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Abstract. Based on a novel numerical flux involving jumps of even order derivatives
of the numerical solution, a direct discontinuous Galerkin (DDG) method for diffusion
problems was introduced in [H. Liu and J. Yan, SIAM J. Numer. Anal. 47(1) (2009),
475-698]. In this work, we show that higher order (k≥4) derivatives in the numerical
flux can be avoided if some interface corrections are included in the weak formulation
of the DDG method; still the jump of 2nd order derivatives is shown to be important
for the method to be efficient with a fixed penalty parameter for all pk elements. The
refined DDG method with such numerical fluxes enjoys the optimal (k+1)th order
of accuracy. The developed method is also extended to solve convection diffusion
problems in both one- and two-dimensional settings. A series of numerical tests are
presented to demonstrate the high order accuracy of the method.
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1 Introduction

This paper is the continuation of our project, initiated in [26], of developing a direct dis-
continuous Galerkin (DDG) method for diffusion problems. Here we focus on the diffu-
sion equation of the form

∂tU−∇·(A(U)∇U)=0, Ω×(0,T), (1.1)

where Ω⊂R
d, the matrix A(U) = (aij(U)) is symmetric and positive definite, and U is

an unknown function of (x,t). The method will also be extended to convection-diffusion
problems and their invariants.
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The Discontinuous Galerkin (DG) method is a finite element method using a com-
pletely discontinuous piecewise polynomial space for the numerical solution and the test
functions. One main advantage of the DG method was the flexibility afforded by local
approximation spaces combined with the suitable design of numerical fluxes crossing
cell interfaces. The application to hyperbolic problems has been quite successful since it
was originally introduced by Reed and Hill [28] in 1973 for neutron transport equations.
A major development of the DG method for nonlinear hyperbolic conservation laws is
carried out by Cockburn, Shu, and collaborators in a series of papers [13, 17, 18, 20]. We
refer to [11, 16, 21] for reviews and further references.

However, the application of the DG method to diffusion problems has been a chal-
lenging task because of the subtle difficulty in defining appropriate numerical fluxes for
diffusion terms, see e.g. [30]. There have been several DG methods suggested in literature
to solve the problem, including the method originally proposed by Bassi and Rebay [4]
for compressible Navier-Stokes equations, its generalization called the local discontinu-
ous Galerkin (LDG) methods introduced in [19] by Cockburn and Shu and further stud-
ied in [6,7,12,15]; as well as the method introduced by Baumann-Oden [5,27]. Also in the
1970s, Galerkin methods for elliptic and parabolic problems using discontinuous finite
elements, called the interior penalty (IP) methods, were independently introduced and
studied; see, e.g., [1,3,34]. We refer to [2] for a unified analysis of DG methods for elliptic
problems and background references for the IP methods.

In this article we are interested in the effect of test functions on interface treatments,
and accordingly we introduce a refined version of the DDG method proposed in [26]. To
illustrate the idea, we consider the scalar one-dimensional diffusion equation

ut =uxx,

and formulate the DDG method based on the direct weak formulation
∫

Ij

utvdx− (̂ux)v
∣∣xj+ 1

2
x

j− 1
2

+
∫

Ij

uxvxdx=0,

where Ij is the j-th computational cell, and v is the test function. In [26] we presented the
following numerical flux

ûx = β0
[u]

∆x
+ux+β1∆x[uxx]+β2(∆x)3[uxxxx]+··· , (1.2)

which involves the average ux and the jumps of even order derivatives of u. This nu-
merical flux satisfies the following desired properties: it (i) is consistent for the smooth
solution u; (ii) is conservative in the sense of its being single valued at the interface; (iii)
ensures the L2-stability; and (iv) enforces the high order accuracy of the method

It was shown in [26] that for piecewise pk polynomial approximations, kth order of
accuracy of the DDG method is ensured if the numerical flux is admissible. Numerical
experiments in [26] also showed that the use of term (∆x)2m−1[∂2m

x u] (m = 0,1,··· ,[ k
2 ]) in
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(1.2) does lead to the optimal (k+1)th order of accuracy. However, how to select an
appropriate βm(m≥2) to ensure the optimal accuracy remains an unsettled issue.

An observation that motivated this paper is that the derivative of the test function
does contribute to the interface flux when higher order elements are used. The goal of
this work is to refine the DDG method by using interface corrections so that an optimal
accuracy can still be achieved for all k using the numerical flux (1.2) with β j =0, j≥2, i.e.,

ûx = β0
[u]

∆x
+ux+β1∆x[uxx]. (1.3)

To this end, we consider the refined weak formulation of the DDG scheme

∫

Ij

utvdx− (̂ux)v
∣∣xj+ 1

2
x

j− 1
2

+
∫

Ij

uxvxdx+
1

2
[u](vx)

−
j+ 1

2

+
1

2
[u](vx)

+
j− 1

2

=0. (1.4)

The role of interface correction terms has long been recognized in literature. This dates
back to the classical symmetric Interior Penalty method originally introduced by Arnold
in [1] for parabolic problems, see also [3, 34] (in the format of so-called primal formu-
lation). More recent works such as those by Van Leer and Nomura in [33], Gassner et
al. in [23], and Cheng and Shu in [8] use the weak formulation derived from repeated
integration by parts for the diffusion term, and hence also involve vx in the interface
treatments.

The main flavor of our method distinguished from existing ones lies in the flux for-
mulation (1.3), which when combined with the weak formulation (1.4) leads to a class of
novel DDG schemes. A special case when β1 = 0 reduces to the classical symmetric IP
method. In this article we have two objectives:

(i) to analyze the DDG method with interface corrections and present numerical re-
sults to show its optimal performance;

(ii) to compare with the classical symmetric IP method.

For (i), our numerical results of the DDG method with interface corrections show that the
numerical flux ûx (1.3) with a fixed β0 enables us to obtain (k+1)th order of accuracy for
all pk polynomial approximations, e.g. β0 =2 for pk up to k=9.

For (ii), we compare with the classical IP method, that is (1.4) with flux

ûx = β0
[u]

∆x
+ux. (1.5)

It is known that the penalty parameter (β0 in (1.5)) depends on the order of the polyno-
mial pk, and needs to be large enough to stabilize the scheme, especially for high order
approximations, see, e.g., [22, 29]. Here we reconfirm the need of penalization when
β1 =0, and obtain a sharp bound for β0 in Lemma 2.2 with the assistance of the admissi-
bility condition.
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The most attractive feature of the DDG method is the simplicity and optimal accuracy
obtained with a simple flux formula, which allows one to further develop DG schemes
of high accuracy for more complex problems.

This rest of the paper is organized as follows. In Section 2, we introduce the DDG
method with interface corrections for one-dimensional problems. For this model prob-
lem, the main idea of devising the method and the scheme formulation are presented. We
then prove stability of the DDG scheme for any admissible numerical fluxes. In Section
3, we extend the DDG method to nonlinear convection diffusion equations in both one
and two-dimensional problems in which U is a scalar and A =(aij)d×d is a positive and
semi-definite matrix. In Section 4, we present a series of numerical results to validate the
refined DDG method. Finally, some concluding remarks are given in Section 5.

2 One-dimensional case

Our new DDG algorithm for diffusion consists of an addition of interface corrections,
upon the one proposed in [26], and hence allows a wider choice of numerical fluxes for
obtaining the optimal accuracy. Discretization in time with a matching accuracy is ob-
tained by an appropriate Runge-Kutta solver.

2.1 Scheme formulation

We begin with the one-dimensional linear diffusion

Ut−Uxx =0 in Ω×(0,T), (2.1)

subject to initial data
U(x,0)=U0(x) on Ω, (2.2)

and periodic boundary conditions.
First we partition the domain Ω into computational cells Ω=∪N

j=1Ij, with mesh {Ij =

[xj−1/2,xj+1/2]} of uniform size ∆x = xj+1/2−xj−1/2. We seek an approximation u to U
such that for any time t∈ [0,T], u∈V∆x,

V∆x :=
{

v∈L2(Ω) : v|Ij
∈Pk(Ij), j=1,··· ,N

}
,

where Pk(Ij) denotes the space of polynomials on Ij with degree at most k. Set

ûxv
∣∣∣

j+ 1
2

j− 1
2

:=(ûx)j+ 1
2
v−

j+ 1
2

−(ûx)j− 1
2
v−

j− 1
2

.

The DDG method introduced in [26] can be written as

∫

Ij

utvdx−ûxv
∣∣∣

j+ 1
2

j− 1
2

+
∫

Ij

uxvxdx=0, (2.3)
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with numerical flux ûx defined by

ûx = β0
[u]

∆x
+ux+

⌊k/2⌋

∑
m=1

βm(∆x)2m−1[∂2m
x u], (2.4)

where β0,β1,··· ,β[k]/2 are coefficients to be chosen to ensure the stability of the scheme.
Here the following notations have been used:

u±=u(x±0,t), [u]=u+−u−, u=
u++u−

2
.

The admissibility of βi’s and their effects on the numerical accuracy were studied in [26],
in which a numerical flux of the following form was tested

ûx = β0
[u]

∆x
+ux+

1

12
∆x[uxx]. (2.5)

This scheme with β0 =1 was numerically shown to produce optimal accuracy of (k+1)th
order for k≤3, as well as for k= odd(>3) with a slightly larger β0.

For k≥4, instead of relying on high order terms such as β2[∆x]3[uxxxx], in this paper
we turn to a refined DDG method with inclusion of interface corrections:

∫

Ij

utvdx−ûxv
∣∣∣

j+ 1
2

j− 1
2

+
∫

Ij

uxvxdx+
1

2
[u](vx)

−
j+1/2+

1

2
[u](vx)

+
j−1/2 =0, (2.6)

∫

Ij

u(x,0)v(x)dx=
∫

Ij

U0(x)v(x)dx, (2.7)

where the numerical flux ûx is still (2.5) or more general

ûx = β0
[u]

∆x
+ux+β1∆x[uxx]. (2.8)

The motivation of including extra interface terms in (2.6) stems from our observation that
the test function v∈V∆x is chosen being none zero only inside each cell Ij (or independent
from cell to cell), the slope of the test function will contribute at interfaces whenever
[u] is non-zero. It is possible to add interface corrections involving even higher order
derivatives of v for larger k.

We recall that β1=1/12 was identified through a procedure suggested in [26] by using
the Stirling interpolation formula based on four symmetric points

xj+ 1
2
±

1

2
∆x, xj+ 1

2
±∆x.

When evaluating the derivative of the obtained 3rd order polynomial at the cell interface
xj+1/2, we obtain the numerical flux formula

Dxu=
7

6

[u]

∆x
+ux+

∆x

12
[uxx]. (2.9)
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Therefore in this work we shall use the flux (2.5) for the refined DDG scheme. For non-
uniform mesh, ∆x needs to be understood as (∆xj +∆xj+1)/2. The 1D scheme is now
well defined.

We prove in next section that a large class of β′
i exists for the stability of the DDG

method. Note that the scheme (2.6) with (2.8) when β1 = 0 reduces to the classical sym-
metric DG method, and in such a case sufficiently large β0 is indeed needed to penalize
the interface jumps [1], see Lemma 2.2 below.

2.2 Admissibility and stability

As usual for the DG method the guiding principle for the choice of numerical flux is the
stability requirement. Following [26] we adopt the following admissibility criterion:

Definition 2.1 (Admissibility). We call a numerical flux ûx of the form (2.8) admissible if
there exists a γ∈ (0,1) and 0<α≤1 such that

γ
N

∑
j=1

∫

Ij

u2
x(x,t)dx+

N

∑
j=1

(ûx)j+1/2[u]j+1/2+
N

∑
j=1

[u]j+1/2(ux)j+1/2

≥α
N

∑
j=1

[u]2j+1/2

∆x
(2.10)

holds for any piecewise polynomials of degree k, i.e. u∈V∆x.

This admissibility ensures the stability of the DDG method.

Theorem 2.1 (Energy stability). Consider the DDG scheme (2.6)-(2.7). If the numerical flux
(2.8) is admissible as described in (2.10), then we have

1

2

∫ 1

0
u2(x,T)dx+(1−γ)

∫ T

0

N

∑
j=1

∫

Ij

u2
x(x,t)dxdt+α

∫ T

0

N

∑
j=1

[u]2

∆x
dt

≤
1

2

∫ 1

0
U2

0(x)dx. (2.11)

This can be proved by summation of (2.6) with v=u over j∈{1,··· ,N}, and using the
admissibility condition (2.10).

In the following two lemmas we show that there is indeed a large set of β′
i, making

(2.8) admissible fluxes for polynomial approximations of any given degree k.

Lemma 2.1. Consider the one-dimensional linear diffusion (2.1). The numerical flux (2.8) is
admissible for any piecewise polynomial of degree k≥0 provided (β0,β1)=(1,0) when k=0, and
for any k>0

β0≥α+
1

γ
M(k,β1), (2.12a)
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where

M(k,β1)= max
u∈Pk(Ij)

∆x∑
j

(
ux+

β1

2
∆x[uxx]

)2

∑
j

∫

Ij

u2
xdx

. (2.12b)

Proof. Note for k = 0, (β0,β1) = (1,0) is admissible since β0 ≥ α. For admissibility con-
dition to hold when k≥ 1, it suffices to select (β0,β1) so that the underlying flux (2.8) is
admissible locally around each cell, i.e.,

γ∆x
∫

Ij

u2
xdx+(2ux +β1∆x[uxx])[u]∆x+(β0−α)[u]2 ≥0, k≥1.

This is ensured to hold for all u|Ij
∈Pk(Ij) provided

(2ux+β1∆x[uxx])
2(∆x)2−4(β0−α)γ∆x

∫

Ij

u2
xdx≤0.

Summation of this inequality over all index j∈{1,··· ,N} yields

β0≥α+
1

γ

∆x∑
j

(
ux+

β1

2
∆x[uxx]

)2

∑
j

∫

Ij

u2
xdx

.

Maximization of the right hand side over all u|Ij
∈Pk(Ij) gives (2.12a).

Unfortunately, here we cannot theoretically analyze the optimal accuracy obtained
from the use of β1 6=0. However, through numerical tests we show that the β1 term indeed
provides a leverage to compensate the β0 term. Moreover, there exists a large class of β0

and β1 that lead to optimal order of accuracy with pk polynomial approximations. For
instance, we find the following results for p2 quadratic polynomial approximations when
applied to the 1D heat equation with initial data u0 = sinx: the numerical flux with pairs
(β0,β1) inside the polygon area in Fig. 1 all gives optimal 3rd order of accuracy. The
numerical result also indicates the following facts:

• β0 cannot be too small, β0 >1.

• When β0 increases, β1 can be lowered to maintain the same order of accuracy.

• A smaller absolute error is achieved with β1 = 1
12 , which is the optimal choice when

no interface correction is used in [26]. For example, we observe that (β0,β1)=(2, 1
12)

gives smaller errors than (β0,β1)=(3,0). Also (β0,β1)=(4, 1
12 ) gives smaller errors

compared to (β0,β1)=(4,0).
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0
0

Figure 1: Numerically tested β0 and β1 area for p2 approximation.

Remark 2.1. The recovery procedure introduced in [33] could be used as an alternative
way to identify a pair (β0,β1). For example, their recovery procedure for p2 elements
gives

(
15
4 , 9

240

)
. This pair is indeed in the polygon area in Fig. 1, but it does not seem to

give the optimal accuracy for the DDG method presented in [26].

It is known from the classical penalty method that when β1 =0, β0 needs to be large
enough to stabilize the scheme. Next we reconfirm this using the notion of admissibility.

Lemma 2.2. For a given k≥1, (2.8) with β1 =0 is admissible if

β0≥α+
1

4γ
λmax(H−1/2OH−1/2), (2.13)

where H is the Hilbert matrix H=
(

1
m+l−1

)
of size k and O is a k×k matrix with each entry to be

1.

Proof. From the proof in Lemma 2.1 we have

M(k,0)= max
u∈Pk(Ij)

∆x∑
j

u2
x

∑
j

∫

Ij

u2
xdx

= max
v∈Pk−1(Ij)

∆x∑
j

v2

∑
j

∫

Ij

v2dx
.

Set v|Ij
=∑

k
m=1a

j
mξm−1

j with base functions chosen to be ξ j=(x−xj−1/2)/∆x for x∈Ij. Here

a
j
m is the coefficient of the base function in cell Ij. Thus the average of v at the interface

x= xj+1/2 is

v̄
∣∣∣

xj+1/2

=
1

2

(
k

∑
m=1

a
j
m ·1m−1+

k

∑
m=1

a
j+1
m ·0m−1

)
=

1

2

k

∑
m=1

a
j
m.
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On the other hand we have

∫

Ij

v2dx=∆x
∫ 1

0

(
k

∑
m=1

a
j
m ·ξ

m−1

)2

dξ =∆x
k

∑
m,l=1

a
j
ma

j
l

1

m+l−1
.

These together lead to

M(k,0)=
1

4
max

a
j
m,m=1,···,k

N

∑
j=1

k

∑
m,l=1

a
j
ma

j
l

N

∑
j=1

k

∑
m,l=1

a
j
ma

j
l

1

m+l−1

=
1

4
max
aj∈Rk

N

∑
j=1

aj ·Oaj

N

∑
j=1

aj ·Haj

,

where

aj =(a
j
1,··· ,a

j
k)

⊤, Om,l =1, Hm,l =
1

m+l−1
.

This is clearly bounded from above by

1

4
max
a∈Rk

a·Oa

a·Ha
=

1

4
max
y∈Rk

y·
(

H−1/2OH−1/2
)

y

‖y‖2
2

,

where we have used the fact that the Hilbert matrix H is symmetric and positive definite
to transform a via y= H1/2a. Due to symmetry of the matrix H−1/2OH−1/2, the induced
spectral norm is just the largest eigenvalue of this matrix, as claimed.

From this result we now specify the choice of β0 for each fixed k, and compare with
our numerical results. For instance, we take α=1 and γ=1/2, and let β0 to be an integer
as

β0 =

[
1

2
λmax

(
H−1/2OH−1/2

)]
+2, (2.14)

where [·] denotes the integer part. Some calculation for k up to 9 shows that β0=[k2/2]+2,
which is summarized in Table 1.

Table 1: analytical estimation on β0(k).

k 1 2 3 4 5 6 7 8 9
β0 2 4 6 10 14 20 26 34 42

The numerical results for β1 = 0 is consistent with those given in Table 1. With β1

non-vanishing we numerically show that (k+1)th order of accuracy is obtained for pk

polynomials with a fixed β0. For instance, optimal accuracy is observed for all k up to 9
when taking (β0,β1)=(2, 1

12 ) in our numerical tests.
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Remark 2.2. The bound for β0 stated in Lemma 2.1 is implicit in terms of β1, but it shows
the existence of a large set of admissible numerical fluxes. On the other hand the bound
(2.13) obtained in Lemma 2.2 when β1 =0 is sharp and depends on k.

Remark 2.3. A similar calculation for M(k,β1) yields an estimate about as (2.14) but with
O replaced by

Oml =

(
1−

β1

2
(m−1)

)(
1−

β1

2
(l−1)

)
.

For some β1 >0 this indeed leads to a smaller β0 than (2.14).

2.3 Error estimates

Now we turn to the question of the quality of the approximate solution defined by (2.6).
Following the notations in [26], we define the energy norm

|||v(·,t)||| :=

(∫ 1

0
v2dx+(1−γ)

∫ t

0

N

∑
j=1

∫

Ij

v2
xdxdτ+α

∫ t

0

N

∑
j=1

[v]2

∆x
dτ

)1/2

(2.15)

with γ ∈ (0,1) and α > 0. Admissibility of the numerical flux and the approximation
properties of the space V∆x enable us to obtain the following error estimate.

Theorem 2.2 (Error estimate). Let e :=u−U be the error between the exact solution U and the
numerical solution u of the DDG method with interface correction (2.6). If the numerical flux
(2.8) is admissible (2.10), then the energy norm of the error satisfies

|||e(·,T)|||≤C|||∂k+1
x U(·,T)|||(∆x)k , (2.16)

where C=C(k,γ,α) is a constant depending on k,γ,α but is independent of U and ∆x.

Proof. We mimic the proof of Theorem 3.2 in [26] but only sketch main steps. Let P be the
L2 projection defined as P(U)(x) in V∆x such that,

∫

Ij

(P(U)(x)−U(x))v(x)dx=0, ∀v∈V∆x.

Then the error
e=u−P(U)+P(U)−U =P(e)−(U−P(U)) (2.17)

satisfies
|||e(·,T)|||≤ |||P(e)(·,T)|||+|||(U−P(U))(·,T)|||. (2.18)

It suffices to estimate |||P(e)(·,T)||| since

|||(U−P(U))(·,T)|||≤C|||∂k+1
x U(·,T)|||(∆x)k ,

from Lemma 3.2 in [26].
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The key relation such as (3.13) in [26] remains hold for (2.6):

B(P(e),P(e))=B(U−P(U),P(e)), (2.19)

where B(w,v) is the bilinear form defined by

B(w,v)=
∫ T

0

∫ 1

0
wt(x,t)v(x,t)dx+

∫ T

0

N

∑
j=1

∫

Ij

wx(x,t)vx(x,t)dxdt+Θ(T,w,v) (2.20)

with

Θ(T,w,v)=
∫ T

0

N

∑
j=1

(ŵx[v])j+1/2 dt+
∫ T

0

N

∑
j=1

(vx[w])j+1/2dt. (2.21)

Admissibility of the numerical flux (2.10) ensures that left hand side of (2.19) is bounded
from below

B(P(e),P(e))≥|||P(e)(·,T)|||2−
1

2
||P(e)(·,T)||2. (2.22)

The right hand side of (2.19) reads as

B(U−P(U),P(e))=
∫ T

0

∫ 1

0
(U−P(U))tP(e)dxdt

+
∫ T

0

N

∑
j=1

∫

Ij

(U−P(U))x(P(e))xdxdt+Θ(T,(U−P(U)),P(e)), (2.23)

with

Θ(T,(U−P(U)),P(e))

=
∫ T

0

N

∑
j=1

(
̂(U−P(U))x[P(e)]

)
j+1/2

dt+
∫ T

0

N

∑
j=1

(
P(e)x[U−P(U)]

)
j+1/2

dt.

The second term in Θ is a new term beyond those given in [26, page 687]. To estimate
this we need to bound the trace for P(e) by the integral on Ij:

N

∑
j=1

[P(e)x(xj±1/2)]
2≤

C

∆x

N

∑
j=1

∫

Ij

(P(e)x)
2dx,

which is valid for some constant C∼ k2 for Pk elements. See [10] for the construction of
inverse-inequalities on finite element spaces.
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Hence the second term in Θ is bounded by

∫ T

0

N

∑
j=1

(
P(e)x[U−P(U)]

)
j+1/2

dt

≤
(1−γ)∆x

4C

∫ T

0

N

∑
j=1

(P(e)x)
2
j+1/2dt+

C

(1−γ)

∫ T

0

N

∑
j=1

[U−P(U)]2

∆x
dt

≤
(γ−1)

4

∫ T

0

N

∑
j=1

‖P(e)x‖
2
Ij

dt+
C

(1−γ)

∫ T

0

N

∑
j=1

[U−P(U)]2

∆x
dt.

This when combined with the estimates of other terms given in [26, page 686] leads to
the estimate of |||P(e)(·,T)|||≤C|||∂k+1

x U(·,T)|||(∆x)k as desired.

3 Extensions

In this section we extend the refined DDG method to nonlinear convection diffusion
problems and multi-dimensional problems.

3.1 One-dimensional convection diffusion equations

We consider the nonlinear convection diffusion equation,

Ut+ f (U)x−(a(U)Ux)x =0 in Ω×(0,T), (3.1)

subject to initial data U(x,0) = U0(x) and periodic boundary conditions. The diffusion
coefficient a(U)>0 is non-negative.

Take v∈V∆x as the test function, the DDG scheme with interface correction is defined
as the following,

∫

Ij

utvdx+( f̂ (u)− â(u)ux)v
∣∣∣

j+ 1
2

j− 1
2

−
∫

Ij

( f (u)−a(u)ux)vxdx

+
1

2
[b(u)](vx)

−
j+1/2+

1

2
[b(u)](vx)

+
j−1/2 =0, (3.2)

where b(u)=
∫ u

0 a(s)ds, f̂ (u)− â(u)ux is the numerical flux to be chosen.
For the convection part we may choose any entropy satisfying numerical flux, for

example, the Lax-Friedrichs flux,

f̂ (u)= f̂ (u−,u+)=
1

2

(
f (u−)+ f (u+)−θ(u+−u−)

)
, (3.3)

where θ =maxu∈[u−,u+] | f
′(u)|.
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For the diffusion part, the numerical flux is chosen as

â(u)ux = β0
[b(u)]

∆x
+b(u)x+β1∆x[b(u)xx]. (3.4)

Here β0 and β1 are taken the same as those for the linear case.

3.2 Multi-dimensional extensions

We now formulate the refined DDG method for multi-D problems. Since numerical flux
for convection can be treated via dimension-wise extension, we present schemes only for
nonlinear diffusion problems, for simplicity, in the two-dimensional setting. Let

J1 = a11(U)Ux+a12(U)Uy, J2 = a21(U)Ux+a22(U)Uy.

Then two-dimensional equation can be written as

Ut−∂x J1−∂y J2 =0, in Ω=[0,1]2 ⊂R
2, (3.5)

subject to initial data U(x,y,0)=U0(x,y) and periodic boundary conditions. The diffusion
coefficient matrix (aij) is assumed to be symmetric and positive definite.

Let a partition of Ω be denoted by rectangular meshes

Ω=
N,M

∑
j,k

Ij,k, Ij,k = Ij× Ik =[xj− 1
2
,xj+ 1

2
]×[yk− 1

2
,yk+ 1

2
]

of uniform mesh sizes ∆=max(∆x,∆y). We denote the finite element space by

V∆ =
{

v : v|Ij,k
∈Pk, ∀Ij,k⊂Ω

}
, (3.6)

where Pk is a polynomial of degree at most k.
Set bij(u)=

∫ u
0 aij(s)ds. Then the DDG scheme on each computational cell can be writ-

ten as
∫∫

Ij,k

utvdxdy−
∫

Ik

Ĵ1v
∣∣xj+ 1

2
x

j− 1
2

dy−
∫

Ij

Ĵ2v
∣∣yk+ 1

2
y

k− 1
2

dx+
∫∫

Ij,k

(J1vx + J2vy)dxdy+B=0, (3.7)

∫∫

Ij,k

u(x,y,0)v(x,y)dxdy=
∫∫

Ij,k

U0(x,y)v(x,y)dxdy, (3.8)

where the boundary correction is

B=
1

2

{∫

Ik

([b11(u)]v−x )x
j+ 1

2

+([b11(u)]v+
x )x

j− 1
2

dy

+
∫

Ij

([b22(u)]v−y )y
k+ 1

2

+([b22(u)]v+
y )y

k− 1
2

dx

}
.
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Here and below

[u]x
j+ 1

2

:=u(x+
j+ 1

2

,y,t)−u(x−
j+ 1

2

,y,t), [u]y
k+ 1

2

=u(x,y+
k+ 1

2

,t)−u(x,y−
k+ 1

2

,t).

The numerical flux Ĵi is defined by

Ĵ1

∣∣∣
x

j+ 1
2

= β0
[b11(u)]

∆x
+b11(u)x+b12(u)y+β1∆x[b11(u)xx], (3.9)

Ĵ2

∣∣∣
y

k+ 1
2

= β0
[b22(u)]

∆y
+b21(u)x+b22(u)y+β1∆y[b22(u)yy], (3.10)

where we take (β0,β1) as obtained for one-dimensional case. The 2D algorithm is now
well defined.

An appropriate choice of (β0,β1) is to ensure the L2-stability of the method.

Theorem 3.1 (Energy stability). Assume that for p∈R, ∃γ and γ∗ such that the eigenvalues
of matrix (aij(p)) lie between [γ,γ∗]. Consider the refined DDG scheme with numerical flux
(3.9)-(3.10). Then the numerical solution satisfies

∫∫

Ω

u2(x,y,T)dxdy+
∫ T

0
∑
Ij,k

∫∫

Ij,k

(J1ux+ J2uy)dxdydt

+γβ0

∫ T

0

(
∑
Ij

∫

Ij

∑
M
k=1[u]2yk+1/2

∆y
dx+∑

Ik

∫

Ik

∑
N
j=1[u]2xj+1/2

∆x
dy

)
dt≤

∫∫

Ω

U2
0(x,y)dxdy, (3.11)

provided β0 is suitably large.

This stability result can be proved by following the similar argument as that explored
in [26]. Details are omitted.

Up to now, we have taken the method of lines approach and have left t continuous.
For time discretization we use the explicit third order TVD Runge-Kutta method [31, 32]
to match the accuracy in space.

Finally we discuss how to define numerical fluxes for unstructured meshes. Let {K}
be shape- regular meshes. The DDG scheme with interface correction for the 2D heat
equation is defined by

∫

K
utvdxdy+

∫

K
∇u·∇vdxdy−

∫

∂K
ûnvintK ds+

1

2

∫

∂K
[u]vintK

n ds=0, (3.12)

where n=(nx,ny) is the outward normal unit along the cell boundary ∂K, vintK denotes
v evaluated from inside K and un =∇u·n is differentiation in n direction. The numerical
flux remains of the same form:

ûn = β0
[u]

∆
+

∂u

∂n
+β1∆[unn], (3.13)
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where ∆=diam{K} is the mesh size and

[u]=uextK−uintK and un =
un

extK +un
intK

2
.

Here uextK represents u evaluated from outside of K (inside the neighboring cell).
If the cell boundaries are straight lines, such as the triangular meshes, the above nu-

merical flux reduces to
ûn = ûxnx+ûyny

with

ûx = β0
[u]

∆
nx+ux+β1∆

(
[uxx]nx+[uxy]ny

)
,

ûy = β0
[u]

∆
ny+uy+β1∆

(
[uyx]nx+[uyy]ny

)
.

In other words:

ûn = β0
[u]

∆
+uxnx+uyny+β1∆

(
[uxx]n

2
x+2[uxy]nxny+[uyy]n

2
y

)
.

4 Numerical examples

In this section we provide a few numerical examples to illustrate the accuracy and capac-
ity of the DDG method with interface corrections. We would like to illustrate the high
order accuracy of the method through these numerical examples from one-dimensional
to two-dimensional linear and nonlinear problems.

Example 4.1. lD heat equation.

Ut−Uxx =0, x∈ (0,2π), (4.1)

with initial condition U(x,0)=sin(x) and periodic boundary conditions.
In this example we will use this model equation to test the performance of the new

DDG method. Two different numerical fluxes are investigated, one is to take β1 =0 and
the other is to take β1 6=0 in (2.8).

The numerical flux (2.8) with β1 =0 reduces to the following,

ûx = β0
[u]

∆x
+ux. (4.2)

In light of the admissibility studied in Section 2 we know that β0 is a parameter depend-
ing on the degree of the approximation polynomial. We need to choose β0 big enough
to stabilize the scheme for high order approximations. We refer to Table 1 for suitable
choices of β0 with different k. The DDG method based on pk polynomial approximations
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Table 2: 1D heat equation with numerical flux (4.2). L2 and L∞ errors at t=1.0. pk polynomial approximations
with k=0,1,2,3,4.

β0 k N=10 N=20 N=40 N=80
error error order error order error order

1 0 L2 4.86e-02 2.38e-02 1.03 1.19e-02 1.00 5.90e-03 1.00
L∞ 1.17e-01 5.80e-02 1.02 2.89e-02 1.00 1.45e-02 1.00

2 1 L2 5.36E-03 1.41e-03 1.93 3.57e-04 1.98 8.96e-05 1.99
L∞ 1.03e-02 2.87e-03 1.84 7.46e-04 1.94 1.88e-04 1.98

4 2 L2 3.21e-04 3.73e-05 3.10 4.56e-06 3.02 5.68e-07 3.00
L∞ 1.31e-03 1.60e-04 3.03 1.98e-05 3.00 2.48e-06 3.00

6 3 L2 2.48e-05 1.56e-06 3.98 9.78e-08 3.99 6.11e-09 3.99
L∞ 5.47e-05 3.60e-06 3.92 2.31e-07 3.96 1.45e-08 3.99

10 4 L2 4.03e-07 1.03e-08 5.29 3.01e-10 5.09 9.24e-12 5.02
L∞ 1.83e-06 5.62e-08 5.02 1.75e-09 5.00 5.46e-11 5.00

Table 3: 1D heat equation with numerical flux (4.3). pk polynomial approximations with k=2,3,4,5,6,7.

k N=10 N=20 N=40 N=80
error error order error order error order

2 L2 3.73e-04 4.65e-05 3.00 5.80e-06 3.00 7.25e-07 3.00
L∞ 7.21e-04 9.11e-05 2.98 1.14e-05 2.99 1.43e-06 2.99

3 L2 2.59e-05 1.58e-06 4.03 9.80e-08 4.00 6.12e-09 4.00
L∞ 6.17e-05 3.72e-06 4.05 2.33e-07 3.99 1.46e-08 3.99

4 L2 2.13e-06 7.60e-08 4.80 2.47e-09 4.94 7.79e-11 4.98
L∞ 6.74e-06 2.46e-07 4.77 8.03e-09 4.93 2.54e-10 4.98

N=4 N=8 N=12 N=16

5 L2 1.13e-05 1.88e-07 5.91 1.67e-08 5.96 3.00e-09 5.98
L∞ 1.97e-05 3.39e-07 5.86 3.03e-08 5.96 5.42e-09 5.98

6 L2 7.30e-07 4.22e-09 7.43 2.34e-10 7.14 3.07e-11 7.05
L∞ 1.23e-06 1.09e-08 6.82 7.25e-10 6.67 1.02e-10 6.83

7 L2 8.43e-08 3.87e-10 7.77 1.57e-11 7.91 1.75e-12 7.63
L∞ 1.28e-07 5.92e-10 7.76 2.40e-11 7.91 2.65e-12 7.65

with k=0,1,2,3,4 are tested and (k+1)th order of accuracy is obtained. L2 and L∞ errors
are listed in Table 2. Note that in this and the remaining examples, L∞ error is obtained
by evaluating on 200 sample points per cell. The second test is to use numerical flux (2.8)
with β1 6= 0. As suggested in Section 2 we use the following numerical flux in the DDG
scheme (2.6),

ûx =2
[u]

∆x
+ux+

∆x

12
[uxx]. (4.3)

pk polynomial approximations with k =2,··· ,9 are tested and with h refinement optimal
(k+1)th order of accuracy is obtained. To save the space here we only list the errors and
orders for k=2,3,4,5,6,7 in Table 3. Note including term [uxx] in the numerical flux does
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Figure 2: Convergence of the DDG scheme under p-refinement with fixed mesh N =8.

relieve the dependence of β0 on k. We use fixed β0 = 2 for all pk polynomial approxi-
mations up to k =9. We also check the p-convergence of the DDG scheme, namely with
fixed mesh and increased degree of approximating polynomial we obtain exponential
convergence rate, see Fig. 2. Similar to the p-convergence studied in [24], we plot the
error against polynomial degree k on the linear-log scale and an almost straight line is
observed with increased degree of approximating polynomials. Furthermore, we inves-
tigate this scheme on nonuniform mesh and still (k+1)th order of accuracy is obtained
with refined mesh. Errors and orders are listed in Table 4. For the nonuniform mesh, the
partition of the domain [0,2π] consists of repeated pattern of 1.1∆x and 0.9∆x for odd
and even number of index i=1,··· ,N, where ∆x=2π/N with even number N.

Table 4: 1D heat equation with numerical flux (4.3) on non uniform mesh. pk approximations with k=2,3,4.

k N=10 N=20 N=40 N=80
error error order error order error order

2 L2 4.07e-04 5.04e-05 3.01 6.29e-06 3.00 7.86e-07 3.00
L∞ 9.37e-04 1.19e-04 2.97 1.50e-05 2.99 1.88e-06 3.00

3 L2 3.10e-05 1.91e-06 4.02 1.19e-07 4.00 7.43e-09 4.00
L∞ 8.84e-05 5.46e-06 4.01 3.44e-07 3.99 2.16e-08 3.99

4 L2 4.07e-06 1.69e-07 4.59 5.76e-09 4.87 1.84e-10 4.97
L∞ 1.39e-05 5.89e-07 4.56 2.02e-08 4.87 6.46e-10 4.96

The above comparison indicates that the term [uxx] is important for the scheme to
remain optimally accurate for high order approximations with a fixed β0. Hence in the
rest examples we use numerical flux (4.3) only.
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Example 4.2. 1D fully nonlinear equation.

Ut+UUx−
1

2
(UUx)x =0, x∈ (0,1), (4.4)

with initial condition U(x,0)= ex and boundary condition U(0,t)=1 and U(1,t)= e. The
exact solution is given as U(x,t)= ex.

For the nonlinear diffusion term we use the following numerical flux,

ûux =
1

2
(̂u2)x =

1

2

(
2
[u2]

∆x
+(u2)x+

∆x

12
[(u2)xx]

)
.

We conduct the DDG scheme on this fully nonlinear equation and obtain (k+1)th order
of accuracy for pk approximations. Errors and orders are listed in Table 5.

Table 5: 1D fully nonlinear equation (4.4). L2 and L∞ errors at t = 0.5. pk polynomial approximation with
k=0,1,2,3.

k N=10 N=20 N=30 N=40
error error order error order error order

0 L2 1.08e-01 5.54e-02 0.97 3.72e-02 0.98 2.81e-02 0.98
L∞ 2.11e-01 1.08e-01 0.97 7.24e-02 0.98 5.45e-02 0.99

1 L2 1.19e-03 2.99e-04 1.99 1.33e-04 2.00 7.49e-05 2.00
L∞ 3.13e-03 8.40e-04 1.90 3.83e-04 1.94 2.18e-04 1.96

2 L2 1.02e-05 1.28e-06 2.99 3.80e-07 3.00 1.60e-07 3.00
L∞ 2.15e-05 2.72e-06 2.99 8.06e-07 3.00 3.40e-07 3.00

3 L2 5.95e-08 3.72e-09 4.00 7.35e-10 3.98 2.34e-10 3.99
L∞ 1.39e-07 8.88e-09 3.97 1.77e-09 3.92 5.74e-10 3.95

Example 4.3. 1D nonlinear diffusion equation with nonsmooth solution.

Ut−(3U2Ux)x =0, in [−12,12], (4.5)

with initial condition

U(x,0)=





√
3− x2

12 , |x|<6,

0, |x|≥6,

and zero boundary conditions. The solution is a non smooth wave propagating with a
finite speed. We compute the DDG quadratic approximation for this nonlinear diffusion
problem up to t=2 and plot the result in Fig. 3. We use the following nonlinear numerical
flux

3̂u2ux =(̂u3)x = β0
[u3]

∆x
+(u3)x+β1∆x[(u3)xx].

with β0 = 2 and β1 = 1/12. As expected our DDG method has the capability to sharply
capture the corners with discontinuous derivatives. Also compared to the symmetric IP
method, our scheme is more accurate in the smooth area and again the symmetric IP
method needs β0 =8 or bigger to stabilize the scheme for this nonlinear problem.
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Figure 3: 1D nonlinear diffusion equation (4.5). p2 approximation with mesh N=180. Left: DDG solution at
t=0,0.5,2. Right: comparison to exact solution at t=2.

Example 4.4. 2D linear convection diffusion equation.

Ut+c(Ux+Uy)−µ(Uxx+Uyy)=0, (x,y)∈ (0,2π)×(0,2π), (4.6)

with initial condition U(x,y,0)= sin(x+y) and periodic boundary conditions. The exact
solution is U(x,y,t) = e−2µtsin(x+y−2ct). In this example we take c = 1 and µ = 1. Ac-
curacy test is performed on a N×N rectangular mesh. The DDG scheme with interface
corrections is implemented at t = 0.5. Similar to 1D problems, we choose fixed β0 = 2 in
the numerical flux for all pk polynomials. In the x-direction, we take

ûx|xj+1/2
=

(
2
[u]

∆x
+ux+

∆x

12
[uxx]

)∣∣∣
xj+1/2

.

A similar formula in the y-direction is applied. Again (k+1)th order of accuracy is ob-
tained with piecewise pk polynomial approximations. L2 and L∞ errors and orders are
listed in Table 6.

Example 4.5. 2D anisotropic diffusion equation.

Ut+c(Ux+Uy)−µ(Uxx+Uyy+Uxy)=0, (x,y)∈ (0,2π)×(0,2π) (4.7)

with initial condition U(x,y,0)= sin(x+y) and periodic boundary conditions. The exact
solution is U(x,y,t)=e−3µtsin(x+y−2ct). We use this example to test the DDG scheme for
diffusion problem with non-isotropic term. For the mixed term uxy we use numerical flux

(3.9) on rectangular meshes. In this example we take c = 1 and µ = 0.01. pk polynomial
approximations with k = 0,1,2,3 are tested and (k+1)th order of accuracy is obtained.
Errors and orders are listed in Table 7.
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Table 6: 2D linear convection diffusion equation (4.6). L2 and L∞ errors at t=0.5. pk polynomial approximation
with k=0,1,2,3.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 8.58e-02 4.74e-02 0.86 2.50e-02 0.92 1.28e-02 0.96
L∞ 2.23e-01 1.22e-01 0.88 6.26e-02 0.96 3.17e-02 0.98

1 L2 1.11e-02 2.73e-03 2.02 6.71e-04 2.02 1.66e-04 2.01
L∞ 5.49e-02 1.39e-02 1.98 3.49e-03 1.99 8.84e-04 1.98

2 L2 1.13e-03 1.40e-04 3.01 1.74e-05 3.00 2.18e-06 3.00
L∞ 7.64e-03 9.58e-04 2.99 1.17e-04 3.03 1.46e-05 3.00

3 L2 1.33e-04 8.16e-06 4.02 5.06e-07 4.01 3.15e-08 4.00
L∞ 7.03e-04 4.49e-05 3.97 2.87e-06 3.97 1.82e-07 3.98

Table 7: 2D anisotropic case (4.7). L2 and L∞ errors at t=0.3. pk polynomial approximations with k=0,1,2,3.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 2.03e-01 1.07e-01 0.92 5.56e-02 0.95 2.88e-02 0.95
L∞ 6.10e-01 3.12e-01 0.97 1.60e-01 0.96 8.09e-02 0.98

1 L2 3.62e-02 9.44e-03 1.94 2.39e-03 1.98 5.93e-04 2.00
L∞ 2.26e-01 6.11e-02 1.88 1.54e-02 1.99 3.78e-03 2.02

2 L2 3.90e-03 4.48e-04 3.12 5.50e-05 3.02 6.69e-06 3.03
L∞ 3.44e-02 4.29e-03 3.00 5.02e-04 3.09 5.75e-05 3.12

3 L2 4.44e-04 2.51e-05 4.14 1.55e-06 4.02 9.51e-08 4.02
L∞ 3.49e-03 2.72e-04 3.68 1.46e-05 4.21 7.86e-07 4.20

Example 4.6. 2D incompressible Navier-Stokes equation in vorticity formulation. In
this example we consider two-dimensional incompressible Navier-Stokes equation in
vorticity based formulation

ωt+∇·(uω)=
1

Re
△ω, (x,y)∈ (0,2π)×(0,2π). (4.8)

Again we use this example to check the high order accuracy of the DDG method.
To simplify the computation, we take incompressible velocity field u = (u,v) as a given

function. Here (u(x,y,t),v(x,y,t))= e−
2t
Re (−cosxsiny,sinxcosy) and the exact solution is

known as ω(x,y,t) = 2e−
2t
Re cosxsiny, see [9]. Periodic boundary conditions are applied

and we take the Reynolds number Re = 100. We compute the solution at time t = 1. L2

and L∞ errors are listed in Table 8 and we obtain (k+1)th order of accuracy with pk

polynomial approximations.

Example 4.7. 2D Buckley-Leverett equation. Finally, we consider the two-dimensional
convection diffusion equation [25].

ut+ f (u)x+g(u)y =ǫ(uxx+uyy), (x,y)∈ (−1.5,1.5)×(−1.5,1.5). (4.9)
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Table 8: 2D Navier-Stokes equation in vorticity formulation (4.8). L2 and L∞ errors at t=1.0. pk approximations
with k=1,2,3.

k N=16 N=32 N=64 N=128
error error order error order error order

1 L2 2.19e-02 5.13e-03 2.09 1.25e-03 2.04 3.06e-04 2.02
L∞ 1.16e-01 2.59e-02 2.16 6.25e-03 2.05 1.47e-03 2.09

2 L2 1.34e-03 1.55e-04 3.11 1.85e-05 3.06 2.19e-06 3.07
L∞ 1.10e-02 1.19e-03 3.20 1.32e-04 3.17 1.49e-05 3.14

3 L2 3.23e-04 1.07e-05 4.91 4.62e-07 4.52 2.33e-08 4.31
L∞ 2.09e-03 5.73e-05 5.18 2.30e-06 4.63 1.18e-07 4.28

The nonlinear convection terms are given as

f (u)=
u2

u2+(1−u)2
,

g(u)= f (u)(1−5(1−u)2),

and the initial condition is taken as

u(x,y,0)=

{
1, x2+y2

<0.5,
0, otherwise.

(4.10)

This is the two-dimensional Buckley-Leverett equation with small diffusion. Essentially
it is a convection dominated problem with non-convex flux functions. Here we take
ǫ=0.01. We compute the DDG solution with p1 polynomial approximations up to t=0.5
with mesh size N×N =100×100. In Fig. 4 we show the solution slice at y=0.75 and the
solution contours in (0,1). Fig. 5 shows the 3D outlook of the solution.
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Figure 4: 2D Buckley-Leverett equation (4.9). Left: solution slice at y=0.75. Right: solution contours.
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Figure 5: 2D Buckley-Leverett equation (4.9). Solution at t=0.5 on 100×100 mesh.

In our simulation we observed that when ǫ is relatively large, say ǫ=0.1, the scheme
is stable and accurate. When smaller ǫ is used, we observe some instability phenomena
which is related to the steep shock fronts. Here we use slope limiters as introduced in [14]
to stabilize the scheme. Again, the DDG method shows its capability to obtain high
resolution solutions across sharp transition areas and gives satisfactory results.

5 Concluding remarks

Built upon the DDG method introduced in [26], we have presented a refined direct dis-
continuous Galerkin (DDG) method for diffusion problems. We include extra interface
corrections in the scheme formulation with numerical flux involving only up to second
order derivatives of the numerical solution. The refined DDG scheme has the advantage
of obtaining optimal accuracy of (k+1)th order for all pk elements. We prove that there
exists a large class of coefficients (β0,β1) in the numerical flux formulation,

ûx = β0[u]/∆x+ux +β1∆x[uxx],

ensuring the stability of the scheme. We also confirm that when β1 = 0, β0 has to be big
enough to guarantee the scheme stability; actually we estimate the precise dependence
of β0 on the polynomial degree k. Extensions of the method to convection diffusion prob-
lems in both one- and two-dimensional settings are given. Finally we carry out a series of
numerical tests from linear to nonlinear, one-dimensional to two-dimensional problems
to demonstrate the high order accuracy of the method. Our numerical results show that
β1 6=0 does provide a leverage to compensate the β0 term, thus a fixed β0 can be used for
all pk polynomials.
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