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Abstract. Spiral waves appear in many different natural contexts: excitable biological
tissues, fungi and amoebae colonies, chemical reactions, growing crystals, fluids and
gas eddies as well as in galaxies. While the existing theories explain the presence of
spirals in terms of nonlinear parabolic equations, it is explored here the fact that self-
sustained spiral wave regime is already present in the linear heat operator, in terms of
integer Bessel functions of complex argument. Such solutions, even if commonly not
discussed in the literature because diverging at spatial infinity, play a central role in the
understanding of the universality of spiral process. In particular, we have studied how
in nonlinear reaction-diffusion models the linear part of the equations determines the
wave front appearance while nonlinearities are mandatory to cancel out the blowup
of solutions. The spiral wave pattern still requires however at least two cross-reacting
species to be physically realized. Biological implications of such a results are discussed.
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1 Introduction

Regular geometrical patterns occur in Nature in many situations [1], a striking case being
as an example the observation of practically perfect spherical objects, neutron stars, as
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a consequence of self-gravitational general relativistic effects [2]. Another pattern very
common is the spiral. It is remarkable the fact that D’Arcy Thompson, around one cen-
tury ago, devoted an entire chapter of his classical monograph “On Growth and Form”
to the appearance of the spiral form in Nature discussing in particular animal horns and
molluscan shells [3]. Nowadays spiral waves have been observed in many other different
biological contexts: in the heart, for example, the motion of the spiral center seems to be
associated with specific types of arrhythmias [4], while in neural tissues this motion can
be related to epilepsy and to spreading depressions in the retina [5]. More in detail these
centers specifically are known as phase singularities, i.e., points in physical or abstract
spaces near which the full cycle of isochrons crowds together. It is possible then to have a
line of singularities, as in the singular filament of organizing centers, or along the border
of a ”black hole”, i.e., a region on ”latency diagrams” on which timings are lost [6]. These
filaments in heart and brain tissues are non static and their motion in severe pathologi-
cal states usually appears to be turbulent (what is it known as ”chemical turbulence” [7]).
Some biological populations of fungi and amoebae, like the Dictyostelium discoideum, tend
to organize themselves in spiralling structures while spiral waves appear spontaneously
also in specific chemical reactions like the classical Zhabotinsky-Belousov one [4] and
also in growing crystals [8]. Common patterns encountered in all these systems are also
target patterns, i.e., circular expanding waves generated by oscillatory local behaviors or
external stimulations. Even in plant morphogenesis processes both these patterns can oc-
cur (kinetic phyllotaxis) [9]. In Fig. 1, a picture taken by one of the authors as an example,
the bark of a dead tree manifests a spiralling pattern. The spiral is constituted by outer
bark layers, which are well known to be associated with the early stages of the tree, so
the typical arboreal radially diffusive behavior (a sort of target one-wave pattern) in this
very peculiar case has been replaced by a spiralling mode, probably in association with a
“very singular”event (a lightning, an infection or similar).

Figure 1: This picture of spiraling bark was taken in Rome from one of the authors on February, 2009.
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In all these systems just discussed, single armed spirals appear in various chiralities
although many-armed spiral configurations have been found experimentally in chemi-
cal reactions [10]. Moreover, such phenomenologies develop in time with different time
scales but they all manifest wave behaviors. Mathematically speaking, all these systems
have a common root, i.e., they are properly modeled by nonlinear parabolic partial dif-
ferential equations. A simple prototype for these equations are reaction-diffusion (RD)
systems

∂c1

∂t
= D1∇2c1+ f (c1,c2),

∂c2

∂t
= D2∇2c2+g(c1,c2), (1.1)

(spatial homogeneity and isotropy are here assumed in the diffusion tensors for the sake
of simplicity, so that D1 and D2 are single diffusion coefficients), where we have two pos-
sible nonlinearly interacting concentrations c1 and c2. It is important to stress here that
not only spiral waves but also multiform stationary pattern formation can occur in this
system of PDEs as a consequence of the well known Turing diffusion-driven instability
mechanism [10]. In the context of phyllotaxis kinetic in plants [9] as well as in cardiac dy-
namics [11,12], the evolution is described coupling reaction-diffusion equations to elastic-
ity theory. We point out also that temperature effects can play an important role in many
of these systems especially in biological [13,14] and chemical contexts. On the other hand,
as anticipated, spirals appear also in vortices in ordinary liquids/gases (i.e., whirlpools)
and in astrophysics in Galaxies [15]. These systems can be described by Navier-Stokes
equations [15], which assuming for the sake of simplicity incompressibility, are given by

∂~v

∂t
+(~v·∇)~v−µ∇2

~v=−∇P

ρ
+

~F

ρ
, (1.2)

together with the constraint ∇·~v = 0. This is a generalized nonlinear parabolic system
(nonlinearities being present in the convection term (~v·∇)~v only) for the velocity com-
ponents, while ρ, P and ~F are the density, the pressure and the body forces respectively.
If gravitation is the only body-force present, ~F can be written as ~F =−ρ∇Φ, where the
gravitational potential Φ satisfies a Poisson’s equation leading to the classical theory of
self gravitating systems [16]. On the other hand neglecting the viscous term (i.e., µ = 0
in Eq. (1.2)), one obtains perfect fluid which cannot physically support spirals, due to
the lack of viscous dissipation [17, 18], although not smooth solutions in weak form (i.e.,
generalized solutions as shock waves) have been found [19] while their physical realiza-
tion is questionable on experimental grounds. Incidentally perfect fluids (described by
Euler equation) can be directly connected by Madelung representation to quantum fluids
described by Gross-Pitaevskii equation [20]. In these condensed systems, spiral radia-
tion patterns have been observed in experiments, but they are a consequence of spiraling
vortex line trajectories and not of a spiral geometry associated with the vortex itself [21].
Instead in the case of Complex Ginzburg-Landau equation

∂A

∂t
= A+(1+ib)∇2 A−(1+ic)A|A|2, (1.3)
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for the complex function A (whose real and imaginary parts give two RD equations while
b and c are real parameters), describing a vast variety of physical phenomena [22], drop-
ping the nonlinear term and selecting b=0 one obtains a “complex diffusion equation”for
the real and imaginary parts, so again spiral waves are expected, as it is effectively found
in numerical experiments. It is then clear that nonlinear diffusion equations play a central
role in the formation of this spiraling pattern, but a question arise naturally: can spiral
waves belong to a linear regime?

In this article we discuss this question, showing that a spiral pattern comes specif-
ically from the very simple linear diffusion equation for one specie only, so that the
diffusion equations determine the shape of the wave. More impressively, associated
with the appearance of a spiral a diffusive process is always occurring, a fact that has
never received enough attention in the mathematical but especially physical Literature,
although some analytical and numerical insights have shown spiral waves behaviors in
linear “multispecies” reaction-diffusion systems [23,24], neglecting a discussion of phys-
ical implications. The main reason for this is the fact that spiral wave solutions of linear
equations do not satisfy proper boundary conditions of the Stourm-Liouville problem.
According to our point of view instead, the central point is to interpret the interplay be-
tween linearity and nonlinearity on physical grounds. Through analytical methods we
find that when the frequency of these waves becomes zero (static solutions) the spiral
pattern disappears, that is spirals must be waves, a fact widely confirmed by experi-
ments. Nonlinearities, however result to be necessary in order to correct pathologies of
the linear theory, i.e., eliminating blowups of the solution and leading to circular fronted
waves (target patterns). Spiral and target patterns in fact can be approximated with lin-
ear regimes only close to the center. This requirement however is still not sufficient to
physically realize spiral waves: for instance, the context of reaction-diffusion processes
at least two cross-reacting species are needed. We can discuss now all these points in
detail, giving a unique thread of many results scattered in the Literature by using quite
simple mathematical arguments.

2 Spiral waves and the linear diffusion equation

Let’s write the diffusion equation in Cartesian coordinates (x,y,z), i.e., ∂c/∂t = D∆c,
where c is the concentration, D is the diffusion coefficient associated to a homogeneous
and isotropic diffusion tensor, t is time and ∆ is the Laplace operator. Using dimension-
less parameters [25], i.e., T = Dt/l2, and X = x/l (l is an arbitrary length scale), similarly
for y and z, with c = c̃(C+C0), where c̃ is a constant (concentration), C represents the
dimensionless concentration and C0 is an arbitrary dimensionless shift, we make the dif-
fusion coefficient disappear, i.e.,

∂C

∂T
=∇2C, (2.1)

where ∇2 denotes here the Laplacian in dimensionless Cartesian coordinates.
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It is convenient to write the diffusion equation above in dimensionless cylindrical
coordinates (R,φ,Z) with R and φ defined so that

(X,Y)= R(cosφ, sinφ). (2.2)

We use then the following separation of variables ansatz

C(R,φ,Z,T)= P(R)eiωT+ikZ+imφ. (2.3)

The linearity of the problem ensures us that the real and imaginary parts of this quantity
both are solutions of Eq. (2.1). Moreover, m must be an integer in order to avoid problems
of polidromy and cusps. We insert this functional form in Eq. (2.1), using in addition a
rescaled dimensionless radius R=qζ, with

q2 =
(iω−k2)

(k4+ω2)
. (2.4)

Such complex coordinate transformation brings the equation for P into the form

ζ2 d2P

dζ2
+ζ

dP

dζ
+(ζ2−m2)P=0, (2.5)

which is a complex Bessel equation, whose solution is

P= a1 Jm(ζ)+a2Ym(ζ),

where a1 and a2 are generic constants. The Bessel functions Ym must be disregarded
being pathological on the origin of the complex plane (although nonlinear corrections,
discussed in the following, may correct this pathology); hence we choose the values a1=1
and a2 =0. The complex holomorphic function Jm(ζ) has a power series representation of
the form [26, 27]

Jm(ζ)=
+∞

∑
h=0

(−1)h
(

ζ
2

)2h+m

h!(h+m)!
, |argζ|<π, m≥0, (2.6)

whose convergence radius is infinite. In the case m<0, the relation J−m(ζ)=(−1)m Jm(ζ) is
valid. The power series can be separated into real and imaginary parts by using Euler-De
Moivre formulas, i.e., ζ =ρeiθ =ρ[cos(θ)+isin(θ)]. In particular, ρ=R/|q|≡R(k4+ω2)1/4

and θ =1/2arctan(ωk−2). The final result, after a little algebra, is

Re[Jm(ζ)]=
+∞

∑
h=0

(−1)hρ2h+m cos[(2h+m)θ]

22h+mh!(h+m)!
, (2.7)

Im[Jm(ζ)]=
+∞

∑
h=0

(−1)hρ2h+m sin[(2h+m)θ]

22h+mh!(h+m)!
, (2.8)
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both quantities depending on k, ω and m. We can now easily recompose backwards our
solution whose real and imaginary parts satisfy both separately the dimensionless real
diffusion equation (2.3) in cylindrical coordinates

C=
(

Re[Jm(ζ)]+iIm[Jm(ζ)]
)

eiωT+ikZ+imφ≡Re[C]+iIm[C], (2.9)

where

Re[C]=Re[Jm(ζ)]cos(ωT+kZ+mφ)−Im[Jm(ζ)]sin(ωT+kZ+mφ), (2.10a)

Im[C]=Re[Jm(ζ)]sin(ωT+kZ+mφ)−Im[Jm(ζ)]cos(ωT+kZ+mφ). (2.10b)

When k = 0, i.e., an infinite cylinder solution, the real and imaginary parts of C give
moving target patterns and rotating spirals of various chiralities and numbers of arms as
shown at a fixed time in Fig. 2. Fig. 3 instead shows the behavior when k 6=0.

(a) (b) (c)

(d) (e) (f)

Figure 2: Real part of C (solution of the diffusion problem (2.1)), at T=0 assuming moreover k=0 (cylindrical
symmetry). Surface levels C=(0,0.15,0.5,1) are shown (grey color means high values while white is the opposite).
For different m one obtains the following patterns: a) for m=0 which is reminiscent of target patterns, b) m=1
which is a spiral, c) m =−1 is a spiral with opposite chirality, d) m = 2 a two armed spiral, e) m = 3 a three
armed spiral, f) m=−5 a five armed spiral with opposite chirality.

Except for selected values of θ, these real and imaginary parts of C diverge at infinity
(while standard real Bessel functions Jm are well behaved everywhere). Such result is not
unexpected: using the identity Jm(iξ) = iIm(ξ), with ξ ∈R, connecting standard Bessel
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Real part of C (3D solution of the diffusion problem), at T = 1 assuming −π < z≤π. Surface gray
level C=0. For different m one obtains these patterns: a) for m=0 which is reminiscent of target patterns, b)
m = 1 which is a spiral, c) m =−1 is a spiral with opposite chirality, d) m = 2 a two armed spiral, e) m = 3 a
three armed spiral, f) m=−5 a five armed spiral with opposite chirality.
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functions with their modified versions which diverge at large distances, we can easily see
that our solutions must diverge too. We may have initially added to diffusion equation
a linear term proportional to c but this step would have not changed the behavior of
the divergence, i.e., we would have obtained again integer Bessel functions of complex
argument.

When ω = 0, coming back to the initial manipulations, we see that the Bessel func-
tions have a real argument and spiral pattern is lost: hence, if spiral do exist they must
be waves. We point out that the family of eigenfunctions found for the linear diffusion
equation do not satisfy proper Sturm-Liouville problems with regularity both at the ori-
gin and at infinity. This is the main reason why we do not observe in nature in general,
spirals which are described by linear parabolic equations. Such a particular pattern, be-
longing to the linear regime, in order to be physically realized needs nonlinear terms
typical of reaction-diffusion systems in order to limit the blow up asymptotically. How-
ever in diffusion problems, when we have one diffusing species only, the mechanism
above described would not produce rotating spiral waves or periodic target patterns, as
discussed now.

3 The role of nonlinearity

Suppose to start from equation

∂C

∂T
=∇2C+F(C). (3.1)

Locally, i.e., neglecting the spatial variations, we obtain the ordinary differential equation
dC/dT = F(C), which represents the flow on a line, and cannot have periodic solutions
(oscillations) unless the domain is topologically bent to form a circle [28]. Let’s take as
an example the Zeldovich’s bistable equation, which has relevance both for gas dynamics
and for nerve signal propagation [29,30], i.e., a normal form for many different dynamical
systems with

F(C)= aC(1−C)(C−α), with 0<α<1, (3.2)

(we assume in the following a=1 to simplify relations) with C =0 and C =1 being sinks
and C = α being a source. The word bistable comes from the fact that this type of equa-
tion has two possible stable solutions which are asymptotically reached once one starts
at right or left of value α. It’s clear that periodic spirals cannot exist because such a dy-
namics is not “excitable”, i.e., the system does not explore a large portion of phase-space
(which here, due to the first order derivative in time is trivially one dimensional) before
coming back to the stable point [29]. A nonlinear spiral should in fact repeatedly stim-
ulate the various portion of the domain, which is not possible looking at Fig. 4. In fact
as anticipated the system is bistable, which means that every point of the domain must
be flow-dragged towards one of the two sinks. Once such a point arrives at value C =1,
a possible spiral front (having at maximum value C ∼ 1, because bistable waves act as



618 D. Bini et al. / Commun. Comput. Phys., 8 (2010), pp. 610-622

Figure 4: Upper panel: Phase space of the zero dimensional bistable equation (diffusion suppressed). There are
two sinks and one repeller. Lower panel: Behavior of possible solutions of zeroth dimensional bistable equation
with initial conditions over the repeller (curve I), on the repeller (curve II) and below the repeller (curve III).

a sort of shock waves connecting two asymptotic states) should move this point away
from this stable fixed point. But this behavior is not possible because of the definition of
stable point; so once the front arrives it extinguishes itself, as easily confirmed by simple
numerical simulations. Manipulations in the one-dimensional case show that a traveling
wave solution for bistable equation has analytical form [29]

C(T,X)=
1

2
+

1

2
tanh

[√
a(X+VT)

2
√

2

]

, V =

√
a√
2
(1−2α), (3.3)

which manifest the limitation of blowups at infinite distance due to the presence of non-
linearities. In the linear case

∂C

∂T
=

∂2C

∂X2
, (3.4)

in fact the basic travelling wave solution is given by

C(T,X)=C1+C2exp[v(X+vT)] , (3.5)

where C1 and C2 are arbitrary constants and v is the non dimensional velocity. This
solution shows a divergence in space and time corrected in the nonlinear case previously
discussed. In higher dimensions numerical solutions only are possible but the result is
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Figure 5: Graphics of the two solutions in space: I, linear case (3.5) with C1 =0 and C2 = 1
2 , I I, nonlinear case

(3.3).

not changed: a unique radial pattern evolving in time brings the entire domain at value
C = 1 asymptotically. More complicated functional forms F(C) shall not modify such a
behavior because the phase space will be a collection of fixed points on a line. Even a
collection of semi-stable points described by the non-polynomial dynamics

F(C)=
1

2
(1+sinC)

has a trivial phase-space which cannot support repeated waves. A possible way out
exists however: we may consider in fact for the nonlinear diffusion equation above an
extension with a spatial dependent term, as in happens in crystal growth problems as an
example [31], i.e., in cylindrical coordinates we may write

F(C)= βsin(C−γφ)+σ,

with β, γ and σ real numbers. This choice produces rotating spiral waves but this non-
linear term breaks the isotropy and homogeneity of space (external magnetic or gravita-
tional fields may give similar effects). Here, on the other hand, we are interested in gen-
uine self-sustained spiral behaviors embedded in homogeneous and isotropic domains.
The examples discussed above show that in order to have spirals, a two-dimensional
phase-space at least is needed.

Consequently, again, in order to have natural spiral waves and circular waves, we
are forced to require at least two species nonlinearly reacting, i.e., a proper nonlinear
reaction-diffusion system. As an example we show in Fig. 6 the typical patterns ob-
tained numerically integrating a very simple two variables reaction diffusion system as
in Eq. (1.1) of FitzHugh-Nagumo type (FHN) [4, 32], which implies

f (c1,c2)= c1(1−c1)(c1−α)−c2, and g(c1,c2)=ǫ(c1−γc2).

Here the variable c1 could be associated with a dimensionless action potential while the
quantity c2 with a gating variable (an electrophysiological problem), but because of the
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(a) (b)

Figure 6: The model is a FitzHugh-Nagumo type with parameters D1 = 0.5, D2 = 0.1, α = 0.01, ǫ = 0.01 and
γ = 0.05 and the value of variable c1 is shown at a given time of the evolution for target patterns (a) and a
spiral wave (b).

generality and simplicity of the FHN model, they could represent differently chemical
quantities or other. While a negative parameter α leads to a self-oscillatory behavior, a
positive one leads to excitable dynamics [29]. The numerical integrations of these equa-
tions have been performed using finite elements techniques, modifying an existing code
described in [13]. The mesh is made of squared elements sufficiently small to ensure
stability and convergence of the simulations. More in detail we have adopted several
discretizations of the domain starting from 25 up to 100 equally spaced points per side
and selected in the different simulations second, third and fourth order Lagrange ele-
ments in order to ensure convergence and stability. The numerical integrations have
been performed adopting Comsol Multiphysics R© software running on a 64 bit dual core
Xeon R© Hewlett-Packard workstation with 6Gb of RAM. Specifically we have adopted
a direct solver (UMFPACK) while time steps have been optimally chosen by the soft-
ware (although in order to have additional checks, the best meshed simulations have
been performed also adopting user-constrained time steps with ∆t = 5·10−4). Finally
the relative and absolute errors thresholds have been selected at 10−7. Our FHN model
with D2 = 0 can be easily obtained as a simplification of the Hodgkin-Huxley theory of
the action potential in the giant squid axon, which is described by four variables, while
the RD system here numerically studied is governed by c1 and c2 only, leading to a two
dimensional phase-space (suppressing space variations) which simplifies noticeably the
physics of excitability. We stress that it is well known the presence of spiral waves even if
one of the two species does not diffuse (the case of the electrophysiological FHN just dis-
cussed) so that in order to have spirals it is necessary at least to have cross-reaction with
one diffusing species and not necessarily cross-diffusion (both diffusion coefficients non-
vanishing). The production of circular or spiral patterns in our simulations strongly de-
pends on specific initial conditions and external actions (especially for the circular fronted
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ones which here required external periodic stimuli). In fact if the cylindrical symmetry
is maintained circular waves but not spirals occur. An external perturbation of non ax-
isymmetric type on the other hand breaks the symmetry and drives the system towards
more complicated regimes, possibly attractor configurations containing one-armed spiral
waves only.

4 Concluding remarks

In this paper, we have explored the fact that self-sustained spirals patterns, commonly
encountered in many natural systems, have their geometrical roots already in the sin-
gle linear diffusion equation. Physically realized spirals however are determined by a
nonlinearly corrected diffusion equation with two —at least— cross-reacting species are
involved. In fact, while in linear diffusion problems spiral solutions are mostly associ-
ated with a blow up and non regularities, in nonlinear problems those solutions become
mostly regular instead. Moreover, as soon as time dependence becomes negligible, dif-
fusion equation predicts the disappearance of such a pattern, a fact observed in exper-
iments. The diffusion process must be seen as a theoretical model of possible discrete
complex systems (i.e., cells, molecules) whose dynamics can be described in a first ap-
proximation with a nonlinear continuum field theory, similarly to what happens to the
Boltzmann equation for the statistical description of particles in a fluid, where the real
molecular theory can be approximated with Euler and Navier-Stokes limits [33]. In any
case, it is important to stress that diffusion processes and spiral waves in natural sys-
tems (biological or not) are associated phenomena, therefore, if there are more than one
species cross-reacting and one of them at least diffuses, a spiral wave pattern may be
expected to arise. This point of view can be an extremely important instrument in or-
der to hypothize on mathematical and physical grounds other biological or more general
physical situations in which the ubiquous spirals can appear as a byproduct of chemical
reaction-diffusion processes, and perform then ad hoc experiments.
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