocities (D2Q9 model). The evolution of LBE with multi-relaxation-
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time model can be written as [35, 36]

fi(x+ciδx,t+δt)− fi(x,t)=Ωi+δtF
′
i , (2.1)

where
Ωi =−∑

j

(M−1SM)ij

[

f j(x,t)− f
(eq)
j (x,t)

]

is collision term, fi is distribution function associated with molecular with velocity ci at
position x and time t. In D2Q9 model, the discrete velocity ci is defined as

ci =







(0,0), i=0,
(cos[(i−1)π/2],sin[(i−1)π/2])c, i=1−4,

(cos[(2i−9)π/4],sin[(2i−9)π/4])
√

2c, i=5−8,

where c=δx/δt and is set to be 1 in this work, δx and δt are the lattice spacing and time
step, respectively. M is a 9×9 transform matrix,

M=





























1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1





























,

which projects the distribution function fi in velocity space onto the moment space

m=(ρ,e,ε, jx ,qx, jy,qy,pxx,pxy)
⊤=Mf,

where f = ( f0, f1,··· , f8)⊤, ρ is the density, e is the energy, ε is the square of the energy,
jx and jy correspond to the x and y components of momentum, respectively; qx and qy

relate to the x and y components of energy flux, pxx and pxy are the diagonal and off-
diagonal component of the viscous stress tensor, respectively. S=diag(τ0,τ1,··· ,τ8)−1 is a
non-negative diagonal matrix with τi being relaxation time for ith moment, additionally,
it should be noted that the MRT model will reduce to the BGK model when τi = τ for
i=0−8. In order to keep S be consistent with discrete moment m, we rewrite S as

S=diag(τρ,τe,τε,τj,τq,τj,τq,τs,τs)
−1. (2.2)

The equilibrium distribution function f
(eq)
i (x,t) in evolution equation (2.1) is usually a

function of density ρ and velocity u and can be given as

f
(eq)
i =wiρ

[

1+3(ci ·u)+
9

2
(ci ·u)2− 3

2
u2

]

, (2.3)
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where w0 =4/9, w1−4 =1/9, w5−8 =1/36; F
′
i is the discrete forcing term accounting for a

body force F, and defined as [29]

F
′
=M−1

(

I− S

2

)

MF̃,

where I is unit matrix, F
′
=(F

′
0,F

′
1,··· ,F′

8)
⊤, and F̃=(F̃0, F̃1,··· , F̃8)⊤ with

F̃i =wi

[

3ci ·F+9uF :
(

cici−
1

3
I
)]

.

Through the Chapman-Enskog expansion, the Navier-Stokes equation can be derived
from present MRT-LBE with an equation of state P=ρ/3, the kinematic viscosity is related
to the relaxation time τs [29, 36]

ν=
δt

3

(

τs−
1

2

)

, (2.4)

and the macroscopic density and velocity in MRT-LBE are defined as

ρ=∑
i

fi, ρu=∑
i

ci fi+
δt

2
F.

As we know, above MRT-LBE is usually applied to study continuum flows. How-
ever, when it is used to study non-continuum gas flows, there are two important issues
to be solved properly, the first is how to establish the relationship between the Knudsen
number and relaxation time(s), and the second is how to propose a proper boundary con-
dition and include its discrete effects in LBE. For the first issue, Guo et al. have proposed
a more reasonable relationship between Kn and relaxation time τs as [28]

τs =
KnH

c∗δt
+

1

2
, (2.5)

where c∗ =
√

πRT/2 is a certain microscopic velocity. In this paper, we will adopt this
relationship, for another issue, we will discuss it in the following subsection.

2.2 A combination of bounce-back and full diffusive boundary condition for
non-continuum gas flow

The kinetic boundary conditions for LBE in simulating non-continuum gas flow is also
another important issue, and has been discussed extensively by many authors [22,23,26].
A brief survey on this topic is given in [30]. Although several boundary conditions are
existing for non-continuum flow, the discrete effects on these boundary conditions are
seldom considered. Ginzbourg and Adler may be the first who give a detailed analy-
sis on discrete effects on boundary conditions for continuum flows [39]. Subsequently,
He et al. analyzed several different no-slip boundary conditions in detail, and obtained
corresponding analytical solutions of LBE for simple Poiseuille and Couette flows [38].
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Recently, Guo et al. [28] studied the discrete effects on the discrete Maxwellian bound-
ary condition and a combination of the bounce-back and specular reflection boundary
condition for microscale gas flows, and proposed a strategy to adjust the parameters in
the two kinetic boundary conditions such that an accurate slip boundary condition on
solid surface can be implemented. However, neither the discrete Maxwellian boundary
condition nor the combination of the bounce-back and specular reflection boundary con-
dition can be easily implemented for non-continuum gas flow in porous media since it
is hard to ascertain specular reflection directions. Therefore, another CBBFD boundary
condition proposed in [30, 31] is used in this work. We would like to point out that the
CBBFD scheme is a local boundary condition and possesses more potential in simulating
non-continuum flow in a complex geometry. In the following part, the discrete effects on
the CBBFD boundary condition will be discussed in detail.

To obtain an analytical solution of MRT-LBE coupling with the CBBFD boundary con-
dition, a unidirectional gas flow over a flat plate is considered (see Fig. 1), and following
conditions are assumed to be satisfied

ρ= const, v=0,
∂ϑ

∂x
=0,

where ϑ is any flow variable. After collision at time t, the unknown distribution func-
tions, f 1

2 , f 1
5 , and f 1

6 , can be determined from the CBBFD boundary condition as

f 1
2 = rK f

(eq)
2 (uw)+(1−r) f̄ 1

4 ,

f 1
5 = rK f

(eq)
5 (uw)+(1−r) f̄ 1

7 ,

f 1
6 = rK f

(eq)
6 (uw)+(1−r) f̄ 1

8 ,

where r is a combination parameter, uw is the wall velocity, f̄i is the post-collision distri-
bution function, and defined as

f̄i = fi−∑
j

(M−1SM)ij[ f j− f
(eq)
j ]+δtF

′
i ,

a=(a,0) (see Fig. 1) is the acceleration corresponding to the body force F. The parameter

K is defined as K = ( f̄ 1
4 + f̄ 1

7 + f̄ 1
8 )/[ f

(eq)
2 + f

(eq)
5 + f

(eq)
6 ], and can be shown to be 1 for this

special case.
Following the approach proposed in some available literature [29–31, 38], we can de-

rive the following equation
u2 = A1u1+A2δta, (2.6)

where u1 and u2 are velocities at j=1 and j=2, the parameters A1 and A2 are given as

A1 =
3−2r+rτs

1−r+rτs
,

A2 =
( 11

2 −2τq−8τs+4τqτs)r+4τq +4τs−8τqτs−5

(2τs−1)(1−r+rτs)
.
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Figure 1: The configuration of lattice in D2Q9 model. The wall (bold line) is placed at j=1/2.

For velocity at inner node (j≥2), we have

ν
uj+1−2uj+uj−1

δx2
+a=0, (2.7)

which is just a second-order finite difference equation of the following partial differential
equation

ν
∂2u

∂x2
+a=0. (2.8)

However, to derive solution of finite difference equation (2.7), we need another boundary
condition for velocity. Here, a simple Poiseuille flow is considered, and two walls are
fixed at y=0 and y= H. For such flow, we have following analytical solution [29, 38]

uj =4U0

yj

H

(

1−
yj

H

)

+us, (2.9)

where yj =(j−1/2)δx, U0=aH2/8ν is the centerline velocity without slip at solid wall, us

is slip velocity depending on implementation of boundary condition on solid wall. For
CBBFD boundary condition, we can obtain an analytical expression on us by substituting
Eq. (2.9) into Eq. (2.6)

us =
2r(2τs−1)

2−r
U0∆+

[16(τq− 1
2)(τs− 1

2)−3]

3
U0∆2, (2.10)

where ∆=δx/H. By introducing a dimensionless slip velocity Us, we can rewrite Eq. (2.10)
as

Us =
us

U0
=

4r

2−r

(

τs−
1

2

)

∆+
[16(τq− 1

2)(τs− 1
2)−3]

3
∆2, (2.11)
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with the aid of the relationship between τs and Kn, i.e., Eqs. (2.5) and (2.11) can be rewrit-
ten as

Us =
4r

2−r

√

6

π
Kn+

2

π

16(τq− 1
2)(τs− 1

2)−3

(τs− 1
2)2

Kn2. (2.12)

Now, we would like to give some remarks on Eq. (2.11) or Eq. (2.12).

Remark 2.1. For purely bounce-back boundary condition (i.e., r = 0), the slip velocity
Us ∼∆2 or Us ∼Kn2, which is just the fact that half-way bounce-back is a second-order
boundary condition [38]. Generally speaking, the numerical slip velocity Us induced by
half-way bounce-back boundary condition can be eliminated as the grid number N→∞,
but it is impossible in practice, especially for simulating flow in porous media. In fact,
when LBE is used to simulate flow in porous media, the grid number in one pore is usu-
ally very small, and the effect of numerical slip velocity will be significant, which may
further influence the permeability computed from the Darcy law. On the other hand,
when the grid number in numerical simulation is fixed, the slip velocity is also related
to relaxation time(s) or equivalently related to kinematic viscosity ν [see Eq. (2.11)], so
it is not surprising that the computed permeability with LBE coupling with BGK model
is usually related to kinematic viscosity [16, 18]. However, the numerical slip velocity in
MRT-LBE can be eliminated completely by tuning relaxation time τq. In fact, the choice
of τq =(8τs−1)/8(2τs−1) will lead to Us = 0, this result was also reported in some pre-
vious studies [33, 39]. To see the viscosity effect on permeability clearly, here we take
circular cylinders in square arrays (see Fig. 4, Dp = 0.9025) as an example, and preset a
detailed comparison between BGK model and MRT model with different viscosities in
Fig. 2. As shown in this figure, the dimensionless permeability derived with BGK model
shows an increase in viscosity, while MRT model gives almost a fixed value, which is in

0 1 2 3 4 5 6 7 8

x 10
−3

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

−4

ν

K
D2

p

BGK model
MRT model

Figure 2: The computed dimensionless permeabilities (K/D2
p) with BGK model and MRT model are presented

under different viscosities (ν) [ν=(τ−1/2)δt/3, where τ =0.6,1.0,2.0,3.0,5.0,8.0,10.0].



1060 Z. Chai, B. Shi, Z. Guo and J. Lu / Commun. Comput. Phys., 8 (2010), pp. 1052-1073

good agreement with theoretical value (3.65×10−4) reported by Sangani and Acrivos [44].
Additionally, Fig. 2 also provides an evidence to support MRT model can be used to over-
come some nonphysical effects inherent in BGK model.

Remark 2.2. As discussed in Remark 2.1, the numerical slip velocity is not only related
to grid number N, but also related to relaxation time(s). When LBE is used to simulate
non-continuum gas flow, the relaxation time τs is usually larger than that for continuum
flow, which leads the numerical slip velocity on solid wall to be more pronounced, so it
is necessary to give a strategy that can be used to guarantee an accurate slip boundary
condition is implemented.

To match present combination of bounce-back and full diffusive boundary condition
for non-continuum gas flow with a more accurate second-order slip boundary condition
proposed by Hadjiconstantinou [40], i.e., Us=4C1Kn+8C2Kn2 (C1=1.11 and C2=0.61 are
two parameters relating to the gas-wall interaction), the combination parameter r and
relaxation time τq should be chosen as

r=
2C1

√

6
π +C1

, τq =
1

2
+

3+π(2τs−1)2C2

8(2τs−1)
. (2.13)

Now, we would like to compare present correction equation (2.13) for MRT-LBE with that
for LBE coupling with BGK model [30]. As shown in [30], the combination parameter r
for BGK model is given as

r=2

(

1+
4
√

6
π Kn

4C1Kn+8C2Kn2− 32
π Kn2+∆2

)−1

. (2.14)

As seen from Eq. (2.14), it is clear that the parameter r, unlike that in MRT-LBE, is not only
dependent on gas-solid interaction parameters C1 and C2, but also dependent on Kn and
grid number through ∆. In what follows, we will carry our some numerical experiments
to validate present theoretical results.

Here we choose the Poiseuille flow as a tested example. Periodic boundary conditions
are applied to the inlet and outlet of the channel and grid number in x direction is fixed
to be 16, the Knudsen number and acceleration are set to be 0.1 and 10−4, respectively. As
shown in Fig. 3(a), the discrete effects are clearly observed when the combination r and
relaxation time τq are chosen arbitrarily. However, when the expressions of r and τq given
by Eq. (2.13) are used in numerical simulations, it is found that the numerical results
are in good agreement with the analytical solution that is derived by solving Navier-
Stokes equations coupling with the second-order slip boundary condition proposed by
Hadjiconstantinou [40] [see Fig. 3(b)]. Finally, we would like to point out that Verhaeghe
et al. have present some similar results, but the first-order slip boundary condition is
adopted in their work [31].
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Figure 3: Velocity profile with combination of bounce-back and full diffusive boundary condition. (a) r = 0.5,
τq =τs; (b) r and τq are given by Eq. (2.13).

3 Numerical results and discussions

The schematic considered in this paper is a two-dimensional region filled with square
arrays of circular cylinders (see Fig. 4), which can be viewed as a simple porous media.
The width H and length L of the region are set to be 1 and 4, Dp is diameter of circu-
lar cylinder, its variance can be used to change porosity (ǫ) of porous media. It should
be noted that present two-dimensional schematic can be served as a simplified three-
dimensional version in which flow perpendicular to circular cylinders. In the following
numerical simulations, periodic boundary conditions are adopted on the top and bottom
boundaries, and pressure boundary conditions are used in the horizontal direction. It
should be noted that the difference of pressures ∆P = Pin−Pout should be small enough,
and set to be 3.33×10−4 in this study, where Pin and Pout are pressures at the inlet and
outlet, respectively. There are two reasons for the use of small pressure difference, one is
to ensure Mach number to be small, and another is to eliminate inertial effect. Unless oth-
erwise mentioned, the non-equilibrium extrapolation scheme proposed by Guo et al. [41]
is used to treat inlet and outlet boundary conditions for its good accuracy.

3.1 Validation of the present MRT-LBE

Before we proceed any further, some details used in the following simulations are spec-
ified. A pressure difference is maintained by a fixed density at the inlet and outlet, and
the gas permeability is computed from pressure and velocity [1]

K =
2µLŪoPo

P2
i −P2

o

, (3.1)

where µ = ρν is dynamic viscosity, Ūo is width-averaged seepage velocity at outlet. The
Knudsen number in the present work is defined as the ratio between the mean free path
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H

L

Dp

Figure 4: The configuration of circular cylinders in square arrays.

of the gas molecules and mean pore diameter Dpore, which is related to the porosity (ǫ)
and the specific surface of porous media by using hydraulic diameter concept developed
for flow in non-circular conduits. For flow perpendicular to circular cylinders in square
arrays, Dpore is given as

Dpore =
ǫ

1−ǫ
Dp, (3.2)

and the corresponding definition of the Knudsen number is

Kn=
λ

Dpore
. (3.3)

Compared with available definitions on Kn [19–21], Eq. (3.3) may be more reasonable
by including the effects of diameter of circular cylinder and porosity of porous media. In
addition, we also note that the hydraulic diameter concept was also used by de Socio and
Marino to study gas flow through porous media filled with compacted glass spheres [9].

Table 2: Grid number (M×N) effect on permeability (K) of circular cylinders in square arrays with Dp =0.8025
[M, N are the grid numbers corresponding to the width H and length L].

Grid number (M×N) 51×201 101×401 201×401 401×801 801×3201

Permeability (K) 1.652×10−3 1.701×10−3 1.740×10−3 1.766×10−3 1.761×10−3

We first present the grid number effect on the permeability of circular cylinders with
Dp = 0.8025 in continuum regime (Kn = 10−4), and show the results in Table 2. As
seen from this table, the grid number fixed at 401×801 is large enough to derive grid-
independent results, and this grid number will be adopted in the following simulations.

To valid present MRT-LBE, we compare the computed permeability of circular cylin-
ders in square arrays at Kn=10−4 (see Table 3 for details) with some available results in
Fig. 5. As shown in this figure, the present numerical results are in good agreement with
these available experimental, theoretical and numerical results [42–44].
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Figure 5: The dimensionless permeability for different porosity. ◦, present numerical results (Kn = 10−4); �,
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numerical results (Sangani and Acrivos, 1982); −, theoretical results (Sangani and Acrivos, 1982).

In the following parts, we will investigate the effects of Knudsen number on gas per-
meability and fluid flow field, but only near continuum gas flow (Kn≤ 0.25) in porous
media is considered.

3.2 Theoretical and numerical results on gas permeability

Physically speaking, the increase of Knudsen number will reduce the interaction between
gas molecules and the solid walls. As a result, a slip velocity on solid surface is induced,
which leads the gas permeability to be larger than that at the continuum level. From a
theoretical point of view, we can derive the gas permeability of some ideal porous media.

3.2.1 Gas permeability of a porous media composed of a bundle of channels or tubes

Considering a porous medium composed of a bundle of parallel and straight channels
and gas flow in near-continuum regime, we can use the Navier-Stokes equations coupling
with the second-order slip boundary condition [40] to derive the gas permeability, which
can be written as [20]

K =K∞(1+6C1Kn+12C2Kn2), (3.4)

where K∞ = Nh3/12 is absolute permeability, h is height of channel, N is the number
of channel per cross-sectional area of the porous media. Similar to above discussion, for
ideal porous media composed of circular tubes with equal diameter D, the corresponding
gas permeability is derived as

K =K∞(1+8C1Kn+16C2Kn2), (3.5)

with K∞ = NπD4/128. Additionally, the different values of C1 and C2 proposed by other
authors can be found in [20].
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3.2.2 Gas permeability of a porous media composed of circular cylinders in square

arrays

For Newtonian fluid flow through the cell geometry (see Fig. 4) with second-order slip
boundary proposed by Hadjiconstantinou [40], the relationship between pressure drop
and flow rate (Q) can be derived with lubrication theory that is only valid for low porosity

∂P

∂x
=

12µQ

H3
R+6C1λH2

R+12C2λ2HR
, (3.6)

where HR = H−2
√

R2−x2, R = Dp/2 is radius of circular cylinder. We can further inte-
grate Eq. (3.6) over the length of the unit cell, and derive pressure drop over the cylinder

∆PR =
∫ R

0

12µQ

H3
R+6C1λH2

R+12C2λ2HR
dx. (3.7)

With the help of Darcy law

Ū =Q/H =−2K

µ

∆PR

H
,

we can derive gas permeability as

K =
1

24
∫ R

0

1

H3
R+6C1λH2

R+12C2λ2HR
dx

. (3.8)

Although the denominator of Eq. (3.8) can be computed analytically, the final expression
of K is very complicated and not presented here. In addition, we would like to point out
that, as λ/HR →0, Eq. (3.8) will reduce to continuum results reported in [45].

As seen from above discussions, the coefficients of first-order and seconder-order of
Knudsen number are different from each other even for these ideal porous media, so it is
impossible to present two deterministic coefficients for non-continuum gas flow through
real porous structures as those for gas flow in microchannels or circular tubes.

We can compute the permeabilities at different porosities and Knudsen numbers with
Eq. (3.1), and also plot them in Fig. 6. From this figure, we can find that the gas perme-
ability is a function of both Knudsen number and porosity. When the value of porosity
is fixed, the gas permeability increases in Kn and a quadratic relationship between them
is observed for all porosity considered in this work, which is consistent with above the-
oretical Eqs. (3.4) and (3.5). To obtain an explicit formula to express gas permeability,
a quadratic curve is used to fit present numerical results, and the coefficients of first-
order and seconder-order of Knudsen number, B1, B2 and reciprocal (Kr) of the fitting
quadratic curve are listed in Table 3. As seen from this table, the coefficients B1 and B2

show a similar trend, i.e., they first decrease to a minimum value and then increases with
the increase of diameter of circular cylinder, but the value of the coefficient B2 is larger
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Figure 6: Gas permeability at different porosity and Knudsen number. (a) Dp = 41δx; (b) Dp = 121δx; (c)
Dp =161δx; (d) Dp =201δx; (e) Dp =281δx; (f) Dp =361δx.

than B1. In addition, we also find that the intercept of the fitting curve or extrapolated
absolute permeability Ke is in good agreement with that at Kn=10−4.

On the other hand, although the present numerical results generally agree with some
previous numerical, theoretical and experimental results [9, 19–21], some differences be-
tween them are also observed. For example, Jeong et al. found that the dimensionless
permeability is almost a linear function of Kn for gas flow in slip regime (0.01<Kn<0.1).
There are some reasons accounting for this difference. First of all, different boundary
conditions for slip velocity on the solid surface are adopted. In [19], to reflect the slip ve-
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Table 3: The coefficients B1, B2 and intercept (Ke) of the fitting curve in Fig. 6, [K∞ is the value at Kn=10−4].

Dp B1 B2 Ke K∞

41δx 1.072×102 4.352×103 1.239×10−1 1.336×10−1

81δx 3.668×101 7.526×102 7.717×10−2 8.099×10−2

121δx 1.760×101 2.869×102 5.212×10−2 5.194×10−2

161δx 1.411×101 1.321×102 3.317×10−2 3.295×10−2

201δx 1.274×101 7.251×101 1.992×10−2 1.982×10−2

241δx 1.234×101 4.591×101 1.093×10−2 1.088×10−2

281δx 1.402×101 2.146×101 5.065×10−3 5.076×10−3

321δx 1.582×101 1.749×101 1.763×10−3 1.766×10−3

361δx 2.252×101 2.687×101 2.933×10−4 2.936×10−4

391δx 7.407×101 3.261×102 7.093×10−6 7.237×10−6

locity on solid surface, they simply assumed that the particle distribution function after
collision at the surface equals equilibrium distribution function. Secondly, the discrete
effects on boundary condition is not considered in [19]. As discussed in [29,30,38], when
a boundary condition is implemented in LBE, a numerical slip velocity will be induced
on solid surface, which may further affect the computed permeability. At last, different
definitions on Kn are used in [19] and the present work. The definition on Kn proposed in
the present work, i.e., Eq. (3.3), presents a larger value than that in [19] for a larger poros-
ity and vice versa. Tang et al. adopted a combination of the bounce-back and specular
reflection boundary condition [23] to describe slip velocity at solid surface and reported
similar results to those in this work [20]. To derive the correct slip velocity, however,
how to choose the value of bounce-back probability r is also an open problem for this
boundary condition. On the other hand, it may be hard to ascertain specular reflection
directions for gas flow through more complex porous structures. de Socio and Marino
studied gas flow in permeable media both experimentally and numerically, and found
that gas permeability is proportional to square of Kn (K = 4.25×10−9Kn2) when Kn is
changed from 0.01 to 8 [9]. The main characteristic of this formula is that the zero-order
and first-order terms of Kn are not included. Although above formula agrees with their
numerical results, it also has limitations from a theoretical point of view. As seen from
this formula, the gas permeability K approaches to zero when Kn→0, which violates the
fact that gas permeability will reduce to absolute permeability as Kn → 0. The reason
accounting for de Socio and Marino’s formula may be that, the Klinkenberg effect is usu-
ally observed in low permeability porous media, the absolute permeability of which is
usually very small compared to gas permeability at large Kn.

Compared to the theoretical Eqs. (3.4) and (3.5), the Klinkenberg equation (1.2) only
includes first-order term of Knudsen number, so it may be correct for small Kn. To val-
idate this statement, we take the case of R = 180.5δx as an example and compute gas
permeability at small Kn. The numerical results shown in Fig. 7 present a linear rela-
tionship between gas permeability K and Kn when Kn is less than 0.01, that is to say, the
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for Dp =391δx.

Klinkenberg equation (1.2) is only valid for small Kn. In addition, we also find that the
slop of the fitting line is 22.14, which is very close to 22.52 in Table 3.

Finally, we also compare the present numerical results for low porosity with those
derived from the lubrication theory. As seen from Fig. 8, although the present numerical
results show a similar trend with those derived from lubrication theory, the difference
between them is more significant for larger Kn. The reason for this deviation may be that
the definition on Kn [i.e., Eq. (3.3)] used in present work is different from the real one
used in Eq. (3.8).

3.3 Effect of the Knudsen number on flow field

To see the Klinkenberg effect clearly, the velocity vectors of R =60.5δx, R =100.5δx, R =
140.5δx, R = 180.5δx at different Kn are plotted in Figs. 9-12. As shown in these figures,
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Figure 9: Flow fields at different Knudsen number (Dp=121δx). (a) Kn=10−4; (b) Kn=0.0315; (c) Kn=0.158.
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Figure 10: Flow fields at different Knudsen number (Dp=201δx). (a) Kn=10−4; (b) Kn=0.0303; (c) Kn=0.121.
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Figure 11: Flow fields at different Knudsen number (Dp=281δx). (a) Kn=10−4; (b) Kn=0.0277; (c) Kn=0.11.
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Figure 12: Flow fields at different Knudsen number (Dp =361δx). (a) Kn=10−4; (b) Kn=0.024; (c) Kn=0.12.
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some similar results are observed, i.e., the slip velocity on solid wall increases in Kn and
the slippage effect or Klinkenberg effect is more pronounced for larger Kn. As described
previously, for the cases of Kn = 10−4 [see Fig. 9(a)], the slip velocity on solid surface
is almost zero, and the velocity vectors are similar to those described by the continuum
Stokes equation (the Reynolds number in present work is very small). However, when
Kn is increased to some extent [see Fig. 9(b)], the slip phenomena on solid surface is more
obvious and the velocity vectors in bulk region are more straight in horizontal direction
since the friction drag between gas and solid surface is reduced with the increase of Kn.
With further increase of Knudsen number, as shown in Fig. 9(c), the slip velocity on solid
surface is much larger and the slippage effect is more pronounced.

4 Summary

In this paper, the multi-relaxation-time lattice Boltzmann equation coupling with the
combination of bounce-back and full diffusive boundary condition is proposed to inves-
tigate non-continuum gas flow through circular cylinders in square arrays, and present
Klinkenberg effects on gas permeability and flow field. Some conclusions are summa-
rized as follows:

(i) A combination of bounce-back and full diffusive boundary condition for non-
continuum gas flows is proposed, and the discrete effects on this boundary condition
are analyzed in detail.

(ii) Based on lubrication theory, an theoretical expression for non-continuum gas flow
through circular cylinders in square arrays is derived.

(iii) The gas permeability is function of Knudsen number and porosity, and a quadratic
relationship between gas permeability and Knudsen number is observed for a fixed poros-
ity.

(iv) The Klinkenberg equation is only suitable for low Knudsen number, and second-
order correction to Klinkenberg equation is necessary with the increase of Knudsen num-
ber.

(v) A larger slip velocity and more pronounced slippage phenomena on solid surface
of circular cylinder will be observed for a larger Knudsen number.

It should be noted that the theoretical results on discrete effect of CBBFD boundary
condition is derived for gas flow in a smooth channel, but they were used to study gas
flow through circular cylinders in square arrays. There are some reasons for above ap-
proximate treatment. The first is that it is hard to derive analytical solution of MRT-LBE
for gas flow in a complex geometry, so we can not present a further analysis on dis-
crete effect of boundary condition. The second is based on an assumption which may
be reasonable in some degree, i.e., the Hagen-Poiseuille law is assumed to be true for
flow between two neighboring cylinders. The third is similar treatment for continuous
flow through simplified porous media has been reported in available literature (see [18]),
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and what is more, these published results unambiguously show that above approximate
treatment can be used to improve the accuracy of numerical results.

We also would like to point out that the circular cylinders in square arrays is only
an ideal porous structure and may differ much from more realistic porous media, the
possible differences between them will be investigated in the future.
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