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Abstract. An implicit high-order accurate method for solving model kinetic equations
is proposed. The method is an extension of earlier work on the construction of an ex-
plicit TVD method for hybrid unstructured meshes in physical space and is illustrated
on the Poiseuille flow of rarefied gas. Examples of calculations are provided for differ-
ent Knudsen numbers and mesh resolutions, which illustrate the efficiency and high
accuracy of the new scheme.
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1 Introduction

The numerical solution of the Boltzmann kinetic equation with the exact or model colli-
sion integral is a major technique for studying rarefied gas flows. Usually, the numerical
methods for this equation use structured meshes [10,11,28] and cannot be readily applied
to flows in complex spatial configurations. Recently, high-order accurate finite-volume
methods on unstructured meshes in physical space have been proposed. These include
a Cartesian Cut Cell method for the Boltzmann equation with the exact collision inte-
gral [8] and an unstructured-mesh scheme [24] for the S-model kinetic equation [17, 18]
in two spatial dimensions. In particular, the method [24] consists of two main compo-
nents: an explicit high-order Total Variation Diminishing (TVD) scheme for discretising
the advection operator on hybrid unstructured meshes and a conservative procedure
for computing macroscopic gas parameters [23, 26]. It is thus applicable to gas flows
in arbitrarily shaped two-dimensional spatial domains and across the whole range of
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Knudsen numbers from the free-molecular to continuum regimes. The method has been
recently adopted to pressure-driven isothermal flows of rarefied gas in long micro chan-
nels (Poiseuille flow) [25], which represent an important class of rarefied gas dynamics
problems [19,20]. Computational results were given for channels with circular, triangular
and polygonal cross-sectional areas, thus showing the applicability of the unstructured-
mesh approach in the context of rarefied gas flows.

All mentioned unstructured-mesh methods use explicit time discretisation methods.
They are therefore simple to implement, but also computationally expensive as com-
pared to implicit structured-mesh alternatives [11, 26, 28]. For transitional and nearly-
continuum flows the stability condition of an explicit method results in a small time step,
proportional to the spatial cell size in thin Knudsen layers. As a result, the computational
cost of computing near-continuum steady-state solutions using explicit methods may be
prohibitively high.

The goal of the present work is to develop an implicit version of the method [24, 25]
for computing steady-state solutions of kinetic equations on two-dimensional unstruc-
tured meshes. For the sake of simplicity, the idea is explained for the linearised kinetic
equation as applied to Poiseuille flows. On unstructured meshes, the use of the implicit
time discretisation results in a large sparse system of linear equations for the values of the
distribution function at the new time level. The direct solution of the system is expensive
and requires the use of a large computer memory. To reduce the computational cost, an
approximate factorisation based on [13, 14] is used. The resulting numerical method is
almost as efficient per time step as the one-step explicit scheme with the same reconstruc-
tion procedure. However, it allows to use time step at least an order of magnitude larger
as compared to the original explicit scheme. As a result, the overall computational cost
of calculating the steady-state solutions is significantly reduced.

The paper is organised as follows. In Section 2 the flow problem and governing equa-
tions are formulated. In Section 3 the explicit method on mixed-element unstructured
meshes [24,25] is briefly outlined. The implicit time discretisation scheme is described in
detail in Section 4. In Section 5 numerical results are presented for the circular pipe flow
and compared with those published in the literature. Conclusions are drawn in Section 6.

2 Problem formulation

Consider low-speed stationary flows of a monatomic rarefied gas from reservoir 1 to
reservoir 2 through a channel with an arbitrary but constant cross-section A and finite
length 2L. Inside the reservoirs away from the channel the gas is at rest with pressures
p1 < p2 and with equal temperatures T1 = T2. Let us introduce a Cartesian coordinate
system (x,y,z), in which the Oz axes is directed along the channel. The centre of the coor-
dinate system is located in the middle of the channel z=0. The complete accommodation
of momentum and energy of molecules occurs at the channel walls, which are kept un-
der the constant temperature Tw = T1 = T2. It is further assumed that the channel length
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is much larger than the characteristic linear dimension D of its cross-sectional area.
A steady state of the rarefied gas is determined by the velocity distribution function

f (x,y,z,ξx ,ξy,ξz), where ξx, ξy, ξz are the components of the molecular velocity vector ξ.
It is assumed that the distribution function satisfies the Boltzmann kinetic equation with
the Krook model collision integral [3]:

ξx
∂ f

∂x
+ξy

∂ f

∂y
+ξz

∂ f

∂z
=ν( f o− f ), ν=

p

µ
,

f o =
n

(2πRT)3/2
exp(−c2), ci =

ξi−ui√
2RT

, c2 = c2
1+c2

2+c2
3, i=1,2,3.

(2.1)

Here n is gas density, ui components of the velocity, T temperature, p=nRT gas pressure,
R the gas constant. The gas viscosity µ is related to the mean free path λ by

µ=
5

16
mn

√
2πRTλ,

where m is the molecular mass. The boundary condition of diffuse reflection with the
complete accommodation of momentum and energy of molecules on the channel surface
∂A reads as

f (x,y,z,ξx ,ξy,ξz)= fw, (ξ,n)>0,

fw =
nw(x,y,z)

(2πRTw)3/2
exp(−c2

w), c2
w =

ξ2

2RTw
, ξ2 = ξ2

x+ξy+ξ2
z ,

(2.2)

where n is the inward unit normal vector to the channel surface, nw is the density of
reflected molecules.

It is assumed that the average pressure (and thus density) gradient along the channel
is small:

p2−p1

L
≪ p1

D
.

so that the end effects can be neglected. The gas density near z=0 can then be expressed
as a linear function of z

nw(z)=n0(1+k·z), kD=
D

n0

dnw(z)

dz
≪1, n0 =

p0

Tw
, p0 =

1

2
(p1+p2), (2.3)

where k is the logarithmic derivative of density evaluated at z = 0 and is assumed to be
constant. The kinetic equation can be linearised around the Maxwellian distribution (2.2)
with the density of reflected molecules nw in the form (2.3):

f = fw(1+h), T≡Tw =const, h=h(x,y,ξ). (2.4)

The equation for the function h is obtained by first inserting (2.4) in the nonlinear
kinetic equation (2.1) and then using the assumption |h|≪1:

ξx
∂h

∂x
+ξy

∂h

∂y
=−ξz ·k+ν0(h+−h), h+ =2ξzu, ν0 =

p0

µ0
. (2.5)



430 V. A. Titarev / Commun. Comput. Phys., 8 (2010), pp. 427-444

Here u is gas velocity along the channel (in the z coordinate direction). The resulting
kinetic equation (2.5) describes the flow near the middle section of the channel z=0.

In the rest of the paper the non-dimensional formulation of the problem is used, in
which the following quantities serve as scales of spatial coordinates (x,y), velocity u,
density n, temperature T and viscosity µ:

D,
√

2RTw, n0, Tw,
5

16
mn0

√
2πRTwλw.

Here λw is the mean free path, corresponding to n0, Tw. Below, the non-dimensional
variables are denoted by the same letters as the dimensional ones.

In the non-dimensional form the kinetic equation (2.5) for the function h takes the
form

ξx
∂h

∂x
+ξy

∂h

∂y
=−ξz ·k+ν0(h+−h), h+ =2ξzu, ν0 =

8

5
√

π

1

Kn
. (2.6)

Here Kn=λw/D is the Knudsen number. In what follows the value k≡1 is used without
loss of generality. The dimension of the problem can be reduced by passing from h to its
integral with respect to ξz according to the formula

φ=

+∞
∫

−∞

ξzg0(ξz)hdξz , g0(ξz)=π−1/2e−ξ2
z .

The kinetic equation for the new function φ is obtained from (2.6) by multiplication
by ξzg0(ξz) and integration with respect to ξz:

ξx
∂φ

∂x
+ξy

∂φ

∂y
=−1

2
+ν0(φ+−φ), φ+ =u. (2.7)

The gas velocity is given as an integral of φ

u=
∫

1

π
φ e−ξ2

x−ξ2
y dξxdξy. (2.8)

The boundary condition (2.2) in terms of the function φ takes the form

φ=0 for (ξ,n)>0. (2.9)

If the cross-sectional area of the channel has lines of symmetry, then it is possible to cal-
culate the solution only in a part of the cross section, using reflective boundary condition
on these symmetry lines [24]. This leads to a reduction of the computational cost.

One of the key integral parameters of the flow is the normalised mass flow rate
through the channel, which in the non-dimensional variables is given by

Q=− 2

|A|
∫

A

udxdy=− 2

|A|
∫

A

∫

1

π
φe−ξ2

x−ξ2
y dξxdξy dxdy. (2.10)

It is worth noting that in the free-molecular flow regime Kn=∞ the kinetic equation
becomes degenerate for ξx = ξy = 0 and the function φ has a singularity. This makes it
difficult to solve equation numerically for Kn≫1.
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3 The explicit numerical method

Here the second-order accurate version of the explicit method from [24, 25] is reviewed.
The kinetic equation (2.7) is solved in the unsteady formulation

∂φ

∂t
+ξx

∂φ

∂x
+ξy

∂φ

∂y
=−1

2
+ν0(φ+−φ), φ+ =u. (3.1)

The steady-state solution to the problem is found by marching in time to steady state. Let
us introduce in the physical variables x =(x1,x2)= (x,y) a computational mesh consist-
ing of triangular and quadrilateral elements (spatial cells) Ei. The total number of spatial
cells is Ntot. Each cell is defined by vertices with coordinates x(l), l = 1,2,··· ,L(i). In the
molecular velocity space the infinite domain of integration is replaced by a finite compu-
tational domain |ξx|,|ξy|≤ ξ0, which is then discretised by Nξ cells in each direction. The
velocity distribution function is then defined in cell centers of both physical (xi,yi) and
molecular velocity ξα meshes.

Let φn
iα be the spatial average of the velocity distribution function in the cell Ei at

time tn for the molecular velocity ξα. The unsplit fully discrete finite-volume method is
obtained by integrating the kinetic equation (3.1) over the spatial cell Ei as well as the
time interval:

φn+1
iα =φn

iα+∆tα Ln
iα, Ln

iα =−1

2
− 1

|Ei|
L(i)

∑
l=1

Φiαl +ν0(φ+−φ)n
iα, (3.2)

where ∆tα is the time step size dependent on both the cell size |Ei| and the module of
the molecular velocity vector ξα. Let nl = (nx,ny) be the outward unit normal vector to
the side l; ξnl =(ξ,nl) is the projection of the molecular velocity vector ξα to the outward
normal vector nl to the side l (the index α is omitted for simplicity). Then the numerical
flux Φiαl through the side l of the cell Ei is given by

Φiαl =

x(l+1)
∫

x(l)

ξnlφ
n(t,x,ξα)dl. (3.3)

The calculation of the numerical fluxes with high-order of accuracy requires the knowl-
edge of the values of the distribution function at cell sides. For each spatial cell Ei these
values are computed from the cell averages of φ by means of a spatial reconstruction pro-
cedure [2,22,24,25]. For the second-order method, which is used in the present study, the
reconstruction stencil consists of the cell Ei and its direct neighbours. It is convenient to
introduce the local numbering of cells in the stencils using a monoindex m, m =0,··· ,M.
The cells of the stencils and the corresponding values of the function φ are then referred
to as Tm and φn

mα, respectively. In this notation T0 corresponds to the cell Ei and Tm,
1≤m ≤ M correspond to its neighbours. The value of M depends on the shape of cell
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Figure 1: Possible stencils for the 2nd order reconstruction.

Ei≡T0; for a quadrilateral cell M=4 whereas for a triangular cell M=3. Fig. 1 illustrates
both cases.

In order to eliminate mesh scaling effects, which may affect the accuracy of the com-
putations, the reconstruction is carried out in the local (reference) coordinate system (x̂,ŷ),
which is obtained from the physical coordinate system (x,y) by means of a linear trans-
formation [4, 25]:

x= x(1)+ Ji x̂, Ji =

(

x(2)−x(1) x(L(i))−x(1)

y(2)−y(1) y(L(i))−y(1)

)

i

. (3.4)

It should be stressed that the transformation matrix Ji is specific for the each cell Ei. The
reconstruction stencil is then transformed into the reference coordinate system using the
inverse transformation x̂= x̂(x) and consists of transformed cells T̂m, m=0,1,··· ,M. Note
that the spatial averages of φ are not altered by the transformation.

For a given value of the molecular velocity vector ξα the reconstruction polynomial
piα(x̂,ŷ) is considered to be an expansion over the basis functions ek(x̂,ŷ) with the un-
known coefficients a1, a2 called degrees of freedom:

piα(x̂,ŷ)=φn
0α+a1e1(x̂,ŷ)+a2e2(x̂,ŷ),

e1 = x̂− 1

|T̂0|

∫

T̂0

x̂dx̂dŷ, e2 = ŷ− 1

|T̂0|

∫

T̂0

ŷdx̂dŷ. (3.5)

The unknown coefficients ak of the polynomial (3.5) are calculated by requiring that for
each cell T̂m from the reconstruction stencil the mean value of piα is equal to the mean
value of the solution:

1

|T̂m|

∫

T̂m

piα(x̂,ŷ)dx̂dŷ=φn
mα, m=1,··· ,M. (3.6)
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Conditions (3.6) can be re-written as the over-determined system for the unknown coef-
ficients a1, a2:

fm1a1+ fm2a2 =φn
mα−φn

0α, fmk =
1

|T̂m|

∫

T̂m

ek(x̂,ŷ)dx̂dŷ, m=1,··· ,M, (3.7)

which is solved by the least squares method. As a result, the values of ak are expressed
as a function of φn

mα and local mesh geometry.
To suppress spurious oscillations in regions of rapid variations of the distribution

function, a slope limiter ψ is used to modify the degrees of freedom a1, a2. Then the un-
limited reconstruction polynomial piα defined in (3.5) is replaced by a new reconstruction
polynomial

pTVD
iα (x̂,ŷ)=φn

0α+ψi [a1e1(x̂,ŷ)+a2e2(x̂,ŷ)]. (3.8)

There are a number of slope limiters for the unstructured meshes, see [9] for review. Let
φmin, φmax be minimum and maximum values of the distribution function in the stencil.
Also denote by pl the average value of the unlimited polynomial (3.5) over the side l of
the cell T′

0. The slope limiter [2] is given by

ψi =min
l

ψil , ψil =

{

min(1,∆1/∆l), pl >φn
0α,

min(1,∆2/∆l), pl ≤φn
0α,

(3.9)

where

∆1 =φmax−φn
0α, ∆2 =φmin−φn

0α, ∆l = pl−φn
0α.

A smoother limiter is based on [27]:

ψi =min
l

ψil, ψil =



















∆2
1+2∆l∆1+ǫ2

∆2
1+ǫ2+2∆2

l +∆l∆1
, pl >φn

0α,

∆2
2+2∆l∆2+ǫ2

∆2
2+ǫ2+2∆2

l +∆l∆2
, pl ≤φn

0α,

(3.10)

where ǫ is a small parameter, which is the present work defined slightly differently than
in [27] and is taken to be ǫ=

√
Ei. Note, that the spatially first-order accurate reconstruc-

tion is reproduced if ψi ≡0.

Finally, for each cell Ei the averaged values φ
(l)
iα of the reconstruction polynomial pTVD

iα
over each cell side l are computed according to the formula

φ
(l)
iα =

1

|x̂(l+1)− x̂(l)|

x̂(l+1)
∫

x̂(l)

pTVD
iα dl.

This completes the reconstruction step at time level tn.
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The calculation of the numerical fluxes Φiαl is carried out as follows. If for the side l
of the cell Ei the projection of the molecular velocity vector to the outward normal vector
to the side l is non-negative ξnl ≥0, then the numerical flux is given by

Φiαl = ξnlφ
(l)
i,α |x(l)−x(l+1)|.

If instead ξnl <0, there are two cases to consider. If the side l is adjacent to the side l1
of a fluid cell i1, then the numerical flux is calculated as

Φiαl = ξnlφ
(l1)
i1α |x(l)−x(l+1)|. (3.11)

If the side l is adjacent to the surface of the channel, the numerical flux is equal to
zero, as is required by the boundary condition (2.9). For the spectacular reflection of
the molecules the distribution function of reflected molecules was found by means of a
parabolic interpolation in ξ and then inserted into the numerical flux formula.

The gas velocity u is found by integrating φ with respect to ξx, ξy in such a way
that the resulting numerical method is conservative with respect to the model collision
integral [23, 26]. For the linearised equation (3.1) the only conservation condition is the
momentum conservation and the gas velocity is then given by [25]:

un
i =

1

β ∑
α

e−ξ2
α φn

iαωα, β=∑
α

e−ξ2
α ωα =const, (3.12)

where ωα are the weights of the composite integration rule. The choice of the quadrature
rule depends on the flow regime. Typically, for δ≤10 a non-uniform molecular velocity
mesh clustered to ξx = ξy = 0 and second-order quadrature are used whereas for δ > 10
the fourth-order accurate Simpson rule is applied on uniform meshes.

The normalised mass flow rate Q is calculated as

Q=−2

∑
i

ui|Ei|

∑
i
|Ei|

. (3.13)

For the steady-state problems, considered in the present work, the time step size de-
pends on the molecular velocity in order to speed up convergence to steady state:

∆tα =min
i

(

K
di

|ξα|
,0.9ν0

)

, K≤ 1

2
, (3.14)

where K is the CFL number, di is a characteristic linear size of cell Ei. In general, for
triangular elements, di is the diameter of the inscribed circle, whereas for quadrilateral
elements di is taken to be the length of the largest side of element Ei.

It is worth noting that the resulting advection scheme (3.2) may be viewed as an ex-
tension of the second-order modification of the Godunov method [5] proposed in [7, 22].
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The linear version of the method, based on the unlimited polynomial (3.5) is known to
be unconditionally unstable. However, the presence of the limiter stabilizes the scheme
under the condition (3.14). For more details see the original references [7, 22] as well
as [9].

The convergence to steady state is verified by calculating the integral residual in the
momentum conservation law:

Rtot =∑
i

|Ri|·|Ei|≤10−5, Ri =∑
α

Liα
1

π
e−ξ2

α ωα,

where the operator Liα is defined in (3.2).

4 The implicit numerical method

The explicit scheme, described above, is quite simple to implement and provides highly-
accurate results due to its applicability on general mixed-element meshes. However, for
transitional and nearly-continuum flows the stability condition K≤1/2 in (3.14) results in
exceedingly small time steps, proportional to the spatial cell size in thin Knudsen layers.
In practice, even smaller values K = 0.2,··· ,0.3 may be required for second and higher-
order methods in order to achieve convergence to steady state. As a result, the computa-
tional cost of computing near-continuum steady-state solutions using the explicit method
is quite high.

The implicit method described below can be viewed as an extension of the two-
dimensional structured-mesh implicit methods of [6, 26, 28] to unstructured meshes. It
circumvents the time step restrictions of the explicit scheme while maintaining its advan-
tages, such as high-order spatial accuracy and simplicity of program implementation. Let
φn

α be the value of the distribution function at the node ξα of the molecular velocity mesh
and time level tn; the spatial variables x,y are kept continuum for the moment:

φn
α =φ(tn,x,y,ξα).

Define δiα to be a time increment of the distribution function:

δn
α =φn+1

α −φn
α .

The explicit numerical method can be formally written as

δn
α =∆tα Ln

α, Ln
α =−1

2
−
(

ξx
∂φ

∂x
+ξy

∂φ

∂y

)n

α

+ν0(φ+−φ)n
α. (4.1)

The implicit version of (4.1) is constructed by adding the advection and relaxation oper-
ators to the left-hand side:

(

1+∆tαν0+∆tαξx
∂

∂x
+∆tαξy

∂

∂y

)

δn
α =∆tLn

α . (4.2)
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The resulting equation (4.2) forms the basis of the implicit finite-volume method, used be-
low. In order to pass from the differential form (4.2) to the discrete scheme, the advection
operator in the left-hand side of (4.2) is discretised with first-order upwind spatial differ-
ences on the given unstructured mesh in (x,y) variables whereas the right-hand side Ln

α

is approximated in the same way as in the explicit method (3.2). Let σl(i) be the cell index
of the cell adjacent to the side l of cell Ei. Then the implicit finite-volume method based
on (4.2) has the following form

(1+∆tαν0)δn
iα+

∆tα

|Ei|
L(i)

∑
l=1

ξnl f (δn
iα,δn

σl(i),α)bil =∆tα Ln
iα, δn

iα =φn+1
iα −φn

iα. (4.3)

Here bil = |x(l)−x(l+1)| is the length of side l of the cell Ei. The function f (δn
iα,δn

σl(i),α
) plays

a role analogous to a Riemann solver in Godunov-type methods and is defined as

f (δn
iα,δn

σl(i),α)=
1

2
(1+sign(ξnl))·δn

iα+
1

2
(1−sign(ξnl))·δn

σl(i),α.

If the side l of cell Ei belongs to a solid boundary and ξnl <0, then the corresponding time
increment δ in the neighbouring cell is set to zero. Regrouping terms in (4.3) yields the
following

(1+∆tαν0+∆tαbi)δn
iα+∆tα

L(i)

∑
l=1

ci,σl(i)δ
n
σl(i),α =∆tα Ln

iα,

bi =
L(i)

∑
l=1

ξn,l(1+sign(ξnl))
bil

2|Ei|
, ci,σl(i) = ξn,l(1−sign(ξnl))

bil

2|Ei|
.

(4.4)

The expressions (4.4) can then be re-written in matrix form as

Q·δn
α =∆tα Ln

α , (4.5)

where the elements qij of the matrix Q are defined as:

qii =1+∆tαν0+∆tαbi, qi,σl(i) =∆tαci,σl(i), l =1,··· ,L(i).

The matrix Q is sparse and diagonally dominant. However, the direct solution of the
linear system (4.5) is very expensive and may not justify the use of the implicit method.
Instead, an approximate factorisation of Q is used in order to construct a computationally
efficient time marching algorithm [13, 14]. The implicit scheme (4.4) is re-written as

δn
iα+

L(i)

∑
l=1

∆tα c̃i,σl(i)δ
n
σl(i),α =∆tαd−1

ii Ln
iα,

dii =1+∆tαν0+∆tαbi, c̃i,σl(i) =
1

dii
ci,σl(i),

(4.6)
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or in the matrix form
(I+∆tαC̃)·δn

α =∆tαD−1 ·Ln
α , (4.7)

where D is the diagonal matrix with elements dii defined in (4.6). The matrix C̃ is then fac-
torised into the product of lower triangular L and upper triangular U matrices according
to the formula

lij =

{

∆tα c̃ij, j< i,
0, j> i,

uij =

{

0, j< i,
∆tα c̃ij, j> i,

lii =uii =1.

Finally, the approximate factorisation of the left-hand side of (4.7) is given by

I+∆tαC̃ = L·U+O(∆t2
α) (4.8)

so that the implicit method takes its final form

L·Uδn
α =∆tαD−1 ·Ln

α, φn+1
iα =φn

iα+δn
iα. (4.9)

The computational cost of solving (4.9) is linearly proportional to the total number of
spatial cells Ntot. As a result, one time step of the implicit scheme (4.9) is only slightly
more expensive than that of the explicit one (3.2), most of the computational cost of both
methods being associated with the spatial reconstruction procedure. For the nonlinear
model kinetic equations, e.g., [1, 16, 18], this difference will be even smaller due to the
high computational cost of the calculation of the collision integral.

The time step is now selected according to the formula

∆tα =K ·
min

i
di

|ξα|
, (4.10)

where K is again the user-defined CFL number.

5 Results

The performance of the method is illustrated as applied to the Poiseuille flow in the chan-
nel with a circular cross section (circular pipe). The main parameter to be calculated is
the normalised mass flow rate Q, which depends on the Knudsen number and the shape
of the cross-sectional area. In the existing literature the so-called rarefaction parameter δ
is often used instead of the Knudsen number when presenting the results. In the present
work this parameter coincides with the collision frequency ν0:

δ≡ν0 =
8

5
√

π

1

Kn
=

1.1078

Kn
, Kn=

0.9027

δ
.

A review of existing results for the Poiseuille flow through the circular pipe can be
found [19, 20]. The free-molecular value of the mass flow rate can be evaluated analyt-
ically and is equal to Q = Q∞ ≈ 1.5045. For finite values of δ the most accurate analysis
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was carried out in [12] by using a highly specialised numerical algorithm, developed
specifically for flow in the circular pipe. The algorithm is based on solving the integral
equations and makes use of the polar coordinate system and very high-order quadrature
formulas. Furthermore, for the transitional and near-continuum regimes δ ≫ 1 the ki-
netic solution was computed as a correction to the continuum (Navier-Stokes) solution,
resulting in accurate results up to δ = 500. It should also be noted that for conventional
finite-difference methods applied to the kinetic equation in the polar coordinate system
the results have only be presented up to δ = 50 even though the lower dimension of the
problem allowed the use of very fine computational meshes, see, e.g., [21].
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Figure 2: Computational domain and the spatial meshes with Ntot =330 (left) and 3947 (right).

In the present work the mass flow rate for the Poiseuille flow in the circular chan-
nel is computed for 0≤ δ≤ 200 using the general numerical algorithm (4.2), applicable
to any cross-section form. In calculations the circular cross section was replaced by a 90
degrees sector and the reflective boundary condition was used on the radial sides of the
computational domain. This allows the reduction of the computational cost of the simu-
lations. Three spatial meshes were considered for a mesh convergence study, consisting
of Ntot = 330, 1081 and 3947 cells, see Fig. 2. For Ntot = 330 the Knudsen layer near the
surface is discretised with quadrilateral cells with length ≈0.005 in the direction normal
to the surface, the boundaries of the spatial domain are divided into intervals of constant
length 0.1 and then the inner part of the computational domain is meshed with triangles.
Other meshes are obtained from the Ntot =330 mesh using refining by a factor of two and
four, respectively.

The integration in the molecular velocity space was carried out over the finite domain
−3.5≤ ξx ,ξy ≤ 3.5. For small and medium values of the rarefaction parameter 0≤ δ≤ 1
(large Knudsen numbers) the distribution function varies very rapidly near ξx =ξy =0 so
that a relatively fine molecular velocity mesh with Nξ =80 cells in each direction had to
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Figure 3: Convergence history for Ntot =1081 and δ=10. First-order reconstruction is used. Curve 1 represents
the explicit method with K =0.3 whereas 2-5 correspond to the values of CFL number K =5, 10, 25 and 100;
n is the iteration number.

be used. The mesh was clustered towards the singularity point with the cell size near it
equal to ∆ξ≈0.003. For the transitional and near-continuum regimes δ>1 of the flow the
function φ varies slowly in the molecular velocity space so that a much coarser uniform
mesh with constant cell size ∆ξ≈0.35 was sufficient to obtain accurate results.

Figs. 3-5 illustrate the influence of the CFL number on the convergence history of the
method; shown is the residual as a function of the iteration number n for the explicit
method as well as the implicit one with K =5, 10, 25 and 100. All versions of the spatial
reconstruction are used: 1st order as well as 2nd order with limiters (3.9) and (3.10). The
results are provided for the middle mesh with Ntot=1081 and the value of the rarefaction
parameter δ=10; the converged solution for δ=1 is used as the initial condition for time
marching. It is seen that for the first-order accurate version of the method the implicit
time marching provides at least an order of magnitude speed-up in convergence with
larger values of the Courant number K resulting in fewer iterations required to reach
the residual tolerance value Rtot =10−5. For the second-order version of the method the
convergence history depends significantly on the choice of the slope limiter. If (3.9) is
used, the residual rapidly drops to Rtot ≈ 10−3, but then the convergence stalls. The use
of the smoother limiter (3.10) considerably improves the convergence properties of the
method with the residual dropping to 10−5 for K = 5 and K = 10. However, for larger
values of the Courant number the residual drops to ≈10−4 only, which may be explained
by the fact that the factorisation error in (4.8) becomes larger as K grows. Overall, K =
5,··· ,10 appears to be a good choice of the CFL number for the 2nd order method. For the
rest of the paper all second-order results correspond to the choice of (3.10) for the slope
limiter.

The results of the calculations for the mass flow rate for all values of δ using the



440 V. A. Titarev / Commun. Comput. Phys., 8 (2010), pp. 427-444

10 100 1000 10000

0.0001

0.001

0.01

0.1

1

n

Rtot

1

2

3
4

5

Figure 4: Convergence history for Ntot = 1081 and δ= 10. 2nd order reconstruction with (3.9) limiter is used.
Curve 1 represents the explicit method with K=0.3 whereas 2-5 correspond to the values of CFL number K=5,
10, 25 and 100; n is the iteration number.
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Figure 5: Convergence history for Ntot =1081 and δ=10. 2nd order reconstruction with (3.10) limiter is used.
Curve 1 represents the explicit method with K=0.3 whereas 2-5 correspond to the values of CFL number K=5,
10, 25 and 100; n is the iteration number.

implicit method with both 1st and 2nd order accurate spatial reconstructions are given
in Tables 1 and 2. Also provided are the reference mass flow rate values from [12]. It
is seen that the 1st order version of the method produces acceptable results for small
and moderate values of the rarefaction parameter 0 ≤ δ ≤ 1, but starts to diverge from
the reference solution as δ increases and the flow approaches transitional regime. This is
explained by the fact that for δ≫ 1 (or Kn≪ 1) the numerical viscosity of the 1st order
method prevails over the physical viscosity and the numerical solution is thus inaccurate.
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Table 1: Normalised mass flow rate Q for the cylindrical pipe, 1st order method.

δ Ntot =330 Ntot =1081 Ntot =3947 [12]

0.0 1.530318 1.517538 1.510286 1.5045

0.3 1.393437 1.385310 1.380652 1.3762

0.5 1.400897 1.394048 1.390139 1.3866

1 1.465376 1.461514 1.459472 1.4582

10 3.166507 3.313548 3.417102 3.5633

20 4.704936 5.152908 5.503968 6.0411

50. 7.762911 9.238882 10.679545 13.5269

100 10.631086 13.490859 15.710244 26.0214

200 13.585523 18.227347 21.734972 51.0254

Table 2: Normalised mass flow rate Q for the cylindrical pipe, 2nd order method.

δ Ntot =330 Ntot =1081 Ntot =3947 [12]

0.0 1.501842 1.502524 1.502724 1.5045

0.3 1.374541 1.375689 1.376060 1.3762

0.5 1.384777 1.386098 1.386460 1.3866

1 1.455880 1.457605 1.458087 1.4582

10 3.533018 3.554309 3.560475 3.5633

20 5.9404 6.012289 6.032977 6.0411

50. 12.9646 13.367275 13.475604 13.5269

100 23.936042 25.410952 25.821233 26.0214

200 43.584960 48.673164 50.219904 51.0254

The 2nd order version of the method provides significantly more accurate results,
which agree well with [12] in the whole range 0≤δ≤200. For small and moderate values
of δ≤1 already the middle mesh with Ntot =838 provides sufficient accuracy. The largest
difference in the flow rate occurs for δ = 200 and is below 2% for the finest mesh. It can
also be concluded from Table 2 that the difference between results from two finest spatial
meshes can serve as a safe upper estimate of the computational error, which can be used
for other, more difficult geometries, for which no reference or exact solution is available.

For large values of δ the distribution function is smooth and thus the numerical error
is defined mainly by the spatial resolution. In this case it is possible to increase the accu-
racy by using the Richardson extrapolation technique [15]. Denote by Q(1), Q(2), Q(3) the
values of the mass flow rate calculated on three consecutive meshes with total number of
cells N

(1)
tot , N

(2)
tot , N

(3)
tot . It is then assumed that for each mesh the exact value of the mass

flow rate can be related to the computed value

Qexact =Q(k)+C ·hp
k +o(h

p
k ), C=const, k=1,2,3, (5.1)

where hk =1/

√

N
(k)
tot is the characteristic cell size. The spatial convergence rate p and the
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Table 3: Richardson extrapolated values for the mass flow rate Q.

δ 20 50 100 200
Ref. [12] 6.0411 13.5269 26.0214 51.0254

Qext 6.0397 13.5077 25.9485 50.7638

Q for Ntot =3947 6.0330 13.4756 25.8212 50.2199

Estimate of p 2.17 2.28 2.23 2.08

constant C can be estimated from Eq. (5.1) and the extrapolated mass flow rate is then
given by

Qext =Q(3)+C ·hp
3 . (5.2)

Provided that the spatial resolution is sufficiently fine, the expression (5.2) should give
at least a third-order accurate approximation to the mass flow rate Q. Results of the
application of Richardson extrapolation are shown in Table 3. It is seen that the numerical
error in calculating Q is reduced significantly.
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Figure 6: Velocity surfaces for δ=1 (left) and δ=100 (right).

Fig. 6 shows surface plots of the gas velocity uz for two values of the rarefaction
parameter: δ = 1 and δ = 100. It is seen that the numerical solution is radial without
any numerical artefacts. The velocity field has a maximum at x=y=0 and drops towards
the surface of the channel.

6 Conclusions

An implicit high-order accurate method for calculating the Poiseuille flow of a rarefied
gas in channels with non-Cartesian cross-sectional areas has been developed. The use
of the implicit time marching results in between one to two orders of magnitude speed
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up in convergence to the steady-state solution. Numerical results for the circular pipe
illustrate the efficiency as well as high accuracy of the new scheme in a broad range of
flow regimes. The use of the Richardson extrapolation further increases the accuracy of
the numerical results in the transitional and continuum regimes.
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