
Commun. Comput. Phys.
doi: 10.4208/cicp.160609.311209a

Vol. 8, No. 3, pp. 623-641
September 2010

Kernel Density Estimation Based Multiphase

Fuzzy Region Competition Method for Texture

Image Segmentation

Fang Li1 and Michael K. Ng2,∗

1 Department of Mathematics, East China Normal University, Shanghai 200241,
China.
2 Centre for Mathematical Imaging and Vision and Department of Mathematics,
Hong Kong Baptist University, Kowloon Tong, Hong Kong.

Received 16 June 2009; Accepted (in revised version) 31 December 2009

Available online 15 April 2010

Abstract. In this paper, we propose a multiphase fuzzy region competition model for
texture image segmentation. In the functional, each region is represented by a fuzzy
membership function and a probability density function that is estimated by a non-
parametric kernel density estimation. The overall algorithm is very efficient as both the
fuzzy membership function and the probability density function can be implemented
easily. We apply the proposed method to synthetic and natural texture images, and
synthetic aperture radar images. Our experimental results have shown that the pro-
posed method is competitive with the other state-of-the-art segmentation methods.
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1 Introduction

Image segmentation is a fundamental task in image processing and computer vision. It
is aimed to partition an image into a finite number of subregions with homogeneous
intensity (color, texture) properties which will hopefully correspond to objects or object
parts. Approaches based on the calculus of variation and partial differential equations
(PDEs) are powerful in image segmentation. One important reason of their success is
that these models are flexible in integrating the geometric information such as shape,
length and area. The best known and most influential approaches are Mumford-Shah
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model [20], geodesic active contour [5], geodesic active region [23], Chan-Vese model [7],
region competition [31].

In this paper, we focus on the segmentation of texture images. Piecewise smooth/
constant models such as Mumford-Shah model [20] and Chan-Vese model [7] fail in this
case. Recently, some variational methods have been proposed to tackle the segmentation
of complex textures based on feature extraction techniques [9,14,25,27]. In [9,27], a set of
Gabor filters with different scales, orientations and frequencies are applied to the image
to create the features to represent texture in the image. Chan et al. in [9] extended the
Chan-Vese model to these vector features for texture image segmentation. Because there
are many features to be used in the model, the corresponding minimization method can
be slow. Savig et al. [27] used the Beltrami framework on the texture features to define a
new texture indicator function, and then integrated this function in a combined model of
the geodesic active contour [5] and the vectorial Chan-Vese model [7] to segment textural
regions. Rousson et al. [25] extracted the texture features by applying an anisotropic
diffusion process to the structure tensor. In their segmentation framework, a Gaussian
approximation is used for all the features channels, and a nonparametric approximation
is used for the first gray image channel. The choice of Gaussian approximation restricts
the applicability to limited set of images that satisfy the underlying assumption.

Another kind of variational methods for texture image segmentation is based on re-
gion competition. Zhu et al. [31] proposed a region competition method unifying snake,
region growing and Bayesian statistics. It is a parametric model since they assume that
each region follows a Gaussian distribution. Kim et al. in [16] proposed a nonparametric
statistical method for image segmentation using mutual information and curve evolu-
tion. However, the above mentioned variational approaches have some practical short-
comings. The above energy functionals are not convex in the optimization space (usually
the characteristic functions of sets, which is nonconvex collection) and they have local
minima. Typically, the gradient decent method is used in the implementation of these
models, and are therefore prone to getting stuck in these local minima. Hence these meth-
ods are sensitive to initialization. Meanwhile, the implementation of the above models
are based on curve evolution and level set approach [22]. The drawback in the level
set implementation consists of initializing the active contour in a distance function and
re-initializing periodically during the evolution, which is time-consuming.

Based on the observation in the Rudin-Osher-Fatemi [26] model for binary image de-
noising and Chan-Vese segmentation model, the drawback of leading to local minima
comes from the non-convexity of characteristic functions. Recently, Chan et al. [10] pro-
posed to use a ”segmentation” variable valued in [0,1] to substitute a characteristic func-
tion and obtain a new constrained convex functional such that the global minimizer can
be achieved in the segmentation process. To make the algorithm more efficient, Bresson
et al. [2] proposed to add another new variable to approximate ”segmentation” variable
such that the Chambolle’s fast dual projection method [6] can be employed. The advan-
tage of this algorithm is that it is fast and easy to implement. There are several works
following this idea [3, 4, 14, 18, 19]. Mory et al. [18, 19] derived the fuzzy region competi-
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tion method, parametric and nonparametric statistics error functions in the region terms
are considered and studied respectively. Ni et al. [4] used histogram and Wasserstein dis-
tance in the region term. Houhou et al. [14] used shape operator borrowed from different
geometry to extract only one texture feature and then used the popular Kullback-Leiber
distance in the region term. We remark that the above techniques are only used in two-
phase image segmentation.

In [28], Shen developed a multiphase stochastic variational soft segmentation
Mumford-Shah model employed a double well potential regularization term in the
model. As a set of partial differential equations arising from the model have to be solved,
the resulting method is computationally expensive. This method may not be handled a
more complicated texture image segmentation problem.

In this paper, we propose a multiphase fuzzy region competition model for texture
image segmentation. In the functional, each region is represented by a fuzzy member-
ship function and a probability density function. The fuzzy membership function is used
to represent the region such that the energy functional is convex with respect to mem-
bership functions. The probability density function is estimated in each region by using
kernel density method. The estimation method is different from [16, 19]. The overall
algorithm is very efficient as both the fuzzy membership function and the probability
density function can be implemented easily. We apply the proposed method to synthetic
and natural texture images, and synthetic aperture radar images. Our experimental re-
sults have shown that the proposed method is competitive with the other state-of-the-art
segmentation methods.

The outline of the paper is as follows. We review some related work for texture im-
age segmentation in Section 2. In Section 3, we propose our method and the numerical
algorithm. Experimental results on various images are showed in Section 4. Finally, we
conclude our paper in Section 5.

2 Related works

The general N-phase segmentation problem can be formulated as follows: Given an im-
age I : Ω→R, where the image domain Ω is a bounded and open subset of R

2, the aim
is to partition Ω into N regions {Ωi}N

i=1, such that Ωi∩Ωj = ∅, j 6= i, and
⋃N

i=1Ωi = Ω by
certain suitable measure. We review some texture image segmentation methods which
are closely related to our method.

2.1 Region competition

Zhu and Yuille [31] proposed to minimize the following energy

F(Γ,{αi})=
N

∑
i=1

{µ

2

∫

∂Ωi

ds−
∫

Ωi

logPi(I|αi)dx
}

. (2.1)
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The first term within the braces is the length of the boundary curve ∂Ωi for region Ωi.
Γ =

⋃N
i=1∂Ωi is the segmentation boundaries of the entire image. The second term is the

sum of the cost for coding the intensity I into region Ωi by the conditional probability
distributions −logPi(I|αi), where αi is the parameter in the probability density function
Pi. Usually a Gaussian probability density function is considered

Pi(I|αi)=
1√

2πσi

exp
(

− (I−µi)
2

2σ2
i

)

,

where αi =(µi,σi) are scalar parameters. Curve evolution technique is used in the imple-
mentation to solve the optimization problem in (2.1).

2.2 Two phase fuzzy region competition

In order to solve a general two-phase region competition problem as minimizing

F(Γ,α1,α2)=
∫

∂Ω1

ds+λ
∫

Ω1

rα1
1 dx+λ

∫

Ω2

rα2
2 dx,

where the image region Ω is partitioned into Ω1 and Ω2, αi is the region parameter of the
region Ωi, and rαi

i is error function, Mory et al. [18] proposed to use fuzzy membership
function u∈BV[0,1](Ω) to represent the region and minimize the two-phase fuzzy region
competition energy instead

F(u,α1,α2)=
∫

Ω
|∇u|dx+λ

∫

Ω
urα1

1 dx+λ
∫

Ω
(1−u)rα2

2 dx. (2.2)

The fast dual projection method proposed by Chambolle [6] is introduced to solve the
problem. The error functions in Chan-Vese model [7]

(

rαi
i =(I−ci)

2
)

, and the local version
are studied in the paper.

In the later work [19], Mory et al. considered nonparametric probability density func-
tion as an error function and minimize

F(u,p1,p2)=
∫

Ω
|∇u|dx+λ

∫

Ω
u

∫

a∈A

(

p1(a)−K
(

I(x)−a
)

)2
dadx

+λ
∫

Ω
(1−u)

∫

a∈A

(

p2(a)−K
(

I(x)−a
)

)2
dadx, (2.3)

where K is a symmetric Gaussian kernel

K(z)=
1√
2πσ

exp
(

− z2

2σ2

)

, (2.4)

and A ⊂R is the values domain of the image. However, the computation is expensive
since it involves the integration in domain A .
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2.3 Nonparametric method using mutual information

For two-phase image segmentation, Kim et al. [16] proposed to minimize the following
energy

F(~C)=α
∫

~C
ds− |Ω|

|Ω1|
∫

Ω1

log
(

P1

(

I(x)
)

)

dx− |Ω|
|Ω2|

∫

Ω2

log
(

P2

(

I(x)
)

)

dx, (2.5)

where ~C is the curve of boundary ∂Ω1,

P1

(

I(x)
)

=
1

|Ω1|
∫

Ω1

K
(

I(x)− I(x̂)
)

dx̂, P2

(

I(x)
)

=
1

|Ω2|
∫

Ω2

K
(

I(x)− I(x̂)
)

dx̂,

and K is a Gaussian kernel as defined in (2.4). The last two terms in the right hand side
come from the mutual information. The derived curve evolution equation is

∂~C

∂t
=

[

log
P1

(

I(~C)
)

P2

(

I(~C)
)
+

1

|Ω1|
∫

Ω1

K
(

I(x)− I(~C)
)

P1

(

I(x)
) dx

− 1

|Ω2|
∫

Ω2

K
(

I(x)− I(~C)
)

P2

(

I(x)
) dx

]

~N−ακ~N, (2.6)

where κ is the curvature of the curve ~C and ~N is the unit outward normal of ~C. The
computation is quite complicated, especially for multiphase image segmentation.

3 The proposed method

3.1 The proposed energy

We propose to use nonparametric probability density function in the region competition
model which energy is

E(Γ)=
N

∑
i=1

µ

2

∫

∂Ωi

ds−
N

∑
i=1

∫

Ωi

logPi(I,Ωi)dx. (3.1)

Here Pi(I,Ωi) is the nonparametric probability density function which is determined by
the intensity values of pixels in region Ωi. In the case of N = 2, the proposed energy is
similar to (2.5). However, the numerical techniques are quite different. In the following,
we will derive a quite simple and effective numerical method for the proposed model.

With a suitable change of the variables and parameters, (3.1) becomes

E(χ)=
N

∑
i=1

∫

Ω
|∇χi|dx−

N

∑
i=1

λ
∫

Ω
χi logPi(I,χi)dx, (3.2)
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where χ = (χ1,··· ,χN) and χi is the characteristic function of the region Ωi. The energy
(3.2) is non-convex since the set of characteristic functions are not convex. To overcome
this drawback, following the idea of [18], we replace the characteristic functions χi by
fuzzy membership functions ui ∈ BV[0,1](Ω). Note that BV[0,1](Ω) is the set of bounded
variation functions valued in the interval [0,1]. Hence our new fuzzy region competition
image segmentation model is to minimize the following energy

E(U,P)=
N

∑
i=1

∫

Ω
|∇ui|dx−

N

∑
i=1

λ
∫

Ω
ui logPi(I,ui)dx, (3.3)

where the membership functions {ui} satisfies two constraints

(i) ui∈BV[0,1](Ω), and (ii)
N

∑
i=1

ui =1,

and U = (u1,··· ,uN), P = (P1,··· ,PN). Note that the term
∫

Ω
|∇ui|dx is a total variation

regularization term which is widely used in variational image processing.
For the purpose of efficiency in numerical method, we follow the idea in [2,15,18,19]

and take use of Chambolle’s fast dual projection algorithm [6]. For that end we add
auxiliary variables V =(v1,··· ,vN), and approximate E(U,P) by

Ē(U,V,P)=
N

∑
i=1

(

∫

Ω
|∇vi|dx+

1

2θ

∫

Ω
(vi−ui)

2dx−λ
∫

Ω
ui logPi(I,ui)dx

)

, (3.4)

where θ is chosen small enough such that ui and vi are almost identical with respect to
the L2 norm.

To make the constrained problem more easy to handle, we relax constraint (ii) by
letting

uN =1−
N−1

∑
i=1

ui, (3.5)

and then further approximate the energy (3.4) by

Er(U,V̄,P)=
N−1

∑
i=1

∫

Ω
|∇vi|dx+

1

2θ

N−1

∑
i=1

∫

Ω
(vi−ui)

2dx

+λ
N−1

∑
i=1

∫

Ω
ui log

( PN(I,uN)

Pi(I,ui)

)

dx, (3.6)

subject to

0≤ui(x)≤1, for i=1 : N−1, (3.7)

where V̄ =(v1,··· ,vN−1).
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3.2 Energy minimization

To find the minimizer of energy Er in (3.6) under the constraint (3.7), we use an alternate
minimization method.

3.2.1 Solving U

For fixed P and V̄, we solve Ū =(u1,··· ,uN−1) by minimizing

E1(Ū)=
1

2θ

N−1

∑
i=1

∫

Ω
(vi−ui)

2dx+λ
N−1

∑
i=1

∫

Ω
ui log

( PN

Pi

)

dx, (3.8)

subject to

0≤ui(x)≤1, for i=1 : N−1.

Since the objective function is strictly convex and the feasible region is convex, there exists
a unique global minimizer Ū∗=(u∗

1 ,··· ,u∗
N−1) of (3.8) and the following KKT conditions

[17] are both necessary and sufficient: Suppose Ũ∗ is the global minimizer of (3.8), then

(a) u∗
i (x)≥0, 1−u∗

i (x)≥0;

(b) There exist Lagrange multipliers β∗
i (x) and γ∗

i (x), for each point x∈Ω, such that

∂E1(Ū)

∂u∗
i (x)

=λlog
( PN(x)

Pi(x)

)

+
1

θ

(

u∗
i (x)−vi(x)

)

= β∗
i (x)−γ∗

i (x);

(c) β∗
i (x)u∗

i (x)=0, γ∗
i (x)

(

1−u∗
i (x)

)

=0;
(d) β∗

i (x)≥0, γ∗
i (x)≥0;

for i=1 : N−1.

First we assume Ũ =(ũ1,··· ,ũN−1) satisfies

λlog
( PN(x)

Pi(x)

)

+
1

θ

(

ũi(x)−vi(x)
)

=0.

The solution is

ũi =vi−λθ log
( PN

Pi

)

.

Then we construct ûi by projecting ũi on [0,1], that is ûi :=min
{

max{ũi,0},1
}

. Let

ηi(x)=λlog
( PN(x)

Pi(x)

)

+
1

θ

(

ûi(x)−vi(x)
)

.

For each x∈Ω, we choose β̂i(x) and γ̂i(x) as follows:

if ûi(x)∈ (0,1), then we set β̂i(x) :=0 and γ̂i(x) :=0;
if ûi(x)=0, then we set β̂i(x) :=ηi(x)≥0 and γ̂i(x) :=0;
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if ûi(x)=1, then we set β̂i(x) :=0 and γ̂i(x) :=−ηi(x)≥0.

It is easy to verify that {ûi, β̂i,γ̂i} satisfies KKT conditions (a)-(d). Therefore Û is a mini-
mizer of energy (3.8) and by uniqueness Ū∗= Û.

Then we conclude that the closed form solution of ui, i=1 : N−1 is given by

ui =max
{

min
{

vi−λθ log
( PN

Pi

)

,1
}

,0
}

, (3.9)

and uN is given by (3.5).

3.2.2 Estimation of P

Let us first give a brief introduction of nonparametric kernel density estimation method.
If y1,y2,··· ,yn∼ f is an independent and identically-distributed sample of a random vari-
able, then the kernel density approximation of its probability density function (pdf) is

f̂h(y)=
1

nh

n

∑
j=1

K
(y−yj

h

)

, (3.10)

where K is some kernel and h is the bandwidth (smoothing parameter) [24]. In the pro-
posed method K is taken to be a standard Gaussian kernel with mean zero and variance
1, i.e.,

K(z)=
1√
2π

exp
(

− z2

2

)

. (3.11)

We use the optimal bandwidth [1] for the Gaussian kernel density estimation, which is

h=(4/3n)
1
5 σ,

where σ denotes the standard deviation of the distribution. A robust estimate of σ is the
median absolute deviation estimator

σ=median{|yj−µ|}
/

0.6745,

where µ denotes the median of the sample. Remark that this pdf estimation is imple-
mented by the function ksdensity.m in Matlab toolbox and we take use of it in our numer-
ical implementation.

In our problem, for fixed U and V̄, we need to estimate the probability density func-
tion Pi(I,ui) using the above method with Gaussian kernel. In the discrete form, assume
the image I is a p×q matrix and I(k,l),1≤ k≤ p,1≤ l≤ q denotes the intensity of the grid
(k,l). Then we need to estimate the probability Pi(k,l) at each grid. Now the question is
how to choose y,yj in (3.10), and how to assign the value of Pi(k,l) from the estimated pdf

f̂h(y). In the simplest case of N=2, most of the intensity values can be classified into two
categories: I(k,l)∈Ri, if ui(k,l)>0.5. Then the intensity values in class Ri are regarded as
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sample {yj}. Since the range of the image is [0,255], we choose y=[0:255] as the integers

between 0 and 255. Hence we can estimate the pdf f̂h(y) using formula (3.10). Finally, we
assign Pi(k,l)= f̂h

(

I(k,l)
)

.

When the class number N≥3, Pi,i=1,··· ,N−1 is estimated as the case of N=2. Remark
that the Nth class is different from the other classes due to the relaxation (3.5) of the
constraint (ii). Hence we use a non-uniform formula to estimate PN in order to overcome
the errors of chosen sample in the Nth class. We estimate PN in the term log

(

PN/Pi

)

by
formula (3.10), where the sample is all the intensity values I(k,l) satisfying ui(k,l)<0.5.

3.2.3 Solving V̄

By fixing P and U, the variables V̄ can be solved by minimizing

∫

Ω
|∇vi|dx+

1

2θ

∫

Ω
(vi−ui)

2dx, i=1,··· ,N−1. (3.12)

This problem can be efficiently solved by fast duality projection algorithm. The solution
is given by

vi =ui−θdivpi, (3.13)

where the vector pi can be solved by fixed point method: initializing p0
i =0, and iterating

pn+1
i =

pn
i +τ∇

(

divpn
i −ui/θ

)

1+τ
∣

∣∇
(

divpn
i −ui/θ

)
∣

∣

,

with τ≤1/8 to ensure convergence. See [6] for more details. Furthermore, for this mini-
mization problem, we can prove the existence and uniqueness of minimizer. We can also
prove that the range of vi is [0,1], if ui∈ [0,1]. It is the following proposition.

Proposition 3.1. There exists a unique minimizer v∗ to minimization problem

min
v∈BV(Ω)∩L2(Ω)

{

∫

Ω
|Dv|dx+

1

2θ

∫

Ω
(v−u)2dx

}

, (3.14)

where 0≤u≤1. Moreover, v∗ satisfies maximum principle

0≤essinf
Ω

u≤v∗≤esssup
Ω

u≤1. (3.15)

Remark that in the energy, we use
∫

Ω
|Dv|dx instead of

∫

Ω
|∇v|dx, in order to indicate

that the derivative is actually a measure. The proof of Proposition 3.1 can be found in the
appendix.
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3.3 The algorithm

The algorithm of minimizing E can be summarized in the following four steps:

1. Initialize the membership functions ui,i = 1 : N, such that the constraints (i) and (ii) are both
satisfied;

2. Estimate Pi by the method in Section 3.2.2;

3. Update vi by formula (3.13) for i=1 : N−1;

4. Update ui by formula (3.9) for i=1 : N−1 and (3.5) for i= N.

Repeat Steps 2-4 until termination. The termination criterion is as follows

‖Unew−Uold‖≤ǫ,

where ‖·‖ denotes the Euclidean distance, and ǫ is a small positive number.

4 Experimental results

We test our algorithm on various images include synthetic texture images, natural im-
ages and synthetic aperture radar (SAR) images which appear in the recent image seg-
mentation literatures. We display the segmentation results by paint the contour ui = 0.5
(i =1 : N−1) with different colors on the original image. The membership functions are
also displayed for illustration. Some of our results are compared with other state-of-the-
art segmentation methods. In the numerical implementation, the fixed parameters are
θ =0.1, τ =0.125. λ is a parameter that need to be tuned.

Test 1: Two-phase segmentation for synthetic texture images. Fig. 1 shows six synthetic
texture images with the two-phase segmentation results by the proposed algorithm. The
results are satisfactory. Parameters for the six images from left to right and up to bottom
are λ=0.3, λ=0.2, λ=0.2, λ=0.2, λ=0.1, λ=0.2 in turn.

Test 2: Two-phase segmentation for synthetic images satisfying different distributions.

We test synthetic images generated by several sets of distributions in Fig. 2 as used in [16].
In Fig. 2(a) the two distributions for the foreground and the background are Gaussian
with different means and the same variance. In Fig. 2(d) the two distributions for the
foreground and the background are Gaussian with the same mean and different vari-
ances. For these two cases, the method of Yezzi et al. [30] would require the selection
of the appropriate statistic (i.e., the means and variances for the first and second cases,
respectively) a priori, whereas our method solves the segmentation problem without a
prior information. We see from Fig. 2 that the result is as well as that given in [16].
Fig. 2(g) shows a challenging case. The underlying distributions of the foreground and
the background are a unimodal Gaussian density and a bimodal density with two Gaus-
sian components as illustrated in Fig. 7(c)-(d) in [16]. The two distributions have the
same mean and same variance, so it is hard even for a human observer to separate the
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 1: Two-phase segmentation for synthetic texture images. The First and Fourth columns: synthetic
images; the Second and Fifth columns: segmentation results; the Third and Sixth columns: membership
functions u1. Parameters: λ=0.3 for (a); λ=0.2 for (d); λ=0.2 for (g); λ=0.2 for (j); λ=0.1 for (m); λ=0.2
for (p).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Two-phase segmentation for synthetic images satisfying different distributions. The First column:
synthetic images; the Second column: segmentation results of the proposed method; the Third column: mem-
bership functions u1 in the proposed method; the Fourth column: segmentation results by method in [16].
Parameters: λ=0.2 for (a); λ=0.2 for (e); λ=0.5 for (i).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3: Two-phase segmentation for natural texture images. The First column: natural images; the Second
column: segmentation results; the Third column: membership functions u1; the Fourth column: segmentation
results by method in [25]. Parameters: λ=0.2 for (a); λ=0.3 for (e); λ=0.3 for (i).

foreground from the background. However, our method still gives good segmentation
results which are competitive with the results by method in [16]. Parameters for Fig. 2(a),
Fig. 2(e) and Fig. 2(i) are λ=0.2, λ=0.2 and λ=0.5 respectively.

Test 3: Two-phase segmentation for natural texture images. In Fig. 3, three natural
texture images are tested. Compared with the results of the state-of-the-art works showed
in Fig. 3, our results are also satisfactory. Parameters for the proposed method for the
three images are λ=0.2, λ=0.3 and λ=0.3 in turn.

Test 4: Three-phase image segmentation. In Fig. 4, we test our method with 3-phase im-
age segmentation. The segmentation results are still satisfactory. Parameters for Fig. 4(a)
and Fig. 4(e) are λ=0.2 and λ=0.3 respectively.

Test 5: Four-phase image segmentation. In Fig. 5, we test our method with 4-phase
image segmentation. The segmentation results are satisfactory. The parameter is λ=0.3.

Test 6: Sensitivity to initialization (two-phase case). In Fig. 6, we illustrate the evolution
of membership function with different initializations for the zebra image in Fig. 3(e). In
Fig. 6(a) and Fig. 6(e), we initialize u1 = 1 in the white circle, and otherwise u1 = 0. In
Fig. 6(i), we set the initial membership function u1 = I/255. In Fig. 6(m), we choose the
initial membership function randomly valued in [0,1]. Fig. 6 shows that our method is not
sensitive to initialization which is a drawback of active contour based method. However,
the running time of the proposed method depends on the initialization. Good initial-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Three-phase image segmentation. The First column: synthetic images; the Second column: seg-
mentation results; the Third column: membership functions u1; the Fourth column: membership functions u2.
Parameters: λ=0.2 for (a), λ=0.3 for (e).

(a) (b) (c) (d) (e)

Figure 5: Four-phase image segmentation. (a) synthetic image; (b) segmentation result; (c) membership
function u1; (d) membership function u2; (d) membership function u3. Parameter: λ=0.3.

ization such as Fig. 6(a) converges faster than other initializations. We remark that by
experience, the best initialization in terms of speed is obtained by choosing characteristic
function of a region inside the object to be segmented. The parameter is λ=0.3.

Test 7: Sensitivity to initialization (three-phase case). Remark that for N ≥3, the algo-
rithm is also sensitive to initialization of membership functions. A good initialization of
ui,i=1,··· ,N−1 is given by first choosing a part almost inside the i-th texture region and
then initializing ui =1,uj =0, j 6= i in that region. This initialization method is used to get
the results for N ≥ 3 in this paper if not specified. In Fig. 7, we show two initializations
of Fig. 4(e). One gives the correct result (First row) and the other gives the wrong result
(Second row). We can see from Fig. 7(g) and Fig. 7(h) that u1+u2 ≈ 1, u3 ≈ 0, thus the
image is finally segmentated into two regions but not three regions. The parameter is
λ=0.3.

In the following, we make comparison with our method and the anisotropic heat dif-
fusion based method in [12] for SAR image segmentation. SAR image segmentation is
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(a) initial (b) intermediate (c) intermediate (d) final

(e) initial (f) intermediate (g) intermediate (h) final

(i) initial (j) intermediate (k) intermediate (l) final

(m) initial (n) intermediate (o) intermediate (p) final

Figure 6: Sensitivity to initialization (two-phase case). The figure displays the evolution of the membership
functions with different initializations on a zebra image Fig. 3(e). The final results from top to bottom are
obtained at iterations 105, 270, 150 and 240 respectively. Parameter: λ=0.3.

(a) initial u1 (b) initial u2 (c) final u1 (d) final u2

(e) initial u1 (f) initial u2 (g) final u1 (h) final u2

Figure 7: Sensitivity to initialization (three-phase case). The test image is Fig. 4(e). The First row: initialization
1 gives the correct result. Second row: initialization 2 gives the wrong result. Parameter: λ=0.3.
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(a) (b) (c) (d)

Figure 8: Two-phase SAR image segmentation. (a) SAR images; (b) segmentation result by the proposed
method; (c) membership functions u1; (d) segmentation result by the method in [12]. Parameter: λ=0.08.

(a) (b) (c) (d) (e)

Figure 9: Three-phase SAR image segmentation. (a) SAR image; (b) segmentation result by the proposed
method; (c) membership function u1; (d) membership function u2; (e) segmentation result by method in [12].
Parameter: λ=0.2.

usually said to be a complex problem in the pattern recognition area, due to the presence
of speckle derived from the coherency of the image formation process. Since the pdf of
the speckle noise follows some distribution, we can expect that the proposed segmenta-
tion model can segment this kind of image.

Test 8: Two-phase segmentation for a SAR image. Fig. 8(a) is a test SAR image contains
Wujiang river in China which is tested in [12]. The water area is extracted in Fig. 8(d)
by their method. Our method gives satisfactory segmentation results in Fig. 8(b) with a
more accurate and smoother boundary. We take λ=0.08 for this image.

Test 9: Three-phase segmentation for a SAR image. Fig. 9(a) shows a real MSTSAR
SAR image of vehicle T72. This image mainly contains three regions: background, tar-
get and shadow. Fig. 9(b) shows the three-phase segmentation result of our proposed
method. Fig. 9(c) and Fig. 9(d) display the membership functions u1 and u2. Our result
is competitive with the result Fig. 9(e) by method in [12]. We take λ=0.2 for this image.

5 Conclusions

A general multiphase fuzzy region competition model for texture image segmentation is
proposed in this paper. There are two novelties. One is that a fuzzy membership function
is introduced to represent a region for handling multiphase segmentation. The other is
the use of kernel density estimation with optimal bandwidth to estimate the probabil-
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ity density function in each region represented by the fuzzy membership function. The
proposed method is faster and easier to implement than the other curve evolution based
methods. According to our experimental results, we find that our method is competitive
with other state-of-the-art segmentation methods for texture images and SAR images. In
the future work, we will extend the proposed method to vector valued images.

Appendix

Proof of Proposition 3.1. Define ϕ and ϕǫ on R
n by

ϕ(p)= |p|, ϕǫ(p)=
1

1+ǫ
|p|1+ǫ,

for ǫ>0, and consider the following minimization problem

min
v∈W1,1+ǫ(Ω)∩L2(Ω)

{

Eǫ(v)=
∫

Ω
ϕǫ(∇v)dx+

1

2θ

∫

Ω
(v−u)2dx

}

.

It can be verified that Eǫ(v) is lower semi-continuous since W1,1+ǫ(Ω)∩L2(Ω) is a reflex-
ive Banach space and Eǫ(v) is strictly convex. By standard variational methods, there is
a unique solution vǫ to this problem. We fix ǫ>0, t≥0 and let w=min{vǫ,t}. Noting that

w∈W1,1+ǫ(Ω)∩L2(Ω),

with

∇w=

{ ∇vǫ, if vǫ < t,
0, if vǫ ≥ t,

we have
∫

Ω
ϕǫ(∇vǫ)dx+

1

2θ

∫

Ω
(vǫ−u)2dx≤

∫

Ω
ϕǫ(∇w)dx+

1

2θ

∫

Ω
(w−u)2dx, (A.1)

and thus after subtracting

∫

{vǫ≥t}
ϕǫ(∇vǫ)dx+

1

2θ

∫

{vǫ≥t}
(vǫ−u)2dx≤ 1

2θ

∫

{vǫ≥t}
(t−u)2dx.

Hence
∫

{vǫ≥t}
(vǫ−u)2dx≤

∫

{vǫ≥t}
(t−u)2dx. (A.2)

Setting t=esssupΩ u, we see that if esssupΩ vǫ > t. Then

∫

{vǫ≥t}
(t−u)2dx<

∫

{vǫ≥t}
(vǫ−u)2dx,
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which contradicts (A.2). Applying a similar argument to w=min{vǫ,t}, for t=essinfΩ u,
we get vǫ ≥essinfΩ u. Then

0≤essinf
Ω

u≤vǫ ≤esssup
Ω

u≤1. (A.3)

Furthermore, since (A.1) holds for any w∈W1,1+ǫ(Ω)∩L2(Ω), letting w = 0 in (A.1),
we see that vǫ is bounded in W1,1+ǫ(Ω)∩L2(Ω)⊂BV(Ω)∩L2(Ω) independent of ǫ. Thus
there exists a v∗∈BV(Ω)∩L2(Ω), and a subsequence of {vǫ}, still denoted by {vǫ}, such
that vǫ → v∗ strongly in L1(Ω), vǫ ⇀ v∗ weakly in L2(Ω), and vǫ → v∗ a.e. in Ω. Letting
ǫ→0 in (A.1), noting that ϕ(p)≤ ϕǫ(p), for all p,

∫

Ω
ϕǫ(∇w)→

∫

Ω
ϕ(∇w),

lower semicontinuity of the functional
∫

Ω
ϕ(p)dx on BV(Ω), and the lower semicontinu-

ity of L2 norm, we get

∫

Ω
ϕ(Dv∗)dx+

1

2θ

∫

Ω
(v∗−u)2dx≤

∫

Ω
ϕ(∇w)dx+

1

2θ

∫

Ω
(w−u)2dx, (A.4)

for all w∈W1,1+ǫ(Ω)∩L2(Ω). Note that for any w∈BV(Ω)∩L2(Ω), there exists a sequence
wn in C∞(Ω̄), such that

∫

Ω
ϕ(∇wn)dx→

∫

Ω
ϕ(Dw)dx,

and wn→w strongly in L2(Ω) [13]. Hence (A.4) holds for all w∈BV(Ω)∩L2(Ω), and then
v∗ is a minimizer of problem (3.14). The uniqueness of minimizer follows by the strict
convexity of the energy functional in (3.14). By inequality (A.3), v∗ satisfies maximum
principle (3.15). �
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