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Abstract. In this paper, we investigate initial boundary value problems of the space-
time fractional diffusion equation and its numerical solutions. Two definitions, i.e.,
Riemann-Liouville definition and Caputo one, of the fractional derivative are consid-
ered in parallel. In both cases, we establish the well-posedness of the weak solution.
Moveover, based on the proposed weak formulation, we construct an efficient spectral
method for numerical approximations of the weak solution. The main contribution
of this work are threefold: First, a theoretical framework for the variational solutions
of the space-time fractional diffusion equation is developed. We find suitable func-
tional spaces and norms in which the space-time fractional diffusion problem can be
formulated into an elliptic weak problem, and the existence and uniqueness of the
weak solution are then proved by using existing theory for elliptic problems. Sec-
ondly, we show that in the case of Riemann-Liouville definition, the well-posedness
of the space-time fractional diffusion equation does not require any initial conditions.
This contrasts with the case of Caputo definition, in which the initial condition has to
be integrated into the weak formulation in order to establish the well-posedness. Fi-
nally, thanks to the weak formulation, we are able to construct an efficient numerical
method for solving the space-time fractional diffusion problem.

AMS subject classifications: 35S10, 35A05, 65M70, 65M12
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1 Introduction

Fractional partial differential equations (FPDEs) appear in the investigation of trans-
port dynamics in complex systems which are characterized by the anomalous diffu-
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sion and nonexponential relaxation patterns [31]. Related equations of importance are
the space/time fractional diffusion equations, the fractional advection-diffusion equa-
tion [17, 18] for anomalous diffusion with sources and sinks, and the fractional Fokker-
Planck equation [4] for anomalous diffusion in an external field, etc. In fact, it has been
shown (see, for example, [6,12,13,47,49]) that anomalous diffusion is ubiquitous in physi-
cal and biological systems where trapping and binding of particles can occur. Anomalous
diffusion deviates from the standard Fichean description of Brownian motion, the main
character of which is that its mean squared displacement is a nonlinear growth with re-
spect to time, such as 〈x2(t)〉∼ tα.

The space-time fractional diffusion equation (STFDE) considered in this paper is of
interest not only in its own right, but also in that it constitutes the principal part in solving
many other FPDEs. The physical background includes modeling turbulent flow, chaotic
dynamics charge transport in amorphous semiconductors [43, 44], NMR diffusometry
in disordered materials [32], and dynamics of a bead in polymer network [3]. In [33],
Nigmatullin used the fractional diffusion equation to describe diffusion in media with
fractal geometry. Mainardi [29] pointed out that the propagation of mechanical diffusive
wave in viscoelastic media can be modeled by STFDE.

The universality of anomalous diffusion phenomenon in physical and biological ex-
periments has led to an intensive investigation on the fractional differential equations
in recent years. For example, the TFDE and related equations have been investigated
in analytical and numerical frames by a number of authors [14, 26, 45, 54]. Schneider
and Wyss [45] and Wyss [54] investigated the Green functions and their properties for
the time fractional diffusion wave equations. Gorenflo et al. [14, 15] used the similarity
method and Laplace transform to obtain the scale invariant solution of TFDE in terms
of the Wright function. The work done on the numerical solution of the TFDE includes
finite difference methods by Liu et al. [27], Sun and Wu [51], Langlands and Henry [20]
and so on. More recently, Lin and Xu [23] proposed a finite difference scheme in time
and Legendre spectral method in space for TFDE. A convergence rate of (2−α)-order in
time and spectral accuracy in space of the method was rigourously proved. In [10,11,41],
Ervin and Roop presented a Galerkin finite element approximation for variational solu-
tion to the steady state fractional advection dispersion equations. Very recently, Li and
Xu [22] proposed a time-space spectral method for TFDE based on a weak formulation,
and detailed error analysis was carried out.

A suitable variational formulation is the starting point of many numerical methods,
such as finite element methods and spectral methods. The existence and uniqueness
of the variational solution is thus essential for these methods to be efficient. The con-
struction of the variational formulation strongly relies on the choice of suitable spaces
and norms. The main contribution of this paper includes: First, we establish the well-
posedness of the weak formulation of STFDE, with the help of the introduction of suitable
fractional Sobolev spaces and norms. We clearly distinguish two different definitions of
the fractional derivative: Riemann-Liouville derivative and Caputo one. We find that in
the case of Riemann-Liouville definition there is no need to impose any explicit initial
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conditions for the well-posedness of the problem, while in the Caputo case an usual ini-
tial condition is required to guarantee the uniqueness. Secondly, we construct an efficient
spectral method for numerical approximations of the weak solution. Based on the weak
formulation and the polynomial approximation results in the related Sobolev spaces, we
are able to derive some error estimates. We present also an implementation technique of
the algorithm, and some numerical results to confirm the theoretical statements. Finally,
we generalize the space-time spectral method to the nonlinear Fokker-Planck equation.
A combination of the BICGSTAB and Newton iteration method is proposed to solve the re-
sulting nonsymmetric nonlinear system. Some numerical tests are carried out to demon-
strate the efficiency of the method.

The outline of the paper is as follows: In next section we first describe the problems
and then introduce necessary functional spaces and investigate their properties. In Sec-
tion 3, we construct the weak formulations both in space and time directions for the
space-time fractional diffusion equation. The existence and uniqueness of the problems
are proved. In Section 4 we propose the space-time spectral methods based on the weak
formulations and carry out the error analysis. We give some implementation details and
present the numerical results in Section 5. In Section 6, we consider a generalization of the
space-time spectral method to the nonlinear Fokker-Planck equation. Some concluding
remarks are given in Section 7. Finally we give in the appendix an evaluation technique
for computing the integrals.

2 Problems and functional spaces

2.1 Notation

We first introduce some notations that will be used throughout the paper. Let

Ω=(−1,1)d, I =(0,T), Q=Ω× I,

where d≥1 is the space dimension. We use the symbol O to denote a domain which may
stand for Ω, I,Q or R. Let L2(O) be the space of measurable functions whose square is
Lebesgue integrable in O. The inner product and norm of L2(O) are defined by

(u,v)O =
∫

O
uvdO, ‖u‖0,O =(u,u)1/2

O , ∀ u,v∈L2(O).

For a nonnegative real number s, we use Hs(O) and Hs
0(O) to denote the usual Sobolev

spaces, whose norms are denoted by ‖·‖s,O (see [2,24]). Let C∞
0 (O) stand for the space of

all functions having continuous derivatives of all orders and compactly supported in O.
For the Sobolev space X with norm ‖·‖X , let

Hs(I;X) :=
{

v; ‖v(·,t)‖X ∈Hs(I)
}

,

endowed with the norm

‖v‖Hs(I;X) :=
∥

∥‖v(·,t)‖X

∥

∥

s,I
.
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Particularly, when X is Hσ(Ω) or Hσ
0 (Ω), σ > 0, the norm of the space Hs(I;X) will be

denoted by ‖·‖σ,s,Q.
Hereafter, in cases where no confusion would arise, the domain symbols Ω, I, or Q

may be dropped from the notations.
We then recall some definitions of fractional derivatives and fractional integrals

(see [36, 38]). Let Γ(·) denote the Gamma function. For any positive integer n and
n−1 ≤ s < n, the Caputo derivative, Riemann-Liouville derivative, and fractional inte-
gral of order s are respectively defined as

• left Caputo derivative:

CDs
t v(t)=

1

Γ(n−s)

∫ t

0

v(n)(τ)dτ

(t−τ)s−n+1
, ∀ t∈ [0,T], (D1)

• right Caputo derivative:

C
t Dsv(t)=

(−1)n

Γ(n−s)

∫ T

t

v(n)(τ)dτ

(τ−t)s−n+1
, ∀ t∈ [0,T], (D2)

• left Riemann-Liouville derivative:

RDs
t v(t)=

1

Γ(n−s)

dn

dtn

∫ t

0

v(τ)dτ

(t−τ)s−n+1
, ∀ t∈ [0,T], (D3)

• right Riemann-Liouville derivative:

R
t Dsv(t)=

(−1)n

Γ(n−s)

dn

dtn

∫ T

t

v(τ)dτ

(τ−t)s−n+1
, ∀ t∈ [0,T], (D4)

• fractional integral:

Is
t v(t)=

1

Γ(s)

∫ t

0

v(τ)dτ

(t−τ)1−s
, ∀ t∈ [0,T]. (I1)

Same definitions apply for the spatial variable x in place of t in (D1)-(I1).
Let c stand for a generic positive constant independent of any functions and of any

discretization parameters. We use the expression A. B to mean that A6 cB, and use the
expression A∼=B to mean that A.B. A.

2.2 Problems and preparations

For 0 < α < 1, 1 < β < 2, we consider the following two space-time fractional diffusion
problems:











RDα
t u(x,t)−p1

RD
β
xu(x,t)−p2

R
x D

β
u(x,t)= f (x,t), ∀ (x,t)∈Q,

u(x,t)|∂Ω =0, ∀ t∈ I,

I1−α
t u(x,0)=0, ∀ x∈Ω,

(2.1)
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and






CDα
t u(x,t)−p1

RD
β
xu(x,t)−p2

R
x D

β
u(x,t)= f (x,t), ∀ (x,t)∈Q,

u(x,t)|∂Ω =0, ∀ t∈ I,
u(x,0)=u0(x), ∀ x∈Ω,

(2.2)

where p1,p2 are two constants satisfying

p1+p2 =1, 0< p1,p2 <1.

Note that the assumption on the upper-bound of p1 and p2 is technique, and general
p1 and p2 can be treated by a simple scaling. Note also that different fractional time-
derivatives, Riemann-Liouville and Caputo, correspond to different initial conditions,
the reason of which will become clear after the well-posedness analysis in the following.

The first part of this paper concerns the investigation of the well-posedness of the
problems (2.1) and (2.2). This was motivated by a previous investigation [22] in which
we aimed to provide efficient methods for the numerical solution of the time fractional
diffusion equation. In order to relax the storage restriction due to the ”global time depen-
dence” of the fractional derivative, a spectral method was proposed to solve the fractional
diffusion equation. It is known that a suitable variational formulation is essential for the
spectral method to be efficient. That was in the paper [22], we started to address the exis-
tence and uniqueness of a weak solution of the time fractional diffusion equation. In this
paper we follow the same idea and aim to clarify some of the issues raised in the study
of the FPDEs. In particular, we improve some basic results given in [22] by providing
less restrictive assumptions on the regularity, and thanks to that we will be able to prove
that in the case of Riemann-Liouville definition, the boundary value problem of STFDE is
well-posed in a weak sense without any explicit initial conditions. By contrast, the well-
posedness of STFDE with Caputo definition requests a suitable initial condition, treated
weakly in a way similar to a Neumann boundary condition for integer order differential
equations. The two definitions will be discussed separately in the next section.

In order to establish the weak formulation of the problems (2.1) and (2.2), we need
some preparations. We start with defining some useful functional spaces and giving
some properties related to these spaces. Let Λ =(a,b), which may stand for I or Ω. For
any real s≥0, we define the spaces

lHs(Λ) :=
{

v; ‖v‖l Hs(Λ) <∞
}

, (2.3)

with

‖v‖l Hs(Λ) :=
(

‖v‖2
0,Λ +|v|2l Hs(Λ)

)
1
2
, |v|l Hs(Λ) :=

∥

∥

RDs
zv

∥

∥

0,Λ
, (2.4)

and

rHs(Λ) :=
{

v; ‖v‖rHs(Λ) <∞
}

, (2.5)
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with

‖v‖rHs(Λ) :=
(

‖v‖2
0,Λ +|v|2rHs(Λ)

)
1
2
, |v|rHs(Λ) :=

∥

∥

R
z Dsv

∥

∥

0,Λ
. (2.6)

Let lHs
0(Λ) and rHs

0(Λ) be the closures of C∞
0 (Λ) with respect to the norms ‖v‖l Hs(Λ) and

‖v‖rHs(Λ) respectively. In the above notations the exponents ”l” and ”r” have been used
to indicate respectively the Left and Right fractional derivatives in the norm definitions.
The definitions of these spaces differ from the ones of the usual Sobolev spaces. However,
as we are going to see, these spaces are indeed equivalent for s 6=n−1/2 in a sense to be
specified later. To this end, in the usual Sobolev space Hs

0(Λ), we also define

|v|∗Hs
0(Λ) :=

( (RDs
zv, R

z Dsv)Λ

cos(πs)

)
1
2
, ∀ v∈Hs

0(Λ).

We will prove that this functional is well defined and equivalent to the usual seminorm
|·|Hs

0(Λ) in the sense that

|v|∗Hs
0(Λ) . |v|Hs

0(Λ). |v|∗Hs
0(Λ), ∀ v∈Hs

0(Λ).

In fact, a more general result will be proved in Lemma 2.6. Nevertheless, we emphasize
that |·|∗Hs

0(Λ) is not a seminorm as it does not satisfy the triangular inequality. We first

recall the following result.

Lemma 2.1. ([22]) Let s > 0, s 6= n−1/2. Then the seminorms |·|l Hs(Λ), |·|rHs(Λ) and |·|Hs
0(Λ)

are all equivalent to |·|∗Hs
0(Λ) in space C∞

0 (Λ).

We derive below a number of useful properties related to the Caputo fractional
derivatives, Riemann-Liouville derivatives and integrals.

Lemma 2.2. If 0< p<1/2, v∈L2(Λ), or if 1/2≤ p<1, v∈Hs(Λ), p−1/2< s<1/2, then it
holds that

∣

∣

∣
I

1−p
z v(z)

∣

∣

∣

z=a+
=0. (2.7)

Proof. If 0< p<1/2, v∈L2(Λ), then

∣

∣

∣
I

1−p
z v(z)

∣

∣

∣

z=a+
= lim

z→a+

∣

∣

∣

1

Γ(1−p)

∫ z

a

v(τ)

(z−τ)p
dτ

∣

∣

∣

.‖v‖L2(a,z) lim
z→a+

∣

∣

∣

∫ z

a

1

(z−τ)2p
dτ

∣

∣

∣

1/2
=0.
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If 1/2≤ p<1, v∈Hs(Λ), s> p−1/2, we take r =2/(1+2s) and r′ =2/(1−2s), such that
1/r+1/r′ =1. Then

lim
z→a+

∣

∣

∣
I

1−p
z v(z)

∣

∣

∣
= lim

z→a+

∣

∣

∣

1

Γ(1−p)

∫ z

a

v(τ)

(z−τ)p
dτ

∣

∣

∣

. lim
z→a+

‖v(τ)‖Lr′ (a,z)

∥

∥

∥

1

(z−τ)p

∥

∥

∥

Lr(a,z)

. lim
z→a+

‖v(τ)‖Hs(a,z)

∥

∥

∥

1

(z−τ)p

∥

∥

∥

Lr(a,z)
=0.

In the above deduction, we have used the following embedding result [2, 40]

Hs(a,z) →֒ Lr′(a,z), r′ =
2

1−2s
, 0< s<

1

2
.

Thus we get (2.7).

One of the remarkable properties of the Riemann-Liouville fractional derivative is
given in the following lemma.

Lemma 2.3. For real s, 0< s<1, if

w∈ lHs(Λ)∩Hs(Λ), v∈C∞(Λ),

then
(

RDs
zw(z), v(z)

)

Λ
=

(

w(z), R
z Dsv(z)

)

Λ
. (2.8)

Proof. By using integration by parts, we get

R
z Dsv(z)=

v(b)

Γ(1−s)(b−z)s
+C

z Dsv(z).

In fact, we have

LHS=
−1

Γ(1−s)

d

dz

∫ b

z

v(ξ)

(ξ−z)s
dξ

=
−1

Γ(1−s)

{ d

dz

[v(ξ)(ξ−z)1−s

1−s

∣

∣

∣

b

z
−

1

1−s

∫ b

z
v′(ξ)(ξ−z)1−s dξ

]}

=
−1

Γ(1−s)

{ d

dz

[v(b)(b−z)1−s

1−s

]

−
1

1−s

d

dz

∫ b

z
v′(ξ)(ξ−z)1−s dξ

}

=
−1

Γ(1−s)

{ −v(b)

(b−z)s
−

1

1−s

∫ b

z

d

dz

[

v′(ξ)(ξ−z)1−s
]

dξ+
1

1−s
v′(ξ)(ξ−z)1−s

∣

∣

ξ=z

}

=
v(b)

Γ(1−s)(b−z)s
+

−1

Γ(1−s)

∫ b

z

v′(ξ)

(ξ−z)s
dξ

=RHS.
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On the other hand, for w∈Hs(Λ), we have, by Lemma 2.2,

lim
z→a+

∫ z

a

w(τ)

(z−τ)s
dτ =0.

Then, by employing again integration by parts and using the above two equalities, we
obtain

(

RDs
zw(z), v(z)

)

Λ
=

1

Γ(1−s)

∫ b

a

d

dz

∫ z

a

w(τ)

(z−τ)s
dτ v(z) dz

=
v(z)

Γ(1−s)

∫ z

a

w(τ)

(z−τ)s
dτ

∣

∣

∣

b

a
−

1

Γ(1−s)

∫ b

a

∫ z

a

w(τ)

(z−τ)s
dτ v′(z) dz

=
v(b)

Γ(1−s)

∫ b

a

w(τ)

(b−τ)s
dτ−

1

Γ(1−s)

∫ b

a

∫ b

τ

v′(z)

(z−τ)s
dz w(τ) dτ

=
∫ b

a
w(τ)

[ v(b)

Γ(1−s)(b−τ)s
+

−1

Γ(1−s)

∫ b

τ

v′(z)

(z−τ)s
dz

]

dτ

=
(

w(τ), R
τ Dsv(τ)

)

Λ
.

So, the lemma is proved.

For general positive real s, we have the following result.

Lemma 2.4. For all positive real s, if w∈ lHs(Λ), v∈C∞
0 (Λ), then

(

RDs
zw(z), v(z)

)

Λ
=

(

w(z), R
z Dsv(z)

)

Λ
. (2.9)

Proof. Let n be the integer such that n−1 ≤ s < n. By repeating integration by parts n
times, we get

R
z Dsv(z)= C

z Dsv(z)+
n−1

∑
j=0

v(j)(b)(b−z)j−s

Γ(1+ j−s)
= C

z Dsv(z). (2.10)

In virtue of the definition of RDs
zw, we have, for the left hand side of (2.9)

(

RDs
zw(z), v(z)

)

Λ
=

1

Γ(n−s)

∫ b

a

dn

dzn

∫ z

a

w(τ)

(z−τ)s−n+1
dτ v(z) dz

=
(−1)n

Γ(n−s)

∫ b

a

∫ z

a

w(τ)

(z−τ)s−n+1
dτ v(n)(z) dz

=
(−1)n

Γ(n−s)

∫ b

a

∫ b

τ

v(n)(z)

(z−τ)s−n+1
dz w(τ) dτ

=
(

w(τ), C
τ Dsv(τ)

)

Λ
.

Finally, using (2.10) gives (2.9).



1024 X. Li and C. Xu / Commun. Comput. Phys., 8 (2010), pp. 1016-1051

For a given positive real s, the fractional derivative RDs
zv can be generalized for all

v∈ L2(Λ) in the following way: for v∈ L2(Λ), we define the linear functional, denoted
still by RDs

zv: C∞
0 (Λ)→R, through

RDs
zv(φ) :=

∫

Λ
v R

z Dsφdz, ∀ φ∈C∞
0 (Λ). (2.11)

Then it can be verified that RDs
zv(φ) is continuous in C∞

0 (Λ). In fact, for all φj ∈C∞
0 (Λ),

such that

‖φ
(m)
j ‖∞ →0, ∀ m∈Z, as j→∞,

we have, with n being the integer such that n−1≤ s<n,

∣

∣

∣

RDs
zv(φj)

∣

∣

∣
=

∣

∣

∣

∫

Λ
v R

z Dsφj dz
∣

∣

∣
≤‖v‖L2

∥

∥

R
z Dsφj

∥

∥

L2 =‖v‖L2

∥

∥

C
z Dsφj

∥

∥

L2

=‖v‖L2

∥

∥

∥

1

Γ(n−s)

∫ b

z

φ
(n)
j (τ)

(τ−z)s−n+1
dτ

∥

∥

∥

L2

.‖v‖L2

∥

∥φ
(n)
j (z)

∥

∥

∞

∥

∥

∥

∫ b

z

1

(τ−z)s−n+1
dτ

∥

∥

∥

L2

.‖v‖L2

∥

∥φ
(n)
j (z)

∥

∥

∞

∥

∥(b−z)n−s
∥

∥

L2 →0, as j→∞.

Thus RDs
zv is a distribution. This means that for v ∈ L2(Λ), RDs

zv can be defined as a
distribution, which, by virtue of Lemma 2.4, coincides with the standard definition (D3)
if v∈ lHs(Λ).

Thanks to these properties, we are able to prove the following fundamental results.

Lemma 2.5. For all positive real s, spaces lHs(Λ) and rHs(Λ) are complete.

Proof. We only give a proof for lHs(Λ). The completeness of rHs(Λ) can be proved in a
similar way. Let vn be a Cauchy sequence under norm ‖·‖l Hs , then there exist v,w such
that

vn →v, in L2(Λ), (2.12)
RDs

zvn →w, in L2(Λ). (2.13)

In the following, we want to prove that RDs
zv=w.

On one hand, by (2.13), we have
∫

Λ

RDs
zvnφdz→

∫

Λ
wφdz, ∀ φ∈C∞

0 (Λ). (2.14)

On the other hand, by Lemma 2.4 and (2.12), we have
∫

Λ

RDs
zvnφdz=

∫

Λ
vn

R
z Dsφdz→

∫

Λ
vR

z Dsφdz.
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Then by (2.11), we obtain
∫

Λ

RDs
zvnφdz→RDs

zv(φ). (2.15)

By combining (2.14) with (2.15), we conclude

RDs
zv=w.

This completes the proof.

Lemma 2.6. For s >0, s 6= n−1/2, the spaces lHs
0(Λ), rHs

0(Λ) and Hs
0(Λ) are equal and their

seminorms are all equivalent to |·|∗
Hs

0(Λ).

Proof. It is well known that Hs(Λ) is complete. Thus from Lemma 2.5 all the three spaces
lHs(Λ), rHs(Λ) and Hs(Λ) are complete. In virtue of Lemma 2.1, all the three seminorms
|·|l Hs(Λ), |·|rHs(Λ) and |·|Hs

0(Λ) are equivalent in C∞
0 (Λ). As a consequence we know that

the spaces lHs
0(Λ), rHs

0(Λ) and Hs
0(Λ) are equal in the sense that their seminorms are

equivalent.
It remains to prove |v|l Hs(Λ)

∼= |v|∗Hs
0(Λ). For all v∈Hs

0(Λ), there exists a sequence vn ∈

C∞
0 (Λ), such that

|v−vn |lHs(Λ)
∼= |v−vn |rHs(Λ)

∼= |v−vn |Hs
0(Λ)→0, as n→+∞. (2.16)

By Lemma 2.1, we have

( (RDs
zvn, R

z Dsvn)L2(Λ)

cosπs

)
1
2 ∼= |vn|lHs(Λ). (2.17)

Then by applying triangle inequality and (2.16), we get

∣

∣

∣

(RDs
zvn, R

z Dsvn)L2(Λ)

cosπs
−

(RDs
zv, R

z Dsv)L2(Λ)

cosπs

∣

∣

∣

. |vn|lHs(Λ)|v−vn|rHs(Λ)+|v|rHs(Λ)|v−vn|lHs(Λ)

→0, as n→+∞,

and
∣

∣

∣
|v|l Hs(Λ)−|vn|lHs(Λ)

∣

∣

∣
≤|v−vn |lHs(Λ)→0, as n→+∞.

Thus taking limit in both sides of (2.17) yields

( (RDs
zv, R

z Dsv)L2(Λ)

cosπs

)
1
2 ∼= |v|l Hs(Λ).

Consequently,

|v|l Hs(Λ)
∼= |v|rHs(Λ)

∼= |v|Hs
0(Λ)

∼= |v|∗Hs
0(Λ).

This completes the proof.
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Lemma 2.7. For 0< s<2, s 6=1, w∈H
s
2
0 (Λ), it holds that

RDs
zw= RD

s
2
z

RD
s
2
z w, (2.18)

in the distribution sense, i.e.,
〈

RDs
zw(z),φ(z)

〉

Λ
=

〈

RD
s
2
z

RD
s
2
z w(z),φ(z)

〉

Λ
, ∀ φ∈C∞

0 (Λ).

Furthermore,
RDs

zw∈H− s
2 (Λ). (2.19)

Proof. By definition (2.11), we have ∀φ∈C∞
0 (Λ),

〈

RDs
zw(z), φ(z)

〉

Λ
=

(

w(z), R
z Dsφ(z)

)

Λ
,

〈

RD
s
2
z

RD
s
2
z w(z), φ(z)

〉

Λ
=

(

RD
s
2
z w(z), R

z D
s
2 φ(z)

)

Λ
.

Applying the decomposition property [36] and Lemma 2.3, we obtain

(

w(z), R
z Dsφ(z)

)

Λ
=

(

w(z), R
z D

s
2 R

z D
s
2 φ(z)

)

Λ
=

(

RD
s
2
z w(z), R

z D
s
2 φ(z)

)

Λ
. (2.20)

Thus the equality (2.18) holds in the distribution sense. Furthermore, we have from (2.20)
that

∣

∣

〈

RDs
zw(z), φ(z)

〉

Λ

∣

∣=
∣

∣

(

RD
s
2
z w(z), R

z D
s
2 φ(z)

)

Λ

∣

∣

6
∥

∥

RD
s
2
z w(z)

∥

∥

L2(Λ)

∥

∥

R
z D

s
2 φ(z)

∥

∥

L2(Λ)
, ∀ φ∈C∞

0 (Λ).

Since C∞
0 (Λ) is dense in H

s
2
0 (Λ), the above inequality remains true for all v∈H

s
2
0 (Λ). Thus

(2.19) holds. Hence, the lemma is proved.

Lemma 2.8. If 0< s<2, s 6=1, w,v∈H
s
2
0 (Λ), then

〈

RDs
zw(z), v(z)

〉

Λ
=

(

RD
s
2
z w(z), R

z D
s
2 v(z)

)

Λ
, (2.21a)

〈

R
z Dsw(z), v(z)

〉

Λ
=

(

R
z D

s
2 w(z), RD

s
2
z v(z)

)

Λ
. (2.21b)

Proof. By the definition of H
s
2
0 (Λ), there exists a sequence vn ∈C∞

0 (Λ), such that

‖vn−v‖
H

s
2 (Λ)

→0, as n→+∞.

For all w∈H
s
2
0 (Λ), by virtue of Lemma 2.7, we have

〈

RDs
zw(z), vn(z)

〉

Λ
=

〈

RD
s
2
z

RD
s
2
z w(z), vn(z)

〉

Λ
=

(

RD
s
2
z w(z), R

z D
s
2 vn(z)

)

Λ
. (2.22)
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On one side, it holds
∣

∣

∣

〈

RDs
zw,vn

〉

Λ
−

〈

RDs
zw,v

〉

Λ

∣

∣

∣
.

∥

∥v−vn

∥

∥

H
s
2 (Λ)

→0, as n→+∞.

On the other side, applying Lemma 2.6 yields
∣

∣

∣

(

RD
s
2
z w, R

z D
s
2 vn

)

Λ
−

(

RD
s
2
z w, R

z D
s
2 v

)

Λ

∣

∣

∣

6
∥

∥

RD
s
2
z w

∥

∥

0

∣

∣v−vn

∣

∣

rH
s
2 (Λ)

.
∥

∥

RD
s
2
z w

∥

∥

0

∥

∥v−vn

∥

∥

H
s
2 (Λ)

→0, as n→+∞.

Then by taking limit on both sides of (2.22), we obtain (2.21a). The result (2.21b) can be
derived similarly.

Remark 2.1. Properties (2.21a) has been proved in Lemma 2.6 of [22] under a stronger
assumption, i.e., assuming w a function in H1(Λ) with w(a)= 0. The present paper im-
proves the corresponding results by removing this restriction. This is an important point
which allows establishing suitable weak formulations for the problems under considera-
tion.

3 Existence and uniqueness of the weak solution

We first define the space

Bs,σ(Q) := Hs
(

I;L2(Ω)
)

∩L2
(

I;Hσ
0 (Ω)

)

,

equipped with the norm

‖v‖Bs,σ :=
(

‖v‖2

Hs
(

I;L2(Ω)
)+‖v‖2

L2
(

I;Hσ(Ω)
)

)1/2
.

3.1 Riemann Liouville weak formulation

We consider the weak formulation of problem (2.1) as follows: for f ∈ B
α
2 ,

β
2 (Q)′, find

u∈B
α
2 ,

β
2 (Q), such that

A(u,v)=F1(v), ∀ v∈B
α
2 ,

β
2 (Q), (3.1)

where the bilinear form A(·,·) is defined by

A(u,v) :=
(

RD
α
2
t u, R

t D
α
2 v

)

Q
−p1

(

RD
β
2
x u, R

x D
β
2 v

)

Q
−p2

(

R
x D

β
2 u, RD

β
2
x v

)

Q
, (3.2)

and the functional F1(·) is given by

F1(v) := 〈 f ,v〉Q.
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As usual, the notation B
α
2 ,

β
2 (Q)′ has been used to mean the dual space of B

α
2 ,

β
2 (Q). 〈·,·〉Q

stands for the duality between B
α
2 ,

β
2 (Q)′ and B

α
2 ,

β
2 (Q).

Thanks to the preparation in the previous section, we are able to prove the well-
posedness of the weak problem (3.1), which is presented in the next theorem.

Theorem 3.1. For all 0 < α < 1, 1 < β < 2 and f ∈ B
α
2 ,

β
2 (Q)′, problem (3.1) admits a unique

solution. Furthermore, if u is its solution, then it holds

∥

∥u
∥

∥

B
α
2 ,

β
2 (Q)

.
∥

∥ f
∥

∥

B
α
2 ,

β
2 (Q)′

. (3.3)

Proof. The existence and uniqueness of the solution is guaranteed by the well-known
Lax-Milgram lemma. It consists in verifying the continuity and coercivity of the bilinear

form A in B
α
2 ,

β
2 (Q)×B

α
2 ,

β
2 (Q). First, it follows from Lemma 2.6, ∀ u,v∈B

α
2 ,

β
2 (Q), that

|A(u,v)|

≤
∥

∥

RD
α
2
t u

∥

∥

L2(Q)

∥

∥

R
t D

α
2 v

∥

∥

L2(Q)
+

∥

∥

RD
β
2
x u

∥

∥

L2(Q)

∥

∥

R
x D

β
2 v

∥

∥

L2(Q)
+

∥

∥

R
x D

β
2 u

∥

∥

L2(Q)

∥

∥

RD
β
2
x v

∥

∥

L2(Q)

.‖u‖
H

α
2 (I;L2(Ω))

‖v‖
H

α
2 (I;L2(Ω))

+‖u‖
L2(I;H

β
2 (Ω))

‖v‖
L2(I;H

β
2 (Ω))

.‖u‖
B

α
2 ,

β
2 (Q)

‖v‖
B

α
2 ,

β
2 (Q)

.

This means the continuity of A. Then for the coercivity, we have from the same lemma,

for all v∈B
α
2 ,

β
2 (Q),

A(v,v)

=
(

RD
α
2
t v, R

t D
α
2 v

)

Q
−p1

(

RD
β
2
x v, R

x D
β
2 v

)

Q
−p2

(

R
x D

β
2 v, RD

β
2
x v

)

Q

∼=cos
(πα

2

)

(

RD
α
2
t v, RD

α
2
t v

)

Q
−p1cos

(πβ

2

)

(

RD
β
2
x v, RD

β
2
x v

)

Q
−p2cos

(πβ

2

)

(

RD
β
2
x v, RD

β
2
x v

)

Q

&‖v‖2

B
α
2 ,

β
2 (Q)

. (3.4)

To derive the stability, we take v=u in (3.1), then use (3.4) to get

∥

∥u
∥

∥

2

B
α
2 ,

β
2 (Q)

. 〈 f ,u〉Q .
∥

∥ f
∥

∥

B
α
2 ,

β
2 (Q)′

∥

∥u
∥

∥

B
α
2 ,

β
2 (Q)

. (3.5)

The estimate (3.3) is then obtained.

The link between variational formulation (3.1) and problem (2.1) is stated below.

Theorem 3.2. For all 0<α<1, 1< β<2, f ∈B
α
2 ,

β
2 (Q)′, if u is a solution of problem (2.1), then

u is also a solution of weak form (3.1). Reciprocally, if u is the solution of weak form (3.1), then it
is also a solution of problem (2.1) in the distribution sense.
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Proof. First, if u is a solution of problem (2.1), then obviously u∈B
α
2 ,

β
2 (Q). By multiplying

the first equation of (2.1) by any v∈ B
α
2 ,

β
2 (Q), integrating the resulting equation over Q,

and then using Lemma 2.8 respectively with z= t for the first term and with z= x for the
second and third terms, we obtain (3.1).

Inversely, if u is the solution of weak form (3.1), then by using Lemma 2.8, we get the
first equation of (2.1) in the distribution sense. The boundary condition is guaranteed by

the fact that u(·,t)∈H
β/2
0 (Ω) for almost every t∈ I. The initial condition is derived from

Lemma 2.2.

3.2 Caputo weak formulation

The construction of weak formulations for the problem with Caputo derivative is more
delicate. We may think about defining a similar space as lHs(I) and rHs(I) in (2.3) and
(2.5) with Caputo derivatives. For example, we may try to define the weak solution space
for Caputo problem (2.2) as follows

lH̃s(I) :=
{

v; ‖v‖l H̃s(I) <∞
}

,

with

‖v‖l H̃s(I) :=
(

‖v‖2
0,I +|v|2l H̃s(I)

)
1
2
, |v|l H̃s(I) :=

∥

∥

CDs
t v

∥

∥

0,I
,

where we have used the Caputo derivative CDs
t instead of RDs

t (see (2.4)) to define the
norm. This idea seems quick natural, but would not work for a reason we will see below.
That is, we will prove that, for 0< s <1/2, the space lH̃s(I) is not complete. To this end,
let’s consider the sequence {vn}

vn(t)=

{

nt, t∈ [0, 1/n],

1, t∈ [1/n, 1].

A direct calculation shows that

CDs
t vn(t)=







1
Γ(1−s)

n
1−s t1−s, t∈ [0, 1/n],

n
Γ(2−s)

[

t1−s−
(

t− 1
n

)1−s]
, t∈ [1/n, 1].

It is verified that vn ∈ L2(I) and CDs
t vn ∈ L2(I), thus vn ∈ lH̃

s
(I). Clearly, if vn converges

in lH̃s(I) to a function v, then v≡ 1, CDs
t v≡ 0, but CDs

t vn 9 0. This means that vn is not

convergent in lH̃
s
(I).
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Next we prove that {vn} is in fact a Cauchy sequence. Without loss of generality, we
assume that n6m62n, then

CDs
t vm−

CDs
t vn =























m
Γ(2−s)t1−s− n

Γ(2−s) t1−s, t∈ [0, 1/m],

m
Γ(2−s)

[

t1−s−
(

t− 1
m

)1−s]
− n

Γ(2−s) t1−s, t∈ [1/m, 1/n],

m
Γ(2−s)

[

t1−s−
(

t− 1
m

)1−s]
− n

Γ(2−s)

[

t1−s−
(

t− 1
n

)1−s]
, t∈ [1/n, 1].

In different subintervals [0, 1/m],[1/m, 1/n], and [1/n, 1], we have

∥

∥

∥

CDs
t vm−CDs

t vn

∥

∥

∥

2

L2(0, 1
m )

62
∥

∥

∥

CDs
t vm

∥

∥

∥

2

L2(0, 1
m )

+2
∥

∥

∥

CDs
t vn

∥

∥

∥

2

L2(0, 1
m )

=
m2

Γ(2−s)2

2

(3−2s)m3−2s
+

n2

Γ(2−s)2

2

(3−2s)m3−2s

<
4

Γ(2−s)2(3−2s)n1−2s
→0, as m,n→∞, (3.6a)

∥

∥

∥

CDs
t vm−CDs

t vn

∥

∥

∥

2

L2( 1
m , 1

n )
62

∥

∥

∥

CDs
t vm

∥

∥

∥

2

L2( 1
m , 1

n )
+2

∥

∥

∥

CDs
t vn

∥

∥

∥

2

L2( 1
m , 1

n )

62
∥

∥

∥

CDs
t vm

∥

∥

∥

2

L2( 1
m , 1

n )
+2

∥

∥

∥

CDs
t vn

∥

∥

∥

2

L2(0, 1
n )

62
∥

∥

∥

CDs
t vm

∥

∥

∥

2

L2( 1
m , 1

n )
+

2

Γ(2−s)2(3−2s)n1−2s
. (3.6b)

We observe that

t1−s−
(

t−
1

m

)1−s
=

(1−s)ξ−s

m
<

(1−s)ms

m
, ξ∈

[

1/m, 1/n
]

.

This leads to
∥

∥

∥

CDs
t vm

∥

∥

∥

2

L2( 1
m , 1

n )
<

1

Γ(1−s)2
m2s

( 1

n
−

1

m

)

<
1

Γ(1−s)2
m2s−1.

Thus

∥

∥

∥

CDs
t vm−

CDs
t vn

∥

∥

∥

2

L2( 1
m , 1

n )
6

2m2s−1

Γ(1−s)2
+

2n2s−1

Γ(1−s)2(3−2s)
→0, as m,n→∞. (3.7)

For the interval
[

1/n, 1
]

, we first prove that for fixed t∈
[

1/n, 1
]

, CDs
t vm is decreasing

with respect to m when m > n. In fact, if we treat m as a real number, then for fixed t in
[

1/n, 1
]

, we have

d

dm
CDs

t vm =
d

dm

{ m

Γ(1−s)

[

t1−s−
(

t−
1

m

)1−s]
}

=
1

Γ(1−s)

[

t1−s−
(

t−
1

m

)1−s
]

−
1

mΓ(1−s)

(

t−
1

m

)−s
<0.
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So we can only consider the case m=2n. Taking m=2n gives

CDs
t v2n−

CDs
t vn =

n

Γ(1−s)

[

t1−s−2
(

t−
1

2n

)1−s
+

(

t−
1

n

)1−s
]

.

We now divide [1/n, 1] into two subintervals [1/n, 2/n] and [2/n, 1]. In [1/n, 2/n],
similar to (3.7), we have

∥

∥

∥

CDs
t v2n−

CDs
t vn

∥

∥

∥

L2( 1
n , 2

n )
→0, as n→∞.

For t∈ [2/n, 1], it is observed that

∣

∣

∣
t1−s−2

(

t−
1

2n

)1−s
+

(

t−
1

n

)1−s
∣

∣

∣
6

1

4n2
s(1−s)ξ(t)−s−1+

1

2n2
s(1−s)η(t)−s−1

<
1

n2

3

4
s(1−s)

(

t−
1

n

)−s−1
, ξ(t),η(t)∈

[

t−
1

n
,t

]

.

This results in

∥

∥

∥

CDs
t v2n−

CDs
t vn

∥

∥

∥

2

L2( 2
n ,1)

<
1

Γ(1−s)2

9

16

∫ 1

2
n

s2

n2

(

t−
1

n

)−2s−2
dt

<
1

Γ(1−s)2

∫ 1

1
n

s2t−2s−2

n2
dt

=
1

Γ(1−s)2

s2

n2(1+2s)
(n2s+1−1)→0, as n→∞.

Thus we proved that {vn} is a Cauchy sequence, which does not converge in lH̃s(I).

The above investigation indicates that the space lH̃
s
(I) is not a suitable solution space

for Caputo problem, and therefore we are led to consider the following weak formulation

for problem (2.2): for f ∈B
α
2 ,

β
2 (Q)′, find u∈B

α
2 ,

β
2 (Q), such that

A(u,v)=F2(v), ∀ v∈B
α
2 ,

β
2 (Q), (3.8)

where A(·,·) is defined in (3.2), and the functional F2(·) is given by

F2(v) := 〈 f ,v〉Q +
(u0(x)t−α

Γ(1−α)
, v

)

Q
.

In order to establish the link between variational formulation (3.8) and problem (2.2),
we first derive the following lemma.

Lemma 3.1. If 0<α<1, w∈H1(I), v∈H
α
2

0 (I), then

(

CDα
t w(t), v(t)

)

I
=

(

RD
α
2
t w(t), R

t D
α
2 v(t)

)

I
−

(w(0)t−α

Γ(1−α)
, v(t)

)

I
. (3.9)
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Proof. For 0<α<1, w∈H1(I), it can be checked

CDα
t w(t)= RDα

t w(t)−
w(0)t−α

Γ(1−α)
.

Then we get (3.9) by applying Lemma 2.8 to the second term below

(

CDα
t w(t), v(t)

)

I
=

(

RDα
t w(t), v(t)

)

I
−

(w(0)t−α

Γ(1−α)
, v(t)

)

I
, ∀ v∈H

α
2

0 (I).

So, the proof is completed.

The following known result will also be useful.

Lemma 3.2. (Hardy-Littlewood Lemma, [36]) For 0< s < 1, 1< p < 1/s, the factional inte-
gration operator Is

t v(t) is bounded from Lp into Lq with q= p/(1−sp).

The link between weak problem (3.8) and strong problem (2.2) is given in the theorem
below.

Theorem 3.3. Suppose 0 < α < 1, 1 < β < 2. If u is a classical solution of problem (2.2), then
u is a weak solution of (3.8). Reciprocally, if u is a weak solution of (3.8), and for almost every

x, u(x,·)∈H1(I), RD
β
xu(x,·), R

x D
β
u(x,·) and f (x,·)∈L

1
α (I), then u is also a solution of (2.2).

Proof. If u is a classical solution of problem (2.2), then we have

(

CDα
t u,v

)

Q
−p1

(

RD
β
xu,v

)

Q
−p2

(

R
x D

β
u,v

)

Q
= 〈 f ,v〉Q, ∀ v∈B

α
2 ,

β
2 (Q).

Then (3.8) can be derived by employing Lemma 3.1 with respect to t to the first term, and
Lemma 2.8 with respect to x to the second and third terms.

Inversely, if u is a solution of weak form (3.8), i.e., u satisfies

(

RD
α
2
t u, R

t D
α
2 v

)

Q
−p1

(

RD
β
2
x u, R

x D
β
2 v

)

Q
−p2

(

R
x D

β
2 u, RD

β
2
x v

)

Q

=〈 f ,v〉Q+
(u0(x)t−α

Γ(1−α)
,v

)

Q
, ∀ v∈B

α
2 ,

β
2 (Q),

then employing Lemmas 3.1 and 2.8 yields

(

CDα
t u, v

)

Q
−p1

〈

RD
β
xu, v

〉

Q
−p2

〈

R
x D

β
u, v

〉

Q

=〈 f ,v〉Q−
( (u(x,0)−u0(x))t−α

Γ(1−α)
, v

)

Q
, ∀ v∈C∞

0 (Q).

Thus it holds in the distribution sense

CDα
t u−p1

RD
β
xu−p2

R
x D

β
u= f −

(

u(x,0)−u0(x)
)

t−α

Γ(1−α)
.
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Furthermore, if u(x,·)∈ H1(I), then ∂tu(x,·)∈ L2(I), and by Hardy-Littlewood Lemma
3.2 with

s=1−α, and 1< p<min{1/1−α, 2},

we have
CDα

t u= I1−α
t ∂tu(x,t)∈L

p
1−(1−α)p (I)⊂ L

1
α (I), for a.e. x∈Ω.

This result, together with the assumption on RD
β
xu(x,·), R

x D
β
u(x,·), and f (x,·), leads to

(

u(x,0)−u0(x)
)

t−α

Γ(1−α)
= f −CDα

t u+p1
RD

β
xu+p2

R
x D

β
u∈L

1
α (I), for a.e. x∈Ω.

On the other side, it is readily seen that t−α does not belong to L
1
α (I). Thus, it holds

necessarily

u(x,0)=u0(x), for a.e. x∈Ω.

The other direct consequence of the above is

CDα
t u−p1

RD
β
xu−p2

R
x D

β
u= f .

We finally conclude that u satisfies (2.2), since the boundary condition

u(x,t)|∂Ω =0, ∀ t∈ I,

is evident.

Remark 3.1. In the weak solution space for both problems (3.1) and (3.8) the solutions
are not required to satisfy any initial conditions. In fact there is no sense to define the

trace at time t =0 for functions in B
α
2 ,

β
2 (Q) with α <1. The initial conditions imposed in

(2.1) and (2.2) are obtained only if the weak solutions are regular enough. In the Riemann
case, this is guaranteed by Lemma 2.2 as long as u(x,·)∈ Hα/2(I) for fixed x∈Ω. In the
Caputo case, a regularity requirement sufficient to guarantee the initial condition is given
in Theorem 3.3.

Remark 3.2. As for partial differential equations of integer order, the regularity of the
weak solutions of the STFDE is an another important subject worthy of profound under-
standing. For the time being, we have very limited knowledge about that.

Theorem 3.4. For all 0 < α < 1 and f ∈ B
α
2 ,

β
2 (Q)′, problem (3.8) admits a unique solution.

Furthermore, if u is its solution, then it holds

‖u‖
B

α
2 ,

β
2 (Q)

.‖ f‖
B

α
2 ,

β
2 (Q)′

+‖u0‖L2(Ω)‖t−α‖Lq(I), (3.10)

where q=2/(1+α).
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Proof. The proof of the existence and uniqueness of the solution is similar to that in The-
orem 3.1. We only need to derive the stability (3.10). By taking v= u in (3.8), then using
(3.4) and Hölder inequality, we get

‖u‖2

B
α
2 ,

β
2 (Q)

. 〈 f ,u〉Q+
1

Γ(1−α)

(

u0(x)t−α, u
)

Q

.‖ f‖
B

α
2 ,

β
2 (Q)′

‖u‖
B

α
2 ,

β
2 (Q)

+
∫

I
t−α

∫

Ω
u0(x)u(x,t)dxdt

.‖ f‖
B

α
2 ,

β
2 (Q)′

‖u‖
B

α
2 ,

β
2 (Q)

+
∫

I
t−α‖u(·,t)‖L2(Ω)‖u0‖L2(Ω)dt

.‖ f‖
B

α
2 ,

β
2 (Q)′

‖u‖
B

α
2 ,

β
2 (Q)

+‖u0‖L2(Ω)‖t−α‖Lq(I)‖u‖Lq′ (I;L2(Ω)), (3.11)

where

q=2/(1+α), q′ =2/(1−α).

Furthermore, by the Embedding Theorem [2], we know that

H
α
2 (I) →֒ Lq′(I).

Thus

‖u‖Lq′ (I;L2(Ω)) .‖u‖
H

α
2 (I;L2(Ω))

≤‖u‖
B

α
2 ,

β
2 (Q)

. (3.12)

Finally, combining (3.11) and (3.12) yields (3.10).

4 Spectral Galerkin method

In this section we propose and analyze a spectral Galerkin method to solve the initial
boundary value problems of STFDE expressed in the weak forms. For the sake of simpli-
fication, we only consider the problem with Riemann derivative (3.1). We mention that a
similar approach in the time variable has already been analyzed in [22] with slightly dif-
ferent approximation spaces for approximating solutions vanishing at t=0. The method
to be presented below will work for non-homogeneous initial conditions.

We define PM(Ω) (resp. PN(I)) as the polynomials spaces of degree less than or equal
to M (resp. N) with respect to x (resp. t). Let

P0
M(Ω) := PM(Ω)∩H

β
2

0 (Ω).

Then we define the spectral approximation space

SM,N := P0
M(Ω)⊗PN(I).
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We now consider the following space-time spectral method to problem (3.1): find uM,N ∈
SM,N, such that

A(uM,N,vM,N)=F(vM,N), ∀ vM,N ∈SM,N . (4.1)

Since SM,N is a subspace of B
α
2 ,

β
2 (Q), the well-posedness of problem (4.1) is immediate.

Theorem 4.1. For all 0<α<1, 1<β<2 and f ∈L2(Q), discrete problem (4.1) admits a unique
solution. Furthermore, if uM,N is the solution of (4.1), then uM,N satisfies

∥

∥uM,N

∥

∥

B
α
2 ,

β
2 (Q)

.‖ f‖0,Q. (4.2)

In order to derive the error estimate for the numerical solution, we need to introduce
some approximation operators and investigate their approximation properties.

Theorem 4.2. ([28]) Let p and s be two real numbers, such that

p 6=n+1/2, 0≤ s≤ p.

Then there exists an operator Π
s,0
p,N, from Hp∩Hs

0 onto Ps
N, such that for any ϕ∈ Hσ∩Hs

0 with

σ≥ p, we have

‖ϕ−Π
s,0
p,N ϕ‖ν . Nν−σ‖ϕ‖σ, ∀ 0≤ν≤ p. (4.3)

In the next lemma, we study the property of the composite approximation operator

Π
0,0
α
2 ,N

Π
β
2 ,0
β
2 ,M

, where the operation Π
β
2 ,0
β
2 ,M

v(x,t) acts on the space variable, while Π
0,0
α
2 ,N

acts

on the time variable.

Lemma 4.1. For 0<α<1, 1< β<2, γ>1, σ>1. If

v∈H
α
2
(

I;Hσ(Ω)
)

∩Hγ
(

I;H
β
2

0 (Ω)
)

,

then we have
∥

∥

∥

RD
β
2
x

(

v−Π
0,0
α
2 ,NΠ

β
2 ,0
β
2 ,M

v
)

∥

∥

∥

0,0
. M

β
2 −σ‖v‖σ,0+N−γ‖v‖ β

2 ,γ
,

∥

∥

∥

RD
α
2
t

(

v−Π
0,0
α
2 ,N

Π
β
2 ,0
β
2 ,M

v
)

∥

∥

∥

0,0
. N

α
2 −γ‖v‖0,γ +M−σ‖v‖σ, α

2
.

Proof. By using estimate (4.3), we get

∥

∥

RD
β
2
x

(

v−Π
0,0
α
2 ,NΠ

β
2 ,0
β
2 ,M

v
)∥

∥

0,0
.

∥

∥

RD
β
2
x

(

v−Π
β
2 ,0
β
2 ,M

v
)∥

∥

0,0
+

∥

∥

RD
β
2
x Π

β
2 ,0
β
2 ,M

(

v−Π
0,0
α
2 ,Nv

)∥

∥

0,0

. M
β
2 −σ‖v‖σ,0+

∥

∥Π
β
2 ,0
β
2 ,M

(

v−Π
0,0
α
2 ,Nv

)
∥

∥

β
2 ,0

. M
β
2 −σ‖v‖σ,0+

∥

∥v−Π
0,0
α
2 ,Nv

∥

∥

β
2 ,0

. M
β
2 −σ‖v‖σ,0+N−γ‖v‖ β

2 ,γ
,
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∥

∥

RD
α
2
t

(

v−Π
0,0
α
2 ,N

Π
β
2 ,0
β
2 ,M

v
)
∥

∥

0,0
.

∥

∥v−Π
0,0
α
2 ,N

v
∥

∥

0, α
2
+

∥

∥Π
0,0
α
2 ,N

(

v−Π
β
2 ,0
β
2 ,M

v
)
∥

∥

0, α
2

. N
α
2 −γ‖v‖0,γ +

∥

∥v−Π
β
2 ,0
β
2 ,M

v
∥

∥

0, α
2

. N
α
2 −γ‖v‖0,γ +M−σ‖v‖σ, α

2
.

So, the lemma is proved.

We are now in a position to derive the error estimate for the solution of the space-time
spectral approximation.

Theorem 4.3. Let 0<α<1, 1<β<2, γ>1, σ>1, and let u, uM,N be respectively the solutions
of (2.1) and (4.1). If

u∈H
α
2
(

I;Hσ(Ω)
)

∩Hγ
(

I;H
β
2
0 (Ω)

)

,

then we have
∥

∥u−uM,N

∥

∥

B
α
2 ,

β
2 (Q)

. N
α
2 −γ‖u‖0,γ+M−σ‖u‖σ, α

2
+M

β
2 −σ‖u‖σ,0+N−γ‖u‖ β

2 ,γ
. (4.4)

Proof. Following the standard procedure of error estimation for Galerkin methods, we
arrive at

∥

∥u−uM,N

∥

∥

B
α
2 ,

β
2 (Q)

6 inf
vM,N∈SM,N

∥

∥u−vM,N

∥

∥

B
α
2 ,

β
2 (Q)

.

By taking

vM,N =Π
0,0
α
2 ,N

Π
β
2 ,0
β
2 ,M

u,

in the right hand side and by using Lemma 4.1, we can obtain the estimate (4.4).

5 Numerical results

In this section, we present some numerical results to demonstrate the efficiency of the
proposed space-time spectral method. We start with an implementation technique.

5.1 Implementation

All the integrals involved in (3.1) will be evaluated by using suitable numerical quadra-
tures.For the reason that the time and space fractional derivatives make the integrants
non polynomial, we will introduce some Gauss-Lobatto-Jacobi (GLJ) quadratures to ex-
actly evaluate the integrals in partial directions depending on terms. We denote by LM

the Legendre polynomial of degree M. The points of the Gauss-Lobatto formula, denoted
by ξM

i , are defined by

ξM
0 =−1, ξM

M =1, L
′

M(ξM
i )=0, i=1,··· ,M−1,
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where ξM
0 < ξM

1 < ··· < ξM
M . The associated weights of the Gauss-Lobatto formula are

denoted by ρM
i , 0≤ i≤M. The (M+1)×(N+1) GLL points in Q are then defined by

(xi,tj) :=
(

ξM
i , (ξN

j +1)T/2
)

, i=0,1,··· ,M; j=0,1,··· ,N.

The corresponding weights are

ρM
i ρ̂N

j with ρ̂N
j :=

1

2
TρN

j , i=0,1,··· ,M; j=0,1,··· ,N.

We now approximate problem (3.1) by: find uM,N ∈SM,N , such that

(

RD
α
2
t uM,N, R

t D
α
2 vM,N

)

M
−p1

(

RD
β
2
x uM,N, R

x D
β
2 vM,N

)

N

−p2

(

R
x D

β
2 uM,N, RD

β
2
x vM,N

)

N
=( f ,vM,N)M,N, ∀ vM,N ∈SM,N , (5.1)

where (·,·)M, (·,·)N and (·,·)M,N are defined as, for u,v∈C0(Q̄)

(u,v)M :=
M

∑
i=0

∫

I
u(xi,t)v(xi,t)ρM

i dt, (5.2)

(u,v)N :=
N

∑
j=0

∫

Ω
u(x,tj)v(x,tj)ρ̂N

j dx, (5.3)

(u,v)M,N :=
M

∑
i=0

N

∑
j=0

u(xi,tj)v(xi,tj)ρM
i ρ̂N

j . (5.4)

It remains to compute the integrals in (5.1) term by term. Let {hx
i : i=0,··· ,M} be the La-

grangian polynomials associated with GLL points {xi : i=0,··· ,M} and {ht
j : j=0,1,··· ,N}

be for {tj : j=0,1,··· ,N}. That is, hx
i ∈PM(Ω), ht

j ∈PN(I), such that

hx
i (xk)=δik, ht

j(tk)=δjk,

where δ denotes the Kronecker function. It is seen that the set {hx
i ht

j , i = 1,··· ,M−1; j =

0,··· ,N} forms a basis of P0
M(Ω)⊗PN(I):

P0
M(Ω)⊗PN(I)=span

{

hx
i (x)ht

j(t), i=1,··· ,M−1; j=0,··· ,N
}

.

By expressing uM,N in this basis

uM,N(x,t)=
M−1

∑
i=1

N

∑
j=0

uijh
x
i (x)ht

j(t),
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and letting the test function vM,N go through all hx
m(x)ht

n(t), m=1,··· ,M−1; n=0,··· ,N,
we arrive at the matrix form of (5.1)

AuBT−p1EuHT−p2ETuHT = f , (5.5)

where u = (uij)(M−1)×(N+1) is the unknown vector, ·T means transpose of matrix. The
dimension of the matrices A and E are (M−1)×(M−1), while the matrices B and H are
of dimension (N+1)×(N+1). These matrices are computed as follows:

Am,i =
(

hx
i ,hx

m

)

M
=

M

∑
k=0

hx
i (xk)hx

m(xk)ρM
k =δimρM

m , (5.6a)

Hn,j =
(

ht
j ,h

t
n

)

N
=

N

∑
k=0

ht
n(tk)ht

j(tk)ρ̂N
k =δjnρ̂N

n , (5.6b)

Bn,j =
(

RD
α
2
t ht

j(t), R
t D

α
2 ht

n(t)
)

I
=

∫ T

0

RD
α
2
t ht

j(t) R
t D

α
2 ht

n(t)dt, (5.6c)

Em,i =
(

RD
β
2
x hx

i (x), R
x D

β
2 hx

m(x)
)

Ω
=

∫ 1

−1

RD
β
2
x hx

i (x) R
x D

β
2 hx

m(x)dx. (5.6d)

The right hand side vector f takes form ( fmn)(M−1)×(N+1) with

fmn =( f ,hx
mht

n)M,N =
M

∑
i=0

N

∑
j=0

f (xi,tj)hx
m(xi)ht

n(tj)ρM
i ρ̂N

j = f (xm,tn)ρM
m ρ̂N

n .

The most expensive computation in the above system is the evaluation of the matrices B
and E, in which the integrals (5.6c) and (5.6d) must be efficiently computed. The presence
of the time and space fractional derivatives make the computations nontrivial. We will
present in the appendix a method to efficiently calculate these integrals.

Finally, we found that the nonsymmetric system (5.5) can be solved by using the well
known BICGSTAB [40] iteration methods.

5.2 Some tests

To confirm the theoretical result predicted by the error estimate (4.4), we carry out a
numerical experiment by considering a (2+1)-D problem

RDα
t u(x,y,t)−

1

2
RD

β
xu(x,y,t)−

1

2
R
x D

β
u(x,y,t)−

1

2
RD

β
yu(x,y,t)−

1

2
R
y D

β
u(x,y,t)

= f (x,y,t), ∀ (x,y,t)∈ (−1,1)2×(0,1),

with the exact analytical solution

u(x,y,t)=exp(0.3t)exp(−0.3x2)sinπy.
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Figure 1: B- and L2-errors versus Mx with N =
16, My =20; α=0.1, β=1.6.
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Figure 2: B- and L2-errors versus My with N =
16, Mx =18; α=0.1, β=1.99.
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Figure 3: B- and L2-errors versus N with Mx =
18, My =20; α=0.2, β=1.9.
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Figure 4: B- and L2-errors versus N with Mx =
18, My =20; α=0.99, β=1.9.

We investigate the convergence behavior of numerical solutions with respect to the poly-
nomial degrees Mx,My and N for different α and β. In Figs. 1-4, we plot the L2-errors

and B
α
2 ,

β
2 -errors in semi-log scale. First, we fix N =16, a value large enough such that the

time errors are negligible as compared with the space errors. In Fig. 1, we plot the errors
as functions of the polynomial degrees Mx for α = 0.1, β = 1.6. Fig. 2 shows the errors
versus My for α=0.1, β=1.99. Secondly, we fix Mx =18, My =20 for investigation of the
time errors. In Figs. 3-4, we plot the errors as functions of N for values α =0.2, 0.99. As
expected, all errors show an exponential decay, since in these semi-log representations
one observes that the error variations are linear versus the degrees of polynomial. We
emphasize that the proposed method seems work too for α close to 1 or β close to 2, even
though our theoretical analysis assumes α<1 and β<2.

Next test is related to an examination of the sharpness of the estimate given in (4.4).



1040 X. Li and C. Xu / Commun. Comput. Phys., 8 (2010), pp. 1016-1051

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10

er
ro

r 
in

 lo
gs

ca
le

polynomial degree Mx in logscale

alpha=0.1, gamma=16/3

beta=1.9
beta=1.6

line of 10-4

line of 10-5

Figure 5: B-errors versus Mx with N=5, My =20
for varying β.
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Figure 6: B-errors versus N with Mx = 8, My = 8
for varying α.
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Figure 7: B-errors versus Mx with N=5, My =20
for varying γ.
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Figure 8: B-errors versus N with Mx = 8, My = 8
for varying γ.

To this end, we consider the following two exact solutions having limited regularity

u(x,t)= t3(1−x2)xγ sin(πy),

u(x,t)=(t+1)(t−1/2)γ(1−x2)3(1−y2)3,

where γ is a constant. It can be verified that the first solution belongs to Hγ+1/2 with
respect to the space variable, while the second is a Hγ+1/2 function on the time if γ is not

an integer. We plot in Fig. 5 the error decay rates in the B
α
2 ,

β
2 -norm versus the polynomial

degrees Mx with α = 0.1,γ = 16/3 for two different values of β = 1.6,1.9. The M−4
x and

M−5
x decay rates are also shown for comparison. The error behavior as a function of the

polynomial degrees N is plotted in Fig. 6 with β=1.99,γ=16/3 for α=0.3,0.9. Also shown
are the N−5 and N−6 decay rates. It is observed that all the error curves are straight lines
in this log-log representation, which indicates the algebraic convergence for these two
solutions of limited regularity. Moreover it is seen that the errors decrease with rates
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conform to the estimate (4.4), which predicts, in Fig. 5, M−5.0
x decay rate for β = 1.6 and

M−4.8
x decay rate for β = 1.9, and in Fig. 6, N−5.7 decay rate for α = 0.3 and N−5.3 decay

rate for α=0.9.

The investigation of the convergence behavior for less regular solutions is done by
decreasing γ. We plot in Fig. 7 the errors versus Mx and in Fig. 8 the errors versus N
for three different values of γ=16/3, 10/3, 4/3. As expected the convergence rate slows
down as γ, i.e., the regularity of the solution, decreases.

6 Application to the nonlinear Fokker-Planck equations

One of representative nonlinear Fokker-Planck equations (NLFPE) for describing anoma-
lous diffusion reads

∂tu(x,t)=−∂x[F(x)u(x,t)]+N ∂2
xuq(x,t), x∈R, t>0. (6.1)

This equation was suggested by Plastino-Plastino [37] to describe anomalous diffusion.
In (6.1), u(x,t) is the probability density function. N is the noise amplitude of the system.
F(x) denotes the external force. We intend to consider here a specific (but very common)
drift, namely characterized by

F(x)= k1−k2x,

with k1 and k2 two constants. The anomalous diffusion is described by parameter q: q>1
corresponds to sub-diffusion, q < 1 means sup-diffusion. The particular case F(x) = 0
(no drift) has been considered by Spohn [50] for arbitrary q. Eq. (6.1) has found wide
applications in gas and fluid flows in porous media, see, for example, thin saturated
regions in porous media (q = 2) [39], a solid-on-solid model for surface growth (q = 3),
thin liquid films spreading under gravity (q=4) [7], and plasma flows (q<1) [9, 42].

On the other hand, fractional Fokker-Planck equations (FFPEs) have been introduced
as a complementary tool in the description of anomalous transport [31]. They are some-
times considered as alternative approaches to continuous time random walk models. The
FFPEs describing the Lévy flights and subdiffusion are derived in [30, 31] for anomalous
diffusion in the presence of external field. They read

∂tu(x,t)= RD1−α
t

[

−∂x

(

F(x)u(x,t)
)

+K
β
α

RD
β
x u(x,t)

]

, (6.2)

where 0<α61, 1<β62,K
β
α is the modified diffusion coefficient. The anomalous diffusion

is related to parameters α and β. 0< α <1, β =2 is subdiffusion. α =1, 1< β <2 is Lévy
flights, and 0< α <1, 1< β <2 corresponds to the competition between Lévy flights and
subdiffusion.

The present paper addresses the unification of both equations as follows:

∂tu(x,t)= RD1−α
t

[

−∂x

(

F(x)u(x,t)
)

+K
β
α

RD
β
x uq(x,t)

]

. (6.3)
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The exact solution of this equation for α=1 has been studied in [5,21,48,52,53]. A number
of authors have investigated analytic solutions for α ≤ 1 [1, 16, 34, 35, 46]. The work on
the numerical solution of the nonlinear fractional Fokker-Planck equation is relatively
sparse [8, 25].

Here, as we are going to see, that the space-time spectral method proposed in the
previous section can be directly applied to solve Eq. (6.3) or in an alternative form







CDα
t u(x,t)+ ∂x

(

F(x)u(x,t)
)

−RD
β
x uq(x,t)= f (x,t), ∀ (x,t)∈Q,

u(−1,t)=u(1,t)=0, ∀ t∈ I,
u(x,0)=0, ∀ x∈Ω,

(6.4)

where the diffusion coefficient K
β
α has been dropped down for simplification.

6.1 Numerical method and implementation

We propose the space-time spectral method to (6.4) as follows: find uM,N ∈ SM,N, such
that

(

RD
α
2
t uM,N, R

t D
α
2 vM,N

)

M
+

(

∂x[F(x)uM,N], vM,N

)

M,N
−

(

RD
β
2
x u

q
M,N, R

x D
β
2 vM,N

)

N

=( f ,vM,N)M,N, ∀ vM,N ∈SM,N. (6.5)

By expressing F(x)uM,N and u
q
M,N in form

F(x)uM,N(x,t)=
M−1

∑
i=1

N

∑
j=0

F(xi)uijh
x
i (x)ht

j(t),

u
q
M,N(x,t)=

M−1

∑
i=1

N

∑
j=0

u
q
ijh

x
i (x)ht

j(t),

and taking hx
m(x)ht

n(t), m=1,··· ,M−1; n=0,··· ,N, as the test functions in (6.5), we obtain

AuBT+C(Fu)HT−EuqHT = f , (6.6)

where u=(uij)(M−1)×(N+1) is the unknown vector, (Fu)ij =F(xi)uij, uq=(u
q
ij)(M−1)×(N+1).

The matrices A,B,H, and E are same as in (5.5). The matrix C is of dimension (M−1)×
(M−1), which is computed by

Cm,i =
(

∂xhx
i ,hx

m

)

M
=

M

∑
k=0

∂xhx
i (xk)hx

m(xk)ρM
k =δimDm,iρ

M
m , (6.7)

where Dij =h′j(xi).
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Note that (6.6) is a nonsymmetric nonlinear system, we suggest to use Jacobian-free
Newton-Krylov methods [19] to solve it. The process is as follows: we first rewrite (6.6)
as

F(u)=0,

where F(u)= AuBT+C(Fu)HT−EuqHT− f . Then the iteration looks like:

• initial guess u(0) given;

• solve the linear system

JF (u(k))δu(k) =−F(u(k)),

by using the Bi-Conjugate-Gradient-stab (BICGSTAB) [40]. Here, k is the iteration index,
F(uk) is the residual, JF (u(k)) is its associated Jacobian matrix at u(k). Solving this linear
system requires the matrix-vector product:

JF (u(k))δu(k) = lim
ǫ→0

F(u(k)+ǫδu(k))−F(u(k))

ǫ

= lim
ǫ→0

A(u(k)+ǫδu(k))BT−A(u(k))BT

ǫ

+ lim
ǫ→0

C(Fu(k)+ǫFδu(k))HT−C(Fu(k))HT

ǫ

− lim
ǫ→0

E(u(k)+ǫδu(k))
q
HT−E((u(k))q)HT

ǫ

= A(δu(k))BT+C(Fδu(k))HT−E(q(u(k))
q−1

∗δu(k))HT,

where ∗ acting on two vectors means (u∗v)i =ui∗vi;

• update u(k) by

u(k+1) =u(k)+ωδu(k),

where 0<ω≤1 is a relaxation parameter, which is selected such

∥

∥F(u(k+1))
∥

∥< (1−λω)
∥

∥F(u(k))
∥

∥,

where λ is a scale parameter, fixed to 10−1. In our calculation, we try ω=1, 1
4 , 1

16 ,··· , until
the above criterion is met;

• stop if

∥

∥δu(k)
∥

∥

∥

∥u(k)
∥

∥

<10−15.
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Figure 9: H1- and L2-errors versus M with N=12.
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Figure 10: H1- and L2-errors versus M with N=12.
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Figure 11: H1- and L2-errors versus N with M=25.
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Figure 12: H1- and L2-errors versus M with N=15.

6.2 Numerical results

We present some numerical results for the proposed method to the nonlinear Fokker-
Planck equation corresponding to the so called Uhlenbeck-Ornstein process, i.e.,

F(x)=−k2x,

with k2 =1. We test for the exact analytical solution

u(x,t)=exp(0.3t)
(

exp(−0.3x2)−exp(−0.3)
)

, in (−1,1)×(0,1).

In Figs. 9 and 10, we plot the L2- errors and H1-errors in semi-log scale as functions of
the polynomial degrees M for two groups of parameters: α = 0.5, β = 1.5, q = 3.0 and
α=0.9, β=1.6, q=2.0. The errors with respect to N is presented in Fig. 11 for α=0.5, β=
1.9, q=2.0. Once again, the errors show exponential decay as expected.

For a reason mentioned in Section 5.2, we now study the convergence behavior for
the exact solutions with limited regularity in (0,2)×(0,1)

u(x,t)=(t2+1)(2x10/3−x13/3), u(x,t)=(t16/3+1)(2x3−x4).
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Figure 13: H1- and L2-errors versus N with Mx =15.

In Fig. 12, we plot the errors versus the polynomial degrees M for α=0.9, β=1.6, q=2.0.
The M−5 and M−7 decay rates are also shown for comparison reason. The convergence
history with respect to the polynomial degrees N is presented in Fig. 13, together with
lines of decay rates N−10 and N−12. We observe here the algebraic convergence rates
conform to the regularities of the solutions.

Finally we examine the efficiency of the Newton method by presenting the iteration
numbers needed to reach the convergence. Particularly, we are interested in the impact
of different parameters on the convergence. In Tables 1-4, we list the numbers of Newton
iteration as functions of equation parameters α,β, and q, as well as the discretization
parameters M and N. It is found that the convergence of the Newton iteration is more
sensitive to the non-linearity q than to the discretization parameters M and N. A good
point here is, as it can be observed throughout these tables, that the convergence history
seems to be independent or has very slight dependence on M and N.

Table 1: Iteration history of Newton method for problem in Fig. 9.

Iteration M=8 M=15 M=22
1 0.37 0.35 0.35
8 0.38 0.36 0.36

16 0.39 0.35 0.34
20 0.61 0.48 0.47
23 5.76D-2 2.85 0.45
24 1.15D-3 0.33 8.80D-2
25 1.42D-6 8.98D-2 1.25D-2
26 2.96D-12 4.20D-2 6.54D-4
27 2.01D-16 3.85D-3 9.81D-7
28 4.80D-5 1.43D-12
29 9.88D-9 1.23D-16
30 2.49D-16

Parameters: α=0.5, β=1.5, q=3.0, λ=0.1, N =12.
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Table 2: Iteration history of Newton method for problem in Fig. 11.

Iteration N =4 N =7 N =10
1 0.91 0.91 0.91
2 0.70 0.70 0.71
3 0.36 0.36 0.36
4 0.14 0.14 0.14
5 5.87D-2 5.91D-2 5.92D-2
6 2.55D-2 2.56D-2 2.57D-2
7 1.11D-2 1.12D-2 1.12D-2
8 4.20D-3 4.24D-3 4.24D-3
9 9.39D-4 9.53D-4 9.56D-4

10 6.27D-5 6.46D-5 6.51D-5
11 3.47D-7 3.69D-7 3.73D-7
12 1.30D-11 1.41D-11 1.43D-11
13 3.43D-16 5.34D-16 4.26D-16

Parameters: α=0.5, β=1.9, q=2.0, λ=0.1, M =25.

Table 3: Iteration history of Newton method for problem in Fig. 12.

Iteration M=14 M=34 M=51
1 0.28 0.28 0.28
2 5.44D-2 5.42D-2 5.42D-2
3 1.81D-2 1.40D-2 1.37D-2
4 6.69D-3 9.28D-3 8.15D-3
5 1.33D-3 6.32D-3 5.67D-3
6 3.15D-4 1.81D-3 1.27D-4
7 5.61D-6 2.85D-4 8.98D-5
8 1.89D-9 4.62D-5 2.65D-6
9 7.13D-16 2.88D-7 9.79D-9

10 2.12D-11 8.02D-14
11 1.79D-15

Parameters: α=0.9, β=1.6, q=2.0, λ=0.1, N =10.

7 Conclusions

We have set up a general variational framework for the space-time fractional diffusion
equation. Some suitable fractional Sobolev spaces and norms are introduced and inves-
tigated. We proved the well-posedness of the weak formulation of the space-time frac-
tional diffusion equation. Based on this weak formulation, we were able to construct and
analyze a space-time spectral method for the numerical solution. A rigorous error esti-
mate is provided, together with a detailed implementation and numerical confirmation.
Furthermore the space-time spectral method has been generalized to solve the nonlin-
ear Fokker-Planck equation. The numerical results have shown the applicability of the
proposed method.
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Table 4: Iteration history of Newton method for problem in Fig. 13.

iteration N =10 N =16 N =22
1 0.27 0.27 0.27
2 5.73D-2 5.71D-2 5.70D-2
3 8.24D-3 8.07D-3 8.08D-3
4 4.30D-3 4.35D-3 4.40D-3
5 7.38D-4 7.27D-4 8.04D-4
6 7.99D-5 2.81D-5 1.92D-5
7 1.24D-5 1.77D-6 9.26D-7
8 3.58D-7 1.02D-8 3.29D-9
9 3.01D-10 3.40D-13 3.97D-14

10 1.17D-15 9.40D-16

Parameters: α=0.4, β=1.9999, q=2.0, λ=0.1, M =12.

Appendix

Here we present the numerical quadratures for fast evaluations of the integrals

∫ T

0

RD
α
2
t ht

j(t) R
t D

α
2 ht

n(t)dt,
∫ b

a

RD
β
2
x hx

i (x) R
x D

β
2 hx

m(x)dx,

involved in the matrices B and E, which are the most expensive calculation in our meth-
ods. First, in order to compute the integral

∫ b

a

RD
β
2
x hx

i (x) R
x D

β
2 hx

m(x)dx,

we need to compute the left Riemann-Liouville derivative of hx
i (x) and right Riemann-

Liouville derivative of hx
m(x). This is done by

RD
β
2
x hx

i (x)=
1

Γ(1− β
2 )

d

dx

∫ x

a

hx
i (ξ)dξ

(x−ξ)
β
2

=
1

Γ(1− β
2 )

∫ x

a

d
dξ hx

i (ξ)

(x−ξ)
β
2

dξ

=
1

Γ(1− β
2 )

∫ 1

−1

d
dη hx

i

(

ξ(η)
)

(x−a)dη

2
(

x−ξ(η)
)

β
2

,

where

ξ(η)=
(x−a)η+a+x

2
=

1

Γ(1− β
2 )

( x−a

2

)1− β
2
∫ 1

−1

d

dη
hx

i

( (x−a)η+a+x

2

) dη

(1−η)
β
2

,
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R
x D

β
2 hx

m(x)=
1

Γ(1− β
2 )

d

dx

∫ b

x

hx
m(ξ)dξ

(ξ−x)
β
2

=
1

Γ(1− β
2 )

∫ b

x

d
dξ hx

m(ξ)dξ

(ξ−x)
β
2

=
1

Γ(1− β
2 )

∫ 1

−1

d
dη hx

m(ξ(η))(b−x)dη

2(ξ(η)−x)
β
2

,

with

ξ(η)=
(b−x)η+b+x

2
=

1

Γ(1− β
2 )

( b−x

2

)1− β
2
∫ 1

−1

d

dη
hx

m

( (b−x)η+b+x

2

) dη

(1+η)
β
2

.

Let

φi(x) :=
x−a

Γ(1− β
2 )21− β

2

∫ 1

−1

d

dη
hx

i

( (x−a)η+a+x

2

) dη

(1−η)
β
2

, (A.1)

ψm(x) :=
b−x

Γ(1− β
2 )21− β

2

∫ 1

−1

d

dη
hx

m

( (b−x)η+b+x

2

) dη

(1+η)
β
2

. (A.2)

Then it is readily seen that both φi(x) and ψm(x) are polynomials satisfying

∫ b

a

RD
β
2
x hx

i (x) R
x D

β
2 hx

m(x)dx=
∫ b

a
φi(x)ψm(x)(x−a)−

β
2 (b−x)−

β
2 dx. (A.3)

We are now led to compute the integrals in the right hand sides of (A.1), (A.2), and (A.3).

We denote by J
α,β
M+1(η) the Jacobi polynomial of degree M+1 with respect to weight

wα,β(η) = (1−η)α(1+η)β. Let {η
α,β
k }M+1

k=0 be the points of the GLJ quadrature formula,
defined by

η
α,β
0 =−1, η

α,β
M+1 =1,

d

dη
J

α,β
M+1(η

α,β
k )=0, k=1,··· ,M.

The associated weights of the GLJ quadrature formula are denoted by ρ
α,β
k , 0≤ k≤M+1.

We then define the GLJ quadrature points ξk and weights wk in the interval Λ =[a,b]
by

ξk =
(b−a)η

− β
2 ,− β

2

k +b+a

2
, k=0,1,··· ,M+1,

wk =(
b−a

2
)1−βρ

− β
2 ,− β

2

k , k=0,1,··· ,M+1.

Then the numerical quadrature

∫ b

a
u(x)v(x)(x−a)−

β
2 (b−x)−

β
2 dx≃

M+1

∑
k=0

u(ξk)v(ξk)wk,
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is exact for all functions u,v such that uv∈P2M+1(Λ). As a result, it holds

∫ b

a
φi(x)ψm(x)(x−a)−

β
2 (b−x)−

β
2 dx=

M+1

∑
k=0

φi(ξk)ψm(ξk)wk, i,m=1,2,··· ,M−1, (A.4)

since φiψm ∈P2M(Λ), for all i,m=1,2,··· ,M−1.
In (A.4), φi(ξk) and ψm(ξk) are evaluated by

φi(ξk)=
ξk−a

Γ(1− β
2 )21− β

2

∫ 1

−1

d

dη
hx

i

( (ξk−a)η+a+ξk

2

) dη

(1−η)
β
2

=
ξk−a

Γ(1− β
2 )21− β

2

M+1

∑
l=0

d

dη
hx

i

( (ξk−a)η
− β

2 ,0

l +a+ξk

2

)

ρ
− β

2 ,0

l ,

ψm(ξk)=
b−ξk

Γ(1− β
2 )21− β

2

∫ 1

−1

d

dη
hx

m

( (b−ξk)η+b+ξk

2

) dη

(1+η)
β
2

=
b−ξk

Γ(1− β
2 )21− β

2

M+1

∑
l=0

d

dη
hx

m

( (b−ξk)η
0,− β

2

l +b+ξk

2

)

ρ
0,− β

2

l .

Finally, the integral

∫ T

0

RD
α
2
t ht

j(t) R
t D

α
2 ht

n(t)dt,

can be computed in a similar way.
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