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Abstract. The modified ghost fluid method (MGFM) has been shown to be robust and
efficient when being applied to multi-medium compressible flows. In this paper, we
rigorously analyze the optimal error estimation of the MGFM when it is applied to
the multi-fluid Riemann problem. By analyzing the properties of the MGFM and the
approximate Riemann problem solver (ARPS), we show that the interfacial status pro-
vided by the MGFM can achieve “third-order accuracy” in the sense of comparing to
the exact solution of the Riemann problem, regardless of the solution type. In addition,
our analysis further reveals that the ARPS based on a doubled shock structure in the
MGFM is suitable for almost any conditions for predicting the interfacial status, and
that the “natural” approach of “third-order accuracy” is practically less useful. Various
examples are presented to validate the conclusions made.
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1 Introduction

In recent years, with the continuous improvement of numerical simulation and the ma-
tureness of various algorithms, many complex flow issues, which were not able to be
explored in depth in the past, have reentered the horizons of scientific researchers. Some
high resolution schemes for compressible flows, such as the total variation diminishing
(TVD) schemes [1, 2] and the essentially non-oscillatory (ENO) schemes [3–5], can work
very successfully for pure medium compressible flows. However, when we employ such
schemes to simulate multi-medium compressible flows, unexpected difficulties occur due
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to nonphysical oscillations generated in the vicinities of the material interfaces. To sup-
press the oscillations, various techniques have been developed, see, e.g., [6–9, 11–16, 19].

Among the above mentioned methods, the ghost fluid method (GFM) [11] and other
GFM-based techniques [8, 9, 12, 19] provide simple and flexible ways for handling multi-
medium flows. The easy extension to multi-dimensions and maintenance of a sharp in-
terface are the advantages of the GFM-based techniques. The key point of these GFM-
based techniques is to properly define the properties of the ghost fluids, which is also the
primary difference among the various versions of the methods. The original GFM [11]
uses the local real fluid velocity and pressure to define the corresponding ghost fluid
status, and the density of the ghost fluid is obtained via isobaric fixing [10]. It has been
shown, however, that such a definition of ghost fluid status is not efficient when applied
to gas-water flows [12].

In fact, the pressure or the velocity across the material interface can have a sudden
jump when there is a strong wave interacting with the interface. Whether in the original
GFM or its later gas-water version [12], the definition of ghost fluid status is not strictly
sufficient to take into account the effects of wave interaction and material properties. To
overcome such shortcomings, a modified GFM (MGFM) was developed in [8], where a
Riemann problem was defined along the normal direction of the interface and solved
using approximate Riemann problem solver (ARPS) to predict the interfacial status. The
predicted interfacial status was then utilized to define the ghost fluid status. The MGFM
has been shown to be robust and less problem related and successfully applied to various
gas-gas, gas-water and fluid-structure coupling problems [8, 9, 20–22]. In addition, it has
been proved that the interfacial status captured by the MGFM approximates the exact
solution to “second-order accuracy” for the gas-gas Riemann problem [18].

However, we find that the above analytical conclusions are not optimal. In this paper,
a further analysis is carried out for the MGFM in the absence of vacuum or cavitation.
We shall show that the interfacial status captured by the MGFM can achieve “third-order
accuracy” in the sense of comparing to the exact solution for any multi-fluid Riemann
problem. Moreover, we shall find that the implicit ARPS based on a doubled shock struc-
ture is much stable and suitable for almost any initial conditions without restrictions
in predicting the interfacial status, while a “natural” approach, which is also a “third-
order” approximation, is proved to be less useful. It should be noted that the “accuracy”
discussed in this paper means how accurate the boundary conditions are implicitly im-
posed at the material interface and how accurate the interface states are approximated
by the GFM technique, which is in contrast with the accuracy of the numerical scheme or
the errors between the exact solution and the numerical solution.

The paper is organized as follows. In Section 2 we introduce the Euler equations
and equations of state (EOS) followed by a brief description of the level set equation.
In Section 3 the solution structure of a multi-fluid Riemann problem is presented. In this
section, the estimates about the interfacial status of the Riemann problem are derived and
discussed. These estimates will serve as the basis for accuracy analysis of the MGFM. In
Section 4, the multi-fluid Riemann problem is split into two pure fluid Riemann prob-
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lems with one-sided ghost fluid defined, which are called GFM Riemann problems. The
interfacial pressure and velocity provided by the two GFM Riemann problems in associ-
ation with the MGFM are compared to the exact solution in order to analyze the accuracy
of the MGFM. Then, we have some discussions on the prediction of the interfacial sta-
tus in Section 5. The comparison between the “natural” approach and the implicit ARPS
is shown in this section, and the “third-order accuracy” of the MGFM with the implicit
ARPS is also illustrated by several numerical experiments. Finally, conclusions are drawn
in Section 6.

2 Equations

2.1 The Euler equations

The one-dimensional Euler equations of an initial-value Riemann problem can be written
as

∂U

∂t
+

∂F(U)

∂x
=0, U|t=0 =

{

Ul, x< x0,
Ur, x> x0,

(2.1)

for an inviscid, non-heat-conducting compressible flow, where U=[ρ,ρu,E]T , and F(U)=
[ρu,ρu2+p,(E+p)u]T . Here ρ is the density, u is the velocity, p is the pressure, and E is
the total energy per unit volume. The total energy is written as

E=ρe+
1

2
ρu2, (2.2)

where e is the internal energy per unit mass. Ul and Ur are two constant states separated
by the material interface located at x0. Hereafter, the subscripts “l” and “r” indicate the
flow state on the left- and right-hand medium respectively.

2.2 Equations of state (EOS)

For closure of system (2.1), EOS is required. In the present work, our interest focuses on
the compressible fluid media, such as gases and water. For gases the γ-law is used as

p=(γg−1)ρe, (2.3)

and for water the stiff gas EOS has the form

p=(γw−1)ρe−γwBw. (2.4)

The EOS for the two fluids above can be expressed in the following consistent form as

p=(γ−1)ρe−γB, (2.5)

where γ and B are different for different media. See Table 1 for the special cases of air
and water. In the following, our accuracy analysis for the MGFM is based on EOS (2.5).
The associated sound speed can then be expressed as c=

√

γp/ρ, where p= p+B.
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Table 1: Constant values γ and B for air and water.

Fluids γ B (Pa)
Air 1.4 0

Water 7.15 3.309×108

2.3 Level set equation

To track the moving material interface, the level set technique is employed. The zero level
of the level set function φ marks the location of the interface, while the positive values
correspond to one fluid and the negative values correspond to the other. The level set
equation for one-dimensional flows can be written as

∂φ

∂t
+u

∂φ

∂x
=0. (2.6)

In general, φ(x,t) is initialized as the signed distance taken from the interface with reini-
tialization [17].

3 Solution structure and interface estimation

For a multi-fluid Riemann problem, where the fluids consist of gases or water, the struc-
ture of the solution is very similar to that for a pure gas Riemann problem [23], if the
existence of vacuum or cavitation is excluded. The solution structure in general consists
of four constant regions connected by one of the three centered Riemann waves: two
nonlinear waves (shock wave and rarefaction wave) and a linear wave (contact disconti-
nuity or material interface). The two nonlinear waves are separated by the linear wave,
as depicted in Fig. 1(a).

Next, we establish some relationships between the exact interfacial status and the
initial conditions. In each medium, there is only one Riemann wave, which is a nonlin-
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Figure 1: Structure of the solution of a Riemann problem for 1D Euler equations. (a) The general case in which
two nonlinear Riemann waves are separated by the linear wave (interface). (b) A particular case in which the
left wave is a rarefaction and the right wave is a shock.
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ear wave. As shown in Fig. 1(b), if a rarefaction wave is generated in the left medium,
via application of the Riemann invariant (u+2c/(γl−1)= const) and the isentropic law
(p/ργl = const) through the rarefaction wave fan, we have following expression

ul−ue
I =

2cl

γl−1





(

pe
I +Bl

pl

)

γl−1

2γl −1



, (3.1)

while if the left wave is a shock wave we obtain

ul−ue
I =

1

ρlcl

pe
I−pl

√

1+ γl+1
2γl

(

pe
I+Bl

pl
−1
)

, (3.2)

using the shock wave relationship. Here, the subscript “I” means interface location and
the superscript “e” denotes exact value.

Similarly, for the right nonlinear wave we have

ue
I−ur =

2cr

γr−1

[

(

pe
I +Br

pr

)

γr−1
2γr

−1

]

, (3.3)

ue
I−ur =

1

ρrcr

pe
I−pr

√

1+ γr+1
2γr

(

pe
I+Br

pr
−1
)

, (3.4)

for the respective rarefaction wave and shock wave.
Then, considering the right parts of Eqs. (3.1)-(3.4) and using Taylor series expansion

at p/pk around 1 (i.e. |p/pk−1|<1), we can get the following relationships

2ck

γk−1





(

p

pk

)

γk−1

2γk −1



=
ck

γk

(

p

pk

−1

)[

1− γk+1

4γk

(

p

pk

−1

)]

+O
(

p

pk

−1

)3

, (3.5)

1

ρkck

p−pk
√

1+ γk+1
2γk

(

p
pk
−1
)

=
ck

γk

(

p

pk

−1

)[

1− γk+1

4γk

(

p

pk

−1

)]

+O
(

p

pk

−1

)3

, (3.6)

where p = p+Bk, and the subscript “k” indicates “l” or “r”. It is clearly found that the
right parts in Eqs. (3.5) and (3.6) are exactly the same in form, but they are different for
further higher-order Taylor expansion. According to (3.1)-(3.6) we have the following
two expressions for the left and right nonlinear Riemann waves regardless of the types
of these Riemann waves:

ul−ue
I =

cl

γl

(

pe
I +Bl

pl

−1

)[

1− γl +1

4γl

(

pe
I +Bl

pl

−1

)]

+O
(

pe
I +Bl

pl

−1

)3

, (3.7)

ue
I−ur =

cr

γr

(

pe
I +Br

pr

−1

)[

1− γr +1

4γr

(

pe
I +Br

pr

−1

)]

+O
(

pe
I +Br

pr

−1

)3

. (3.8)
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Utilizing (3.7) and (3.8) we can obtain the “third-order” approximation of interfacial
pressure and velocity, as the following lemma states.

Lemma 3.1. For the Riemann problem (2.1), if the exact interfacial pressure pe
I satisfies

pe
I <min(2pl +Bl,2pr +Br), (3.9)

then the pressure pINT and velocity uINT are determined by the following system of quadratic equa-
tions



















ul−uINT =
1

ρlcl
(pINT−pl)

[

1− γl +1

4ρlc
2
l

(pINT−pl)

]

,

uINT−ur =
1

ρrcr
(pINT−pr)

[

1− γr+1

4ρrc2
r

(pINT−pr)

]

.

(3.10)

Solving (3.10) gives one branch of the solution:



















uINT =
UU(1)+UU(2)+UU(3)+UU(4)+UU(5)+UU(6)

4[(γr +1)ρ2
l c3

l +(γl +1)ρ2
r c3

r ]
2

,

pINT =
ρ2

l c3
l [(γr +1)pr +2ρrc2

r ]+ρ2
r c3

r [(γl +1)pl +2ρlc
2
l ]−ρlclρrcr

√
PP

(γr+1)ρ2
l c3

l +(γl+1)ρ2
r c3

r

,

(3.11)

where

UU(1) =2(γl +1)(γr +1)ρlclρrcr(pr−pl)
(

2clcr(ρlcl +ρrcr)−
√

PP
)

,

UU(2) =4ρlclρrcr

(

(γl +1)ρrc2
r −(γr+1)ρlc

2
l

)(

2clcr(ρlcl +ρrcr)−
√

PP
)

,

UU(3) =−4(pr−pl)
(

(γr+1)2ρ3
l c5

l +(γl +1)2ρ3
r c5

r

)

,

UU(4) =−(γl +1)(γr+1)(pr−pl)
2
(

(γl +1)ρ2
r c3

r −(γr+1)ρ2
l c3

l

)

,

UU(5) =4(γl +1)(γr +1)ρ2
l c3

l ρ2
r c3

r (ul +ur),

UU(6) =4
(

(γr+1)2ρ4
l c6

l ul +(γl +1)2ρ4
r c6

r ur

)

,

and

PP=clcr

(

4(γr+1)ρlc
2
l (pr−pl)−4(γl +1)ρrc2

r (pr−pl)−(γl +1)(γr+1)(pr−pl)
2

+4(ρlcl +ρrcr)
2clcr +4(γr+1)ρ2

l c3
l (ur−ul)+4(γl +1)ρ2

r c3
r (ur−ul)

)

,

which approximate the respective exact interfacial pressure pe
I and velocity ue

I to the accuracy of
O{max[ |(pe

I +Bl)/pl−1|,|(pe
I +Br)/pr−1|]}3 regardless of the solution type.
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We should note that there are two solutions to (3.10), however, if we consider the
simplest case where the flow states on both sides are exactly the same, namely ρl = ρr ,
ul =ur, pl = pr, cl =cr and γl =γr, obviously the pressure solution pINT should be pl(= pr).
Only the solution (3.11) is the correct choice. Furthermore, condition (3.9) implies that
the higher-order terms in (3.7) and (3.8) are less than 1 (i.e. |p/pk−1|< 1). Lemma 3.1
is fundamental in analyzing the accuracy and error estimation of the MGFM in the next
section.

4 Error estimation on MGFM

4.1 MGFM and ARPS

The GFM-based technique, when employed to solve the multi-fluid Riemann problem
(2.1), requires essentially solving two separate pure medium Riemann problems (called
GFM Riemann problems [8, 9]) in the respective media with associated one-sided ghost
fluid in each time step. One is for the left fluid medium and the initial conditions are
defined as

U|t=0 =

{

Ul, x< x0,
U∗

r , x> x0.
(4.1)

It solves from the grid node 1 on the left end to the ghost nodes. The other is in the right
medium with the initial conditions of

U|t=0 =

{

U∗
l , x< x0,

Ur, x> x0,
(4.2)

and it solves from the ghost nodes to the end node on the right. Hereafter, “∗” indi-
cates the ghost fluid (status). In the modified GFM (MGFM) first presented in [8], the
ghost fluid status U∗

r (U∗
l ) is defined using the interfacial status, which is obtained by

approximately solving a multi-medium Riemann problem along the normal direction of
the interface. This is a salient feature of the MGFM and also a primary difference from
the original GFM.

More concretely, there are two nonlinear characteristics intersecting at the interface:
one stems from the left medium flow while the other originates from the right medium
flow. They can be written in association with system (2.1) along the normal direction of
the interface as

dpI

dt
+ρL

I cL
I

duI

dt
=0, along

dx

dt
=uI +cL

I , (4.3a)

dpI

dt
−ρR

I cR
I

duI

dt
=0, along

dx

dt
=uI−cR

I , (4.3b)

where the subscript “I” refers to the interface, and the superscript “L” and “R” denote
the left side of the interface and the right side of the interface respectively. ρL

I (ρR
I ) and

cL
I (cR

I ) are the density and sound speed on the left (right) side of the interface; pI and uI
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represent the pressure and velocity at the interface. During the moment of a shock/jet
impacting on the interface, pressure and velocity singularities are created at the inter-
face, which means the pressure and velocity are not continuous across the interface. The
above system, therefore, has to be specially solved ensuring the correct decomposition of
these singularities. As such, an approximate Riemann problem solver (ARPS) based on a
doubled shock structure [13] can be employed to solve for system and written as

pI−pIL

WIL
+(uI−uIL)=0, (4.4a)

pI−pIR

WIR
−(uI−uIR)=0, (4.4b)

where

WIL =ρILcIL

√

1+
γl +1

2γl

(

pI +Bl

pIL

−1

)

, WIR =ρIRcIR

√

1+
γr+1

2γr

(

pI +Br

pIR

−1

)

.

In practice, we firstly determine the states UIL (i.e. ρIL,uIL,pIL,cIL) and UIR (i.e. ρIR,uIR,
pIR,cIR) in (4.4). Assuming that the interface is located between node i and i+1 at time
t=tn, to compute the flow field at the next time step of t=tn+1, we first obtain UIL and UIR

via interpolation along the characteristic lines dx/dt=uI+cL
I and dx/dt=uI−cR

I tracing
back from the interface into the respective Medium 1 and Medium 2. Alternatively, UIL

and UIR can simply be taken as Ui−1 and Ui+2 respectively. Then, the interfacial status
can be obtained by solving (4.4) using iterative method, as depicted briefly in Fig. 2(a).

Next, to define the ghost fluid status U∗
r in (4.1) for Medium 1, we use the predicted

interfacial pressure and velocity as for the ghost fluid at the ghost node i+1. The ghost
fluid pressure and velocity at the ghost node i+2 can be those for the real fluid (Medium
2) or predicted. The demonstration can be seen in Fig. 2(b). Finally, we employ isentropic
fixing technique for eliminating the spurious overheating phenomenon [10] by fixing the
real fluid density at node i and the ghost fluid density, with the predicted entropy sL

I

for Medium 1 at the interface. In more detail, because the status of ghost node i+1 is
identified with the interfacial status, the entropy si+1 is equivalent to the left interface
value sL

I . According to the isentropic law (p/ργ = const) we have

ρj =ρL
I

(

pj +Bl

pI +Bl

)
1
γl

, (4.5)

where the subscript “j” represents node number. We just use this expression to fix the
density values for node i, i+2 and i+3, as shown in Fig. 2(c). The ghost fluid status for
Medium 2 is defined in a similar way except that the predicted entropy sR

I for Medium 2
is used to assign the ghost fluid density. The new location of the interface is also obtained
via solving the level set equation (2.6). Here we briefly summarize the general procedure
of the MGFM, more details can be found in [8, 9]:
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i − 2 i − 1 i i + 1 i + 2 i + 3

real fluid node

Interface

Medium 1 Medium 2

pI uI

ρL

I
ρR

I

UIL UIR

(a)

i − 2 i − 1 i

i + 1 i + 2 i + 3
real fluid node

ghost fluid node

Interface

Medium 1 Medium 2

pI uI

ρL

I pi+2

ui+2

pi+3

ui+3

(b)

i − 2 i − 1 i

i + 1 i + 2 i + 3
real fluid node

ghost fluid node

Interface

Medium 1 Medium 2

sL

I
sL

I
sL

I

(c)

Figure 2: The illustration of the MGFM for defining
the ghost fluid status for Medium 1. (a) Predict-
ing the interfacial status. (b) Defining the ghost
fluid status for Medium 1. (c) Isentropic fixing for
Medium 1.

1. Advance the interface via solving the level set equation with reinitialization to the
new time step, and get the new interface location.

2. Predict the interfacial status by constructing and solving the Riemann problem, and
then use it to define the flow status in the ghost fluid.

3. Choose a suitable high-order single medium scheme to solve for each fluid medium.
In that way the solution in all the media is advanced to the new time step.

4. Obtain the final solution over whole computation domain according to the new
interface location, and then update the new time step size and proceed to the next
time step.

4.2 Error estimation

For the MGFM applied to the Riemann problem (2.1), we use the predicted interfacial
pressure and velocity to define the corresponding ghost fluid quantities, namely p∗r =pM

I ,
u∗

r =uM
I , p∗l = pM

I and u∗
l =uM

I . Here pM
I and uM

I are calculated employing the ARPS:

pM
I −pl

Wl
+(uM

I −ul)=0, (4.6a)

pM
I −pr

Wr
−(uM

I −ur)=0, (4.6b)
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where

Wl =ρlcl

√

1+
γl +1

2γl

(

pM
I +Bl

pl

−1

)

, Wr =ρrcr

√

1+
γr+1

2γr

(

pM
I +Br

pr

−1

)

.

Before getting the error estimate for the MGFM, we need the following relationships
applicable to ARPS (4.6):

(I) Relationships between the initial conditions and the predicted interfacial states

ul−uM
I =

cl

γl

(

pM
I +Bl

pl

−1

)[

1− γl +1

4γl

(

pM
I +Bl

pl

−1

)]

+O
(

pM
I +Bl

pl

−1

)3

, (4.7a)

uM
I −ur =

cr

γr

(

pM
I +Br

pr

−1

)[

1− γr +1

4γr

(

pM
I +Br

pr

−1

)]

+O
(

pM
I +Br

pr

−1

)3

; (4.7b)

(II) Relationships between the predicted and the exact interfacial states

uM
I −ue

I =O
(

max

[∣

∣

∣

∣

pe
I +Bl

pl

−1

∣

∣

∣

∣

,

∣

∣

∣

∣

pe
I +Br

pr

−1

∣

∣

∣

∣

])3

, (4.8a)

pM
I −pe

I =O
(

max

[∣

∣

∣

∣

pe
I +Bl

pl

−1

∣

∣

∣

∣

,

∣

∣

∣

∣

pe
I +Br

pr

−1

∣

∣

∣

∣

])3

. (4.8b)

Because the ARPS employed is a doubled shock Riemann solver, pM
I and uM

I are iden-
tical to the exact interfacial states pe

I and ue
I for shock wave case, and are “third-order”

approximation to the exact interfacial states for rarefaction wave case. (4.7) can be easily
shown by applying (3.6) to ARPS (4.6). Obviously, they are similar to (3.7) and (3.8) in
form. (4.8) can be derived by utilizing the two relationships (4.7) and Lemma 3.1. Ac-
cording to (4.7)-(4.8) we have following conclusions held for the MGFM with ARPS (4.6)
when applied to the Riemann problem (2.1).

Theorem 4.1. The MGFM is “third-order” accurate theoretically when applied to treat the inter-
face for the original Riemann problem (2.1) regardless of the solution type. That is, the following
error estimates are valid for the respective GFM Riemann problems (4.1) and (4.2) using the
MGFM with ARPS (4.6):

uMA
I −ue

I =O
(

pe
I +Bl

pl

−1

)3

, (4.9a)

pMA
I −pe

I =O
(

pe
I +Bl

pl

−1

)3

, (4.9b)

uMB
I −ue

I =O
(

pe
I +Br

pr

−1

)3

, (4.10a)

pMB
I −pe

I =O
(

pe
I +Br

pr

−1

)3

, (4.10b)
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where uMA
I (uMB

I ) and pMA
I (pMB

I ) are the exact interfacial velocity and pressure of the GFM Rie-
mann problem (4.1) ((4.2)) using the MGFM.

Proof. In each fluid medium, there is only one nonlinear wave. If the nonlinear wave is
a shock wave in the left (right) medium, uMA

I (uMB
I ) and pMA

I (pMB
I ) are virtually identi-

cal to the exact interfacial velocity ue
I and pressure pe

I , because ARPS (4.6) is just based
on a doubled shock structure. In that case the error estimates (4.9)-(4.10) are definitely
established.

In the following, we only need to consider the case where a rarefaction wave is gen-
erated in either medium. Assume that in the left medium there is a rarefaction wave.
According to MGFM for the GFM Riemann problem (4.1), we have p∗r = pM

I , u∗
r = uM

I ,
γ∗

r = γl and B∗
r = Bl. Note that pe

I < pl for the left rarefaction wave case, thus condition
(3.9) in Lemma 3.1 is automatically satisfied. Then, by applying Lemma 3.1 to the GFM
Riemann problem (4.1), we have |(pMA

I +Bl)/pl−1|<1 and get

uMA
I =

UUA
(1)+UUA

(2)+UUA
(3)+UUA

(4)+UUA
(5)+UUA

(6)

4(γl +1)2(ρl
2cl

3+ρ∗r
2c∗r

3)2
+O

(

pMA
I +Bl

pl

−1

)3

, (4.11a)

pMA
I =

(γl +1)(ρl
2cl

3pM
I +ρ∗r

2c∗r
2pl)+2ρlcl

2ρ∗r c∗r
2(ρlcl +ρ∗r c∗r )−ρlclρ

∗
r c∗r

√
PPA

(γl +1)(ρl
2cl

3+ρ∗r
2c∗r

3)

+O
(

pMA
I +Bl

pl

−1

)3

, (4.11b)

where

UUA
(1) =2(γl +1)2ρlclρ

∗
r c∗r (pM

I −pl)
(

2clc
∗
r (ρlcl +ρ∗r c∗r )−

√

PPA
)

,

UUA
(2) =4(γl +1)ρlclρ

∗
r c∗r (ρ∗r c∗r

2−ρlc
2
l )
(

2clc
∗
r (ρlcl +ρ∗r c∗r )−

√

PPA
)

,

UUA
(3) =−4(γl +1)2(pM

I −pl)(ρ3
l c5

l +ρ∗r
3c∗r

5),

UUA
(4) =−(γl+1)3(pM

I −pl)
2(ρ∗r

2c∗r
3−ρ2

l c3
l ),

UUA
(5) =4(γl +1)2ρ2

l c3
l ρ∗r

2c∗r
3(ul +uM

I ),

UUA
(6) =4(γl +1)2(ρ4

l c6
l ul +ρ∗r

4c∗r
6uM

I ),

and

PPA =clc
∗
r

(

4(γl +1)(ρlc
2
l −ρ∗r c∗r

2)(pM
I −pl)−(γl +1)2(pM

I −pl)
2

+4(ρlcl +ρ∗r c∗r )
2clc

∗
r +4(γl +1)(ρ2

l c3
l +ρ∗r

2c∗r
3)(uM

I −ul)
)

.

In order that the expressions (4.11a) and (4.11b) are meaningful, PPA must not be
negative. Substituting uM

I −ul from (4.7a) into PPA we obtain

PPA =
c∗r

2

ρ2
l c2

l

[

(γl+1)ρ∗r c∗r (pl−pM
I )+2ρlc

2
l (ρlcl +ρ∗r c∗r )

]2
+O

(

pM
I +Bl

pl

−1

)3

, (4.12)
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which indicates PPA is positive and then the expressions of uMA
I and pMA

I are meaningful.
Next, we shall show the error estimates (4.9) are correct. Substituting (4.12) into (4.11)

and after some manipulations, we find if

(γl +1)ρ∗r c∗r (pl−pM
I )+2ρlc

2
l (ρlcl +ρ∗r c∗r )≥0, (4.13)

then (4.11a) and (4.11b) can be simplified as

uMA
I =uM

I +O
(

pM
I +Bl

pl

−1

)3

+O
(

pMA
I +Bl

pl

−1

)3

, (4.14a)

pMA
I = pM

I +O
(

pM
I +Bl

pl

−1

)3

+O
(

pMA
I +Bl

pl

−1

)3

. (4.14b)

Using (4.8a) and (4.8b) we have

uMA
I =ue

I +O
(

pe
I +Bl

pl

−1

)3

+O
(

pMA
I +Bl

pl

−1

)3

, (4.15a)

pMA
I = pe

I +O
(

pe
I +Bl

pl

−1

)3

+O
(

pMA
I +Bl

pl

−1

)3

. (4.15b)

(4.15b) implies that

O[(pe
I +Bl)/pl−1]3 =O[(pMA

I +Bl)/pl−1]3.

This directly leads to the satisfaction of error estimates (4.9), if (4.13) is held.
Then, we shall find out the condition for the establishment of (4.13). Set

f (pl)=(γl +1)ρ∗r c∗r (pl−pM
I )+2ρlc

2
l (ρlcl +ρ∗r c∗r ).

According to pl−pM
I =pl−(pM

I +Bl) and the sound speed relationship (c2
l =γl pl/ρl , c∗r

2=
γl(pM

I +Bl)/ρ∗r ), we obtain

f (pl)=
γl

clc∗r

(

2γlc
∗
r p2

l +(3γl +1)cl(pM
I +Bl)pl−(γl+1)cl(pM

I +Bl)
2
)

.

It is easily found that there are two solutions to f (pl)=0 and the positive one is

p+
l =

pM
I +Bl

4γlc∗r

[

√

(3γl +1)2c2
l +8γl(γl+1)clc∗r −(3γl +1)cl

]

. (4.16)

Applying basic inequality (
√

ab< (a+b)/2, if a,b>0 and a 6=b) gives

p+
l <

γl +1

3γl +1
(pM

I +Bl), (4.17)
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which means if the condition

pl ≥
γl +1

3γl +1
(pM

I +Bl) or pM
I +Bl ≤

3γl +1

γl +1
pl (4.18)

is satisfied, the value of f (pl) will be positive. (4.18) implies that pM
I < 2pl +Bl as γl > 1

physically. This makes (4.13) always true because for a rarefaction wave we have pe
I < pl

and pM
I is a “third-order” approximation to pe

I . Consequently, the error estimates (4.9)
are held.

In a similar way, assuming that in the right medium there is a rarefaction wave, we
can show the error estimates (4.10) are held for the GFM Riemann problem (4.2) when
the MGFM is employed to treat the interface for the Riemann problem (2.1). Overall,
whichever nonlinear wave is generated, the error estimates (4.9)-(4.10) are true.

It should be pointed out that the error estimate is not expressed in the classical form of
O(∆x)d because the solution to Riemann problem (2.1) can be discontinuous in the vicin-
ity of the interface. If the interface is in balance (that is the pressure and normal velocity
are continuous across the interface), we have pl = pe

I +O(∆x) and the error expression
returns to the classical form of O(∆x)d and then the “order of accuracy” assumes the
classical meaning.

It should be further noted that the error estimates in Theorem 4.1 are optimal, because
as far as rarefaction is concerned, the solutions uM

I and pM
I to ARPS (4.6) approximate the

exact interfacial velocity and pressure to “third-order accuracy”, but they cannot achieve
further higher-order accuracy. This can be shown by comparison of (3.5) and (3.6) and
in combination with (4.7)-(4.8). Therefore, we cannot get further higher-order error esti-
mates similar to (4.9)-(4.10) in Theorem 4.1.

To validate the above accuracy analysis of the MGFM with ARPS (4.6), we construct
and solve a set of helium-air Riemann problems. The right initial states are fixed by
ρr =1.0, ur =0.0, pr =100.0. The left density and velocity are also fixed by ρl =1.0, ul =0.0.
We adjust the left pressure pl to make pe

I /pr−1 halved repeatedly. Once pe
I is given,

the left pressure pl can be determined. Such a design is to testify conclusions (4.10) in
Theorem 4.1. The nonlinear Riemann wave in the right side can be a rarefaction wave or
a shock wave with the proper adjustment of pe

I although its initial state is fixed. Tables 2
and 3 show the order of accuracy when the Riemann wave generated in the right medium
is a rarefaction wave and a shock wave, respectively. The results show that the error
estimates (4.10) are indeed valid from the numerical viewpoint. Similar method can be
applied to testify the error estimates (4.9) in Theorem 4.1.

5 Discussions on the prediction of the interfacial status

To better understand the “third-order accuracy” of the MGFM with ARPS (4.6), we shall
provide some discussions on the prediction of the interfacial status. The implicit ARPS
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Table 2: The order of accuracy for the case of a rarefaction wave generated.

pe
I/pr−1 |uMB

I −ue
I | order |pMB

I −pe
I | order

-0.5 2.4791E-03 – 1.6196E-02 –
-0.25 1.2284E-04 4.33 1.1359E-03 3.83

-0.125 8.4280E-06 3.87 8.8936E-05 3.67
-0.0625 7.2827E-07 3.53 8.1532E-06 3.45

-0.03125 7.3394E-08 3.31 8.4509E-07 3.27
-0.015625 8.1467E-09 3.17 9.5101E-08 3.15

-0.0078125 9.5634E-10 3.09 1.1240E-08 3.08
-0.00390625 1.1574E-10 3.05 1.3648E-09 3.04

Table 3: The order of accuracy for the case of a shock wave generated.

pe
I/pr−1 |uMB

I −ue
I | order |pMB

I −pe
I | order

0.5 4.6441E-04 – 7.7267E-03 –
0.25 6.4156E-05 2.86 9.1744E-04 3.07

0.125 6.4536E-06 3.31 8.4431E-05 3.44
0.0625 5.2600E-07 3.62 6.5549E-06 3.69
0.03125 3.7897E-08 3.79 4.6038E-07 3.83

0.015625 2.5557E-09 3.89 3.0644E-08 3.91
0.0078125 1.6693E-10 3.94 1.9890E-09 3.95

0.00390625 1.0768E-11 3.95 1.2800E-10 3.96

will be compared with an explicit approach of also “third-order accuracy” and the appli-
cability of these two methods will be analyzed in theory. In addition, several numerical
examples will be given to further illustrate the advantage of ARPS (4.6) by comparing
with an explicit approach of “second-order accuracy”.

5.1 The “natural” approach versus the implicit ARPS

Someone would “naturally” consider utilizing uINT and pINT in Lemma 3.1 as the pre-
dicted interfacial status and then as the ghost fluid status, in that they also approximate
the respective exact interfacial velocity ue

I and pressure pe
I to “third-order accuracy” the-

oretically, independent of the solution type. Furthermore, in this approach, it seems that
the procedure for finding uINT and pINT is much easier to be implemented, for the solution
can be directly derived from (3.11), while it appears more complex to find uM

I and pM
I

if ARPS (4.6) is used, for the solution needs to be solved by iterative method. We call
the former the “natural” approach. Numerical applications also affirm that the “natural”
approach indeed provides the same accurate results as the ARPS does, if the “natural”
approach is workable. Below is a gas-gas Riemann problem that the “natural” approach
works. The initial conditions for this case are

{

x<0.5 : (γl,ρl,ul,pl)=(5/3,2.0,0.0,3.0),
x>0.5 : (γr,ρr,ur,pr)=(1.4,1.0,0.0,1.0).

(5.1)
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Figure 3: Comparison of the “natural” approach with the implicit ARPS for predicting the interfacial status.
(a) Density profile. (b) Velocity profile.

The computations are done using second-order HLL scheme with CFL=0.9 and 301 uni-
form mesh points in domain [0, 1]. Figs. 3(a) and 3(b) are the density and velocity profiles
obtained after 150 time steps of computation. Results between the two methods look
very similar, as was expected. Unfortunately, the existence conditions (in the physical
meaning) of the solution via the “natural” approach are too strict to be satisfied usually
in practice. As a matter of convenience, we also take the gas-gas Riemann problem as
an example to illustrate the limitation of the “natural” approach in the following parts.
Similar strategy can be employed in any multi-fluid Riemann problem.

In order to ensure the existence of the solution (3.11), PP must be positive or zero. Be-
cause the sound speed can be expressed as c=

√

γp/ρ for the gas-gas Riemann problem,
PP can be expressed as

PP=2(3γl +1)(3γr +1)pl prclcr +4γ2
l p2

l c2
r +4γ2

r p2
r c2

l −(5γl +1)(γr+1)p2
l clcr

−(5γr +1)(γl +1)p2
r clcr +4(γr +1)γ2

l p2
l cr(ur−ul)+4(γl +1)γ2

r p2
r cl(ur−ul). (5.2)

Note that 4γ2
l p2

l c2
r +4γ2

r p2
r c2

l ≥8γlγr pl prclcr. Moreover, we have

4(γr+1)γ2
l p2

l cr(ur−ul)+4(γl +1)γ2
r p2

r cl(ur−ul)

≥8γlγr pl pr(ur−ul)
√

(γl +1)(γr +1)clcr

for the situation where ur−ul ≥0. By simple analysis we get

ur−ul√
clcr

≥max

[

0,
(5γl +1)(γr +1) pl

pr
+(5γr+1)(γl +1) pr

pl
−2(13γlγr+3γl +3γr+1)

8γlγr

√

(γl +1)(γr+1)

]

(5.3)
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Figure 4: Regions of inequality (5.3) are shown by shaded area. (a) The left gas is helium (γl =5/3) and the
right gas is air (γr =1.4). (b) Both the velocities are identical (ul =ur).

as a sufficient condition of PP≥0. Fig. 4 illustrates the regions (dark zone) of inequality
(5.3) under two specific conditions. In Fig. 4(a) the values of γl and γr are fixed. For
example, the left and right gases are helium and air respectively. The abscissa indicates
the initial pressure ratio and the ordinate indicates (ur−ul)/

√
clcr. Clearly, the initial

pressure ratio should be “appropriate”—not too large or too small, unless the value of
(ur−ul)/

√
clcr is huge. In fact, condition (5.3) physically only includes weak shock wave

or weak rarefaction wave cases and some strong doubled rarefaction waves cases. For
further illustration of the limitation of the “natural” approach, we consider another sim-
ple problem where ur =ul, and then (5.3) reduces to

γr+1

5γr +1
≤ pr

pl
≤ 5γl +1

γl+1
. (5.4)

This means the application range of the “natural” approach is limited to pr/pl ∈ (1/5,5)
due to γ > 1 physically. See Fig. 4(b) where γl and γr are the same for simplicity. This
also can be regarded as a simple shock tube problem. The abscissa indicates the ratio
of specific heat and the ordinate indicates the initial pressure ratio. Any fixed value of
abscissa results in a feasible range for the initial pressure ratio pr/pl and with the in-
crease of abscissa the range does not change too much. This indicates that the “natural”
approach when ur =ul is only applicable for weak shock wave or weak rarefaction wave
whatever kinds of gases are chosen. As for another situation, ur−ul < 0, because the
terms 4(γr +1)γ2

l p2
l cr(ur−ul) and 4(γl +1)γ2

r p2
r cl(ur−ul) in (5.2) are both negative, the

application range of the “natural” approach is even more restricted. Even a slightly larger
value of ul−ur will result in the failure of this approach. Various numerical experiments
can also demonstrate our analysis. For the initial data (5.1), if all the conditions remain
unaltered except that pl = 3.0 is replaced by pl = 4.0, or ul = 0.0 is replaced by ul = 0.3,
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the “natural” approach does not work. In summary, the application conditions of this
approach is very limited.

Another point that should be noted is that pINT must always be positive. This requires

ur−ul <
(5γl +1)cl

4γ2
l

+
(5γr +1)cr

4γ2
r

(5.5)

according to the expression of pressure in Lemma 3.1 for the “natural” approach. Any
initial states Ul and Ur, which satisfy the condition (5.5), also satisfy the pressure physical
positivity condition [23]

ur−ul <
2cl

γl−1
+

2cr

γr−1
, (5.6)

so vacuum will not be created. Nevertheless, there may be such a situation of

(5γl +1)cl

4γ2
l

+
(5γr +1)cr

4γ2
r

≤ur−ul <
2cl

γl−1
+

2cr

γr−1
. (5.7)

For this case, spurious vacuum will take place and then the “natural” approach is also
inapplicable.

As far as ARPS (4.6) is concerned, we need to keep the terms 1+(γk+1)[(pM
I +Bk)/pk−

1]/(2γk) (k = l,r) and the pressure solution pM
I greater than zero. A note of caution is in

order: if pM
I remains positive, the terms mentioned above will definitely be greater than

zero. Similar way for a positive solution for pressure pM
I gives the following condition

ur−ul <
cl

γl

√

2γl

γl−1
+

cr

γr

√

2γr

γr−1
. (5.8)

Likewise, there is a possibility that the initial states Ul and Ur might satisfy

cl

γl

√

2γl

γl−1
+

cr

γr

√

2γr

γr−1
≤ur−ul <

2cl

γl−1
+

2cr

γr−1
, (5.9)

which will actually lead to the presence of two extremely strong rarefaction waves (close
to the vacuum). Only for that case ARPS (4.6) cannot give the ideal result. However,
the range of spurious vacuum condition (5.9) is much narrower than that of (5.7), which
means the ARPS has a wider range of application than the “natural” approach, even un-
der such extreme conditions. To avoid spurious vacuum, a doubled rarefaction Riemann
solver is usually employed instead in the situation consisting of two strong rarefaction
waves.

In conclusion, the solutions uM
I and pM

I to (4.6) are always meaningful except for
the presence of extremely strong doubled rarefaction, unlike the solutions uINT and pINT

via the “natural” approach, which are generally not applicable for slightly stronger shock
wave cases and strong doubled rarefaction waves cases. Although uINT and pINT in Lemma
3.1 also approximate the respective exact interfacial velocity ue

I and pressure pe
I to “third-

order accuracy”, yet this approach is practically less useful.
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5.2 A “second-order” method versus the implicit ARPS

According to (3.7) and (3.8) we can also obtain a “second-order” approximation of inter-
facial pressure and velocity, which is expressed as















ul−uINT =
1

ρlcl
(pINT−pl),

uINT−ur =
1

ρrcr
(pINT−pr),

or















uINT =
ρlclul +ρrcrur +pl−pr

ρlcl +ρrcr
,

pINT =
ρlclρrcr(ul−ur)+ρrcr pl +ρlcl pr

ρlcl +ρrcr
.

(5.10)

The “second-order” method can also be utilized for predicting interfacial status. It is
worth noting that this method has a wider range of application than the “natural” ap-
proach. The only restriction is the pressure solution pINT should be positive. This requires

ur−ul <
pl

ρlcl
+

pr

ρrcr
. (5.11)

In the following parts, some gas-water Riemann problems will be presented to test for
both the “second-order” method and the implicit ARPS. All the computations are done
using second-order HLL scheme with CFL=0.9 and 301 uniform mesh points in domain
[0,1]. All the parameters are made non-dimensional and all the numerical results are
obtained after 100 time steps of computation. We shall find that ARPS (4.6) can provide
relatively excellent numerical results for all the cases below. As for the “second-order”
method, it may produce some inaccurate solutions (Case 1-3), or even may not work
(Case 4).

Case 1: The initial conditions are

{

x<0.5 : (γl,ρl,ul,pl)=(1.4,0.6,−100.0,10000.0),
x>0.5 : (γr,ρr,ur,pr)=(7.15,1.0,0.0,1.0).

(5.12)

This is a gas-water problem where a left rarefaction wave and a right shock wave are
generated in respective media. Figs. 5(a), 5(b) and 5(c) are the density, velocity and pres-
sure profiles obtained by the implicit ARPS and the explicit “second-order” method. For
the explicit “second-order” method, there is distinctly visible overshoot found on the left
side of the interface in the density profile. In addition, as observed at the tail of the left
rarefaction, the result by this method has a minor hump in the velocity profile and a mi-
nor trough in the pressure profile. However, for the implicit ARPS, all the nonphysical
phenomena disappear, and the location of the right shock front is predicted a little more
accurately than the explicit “second-order” method.

Case 2: The initial conditions are

{

x<0.5 : (γl,ρl ,ul,pl)=(1.4,0.1,50.0,100.0),
x>0.5 : (γr,ρr,ur,pr)=(7.15,1.038,20.0,1000.0).

(5.13)
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Figure 5: Comparison of the “second-order”
method with the implicit ARPS for Case 1. (a)
Density profile. (b) Velocity profile. (c) Pressure
profile.

This is a gas-water problem where a left shock wave and a right rarefaction wave are
generated in respective media. Figs. 6(a), 6(b) and 6(c) are the density, velocity and pres-
sure profiles obtained by the implicit ARPS and the explicit “second-order” method. If
the explicit “second-order” method is used, a large trough appears near the tail of the
rarefaction in the pressure profile, while the implicit ARPS provides a reasonably correct
result in comparison.

Case 3: The initial conditions are
{

x<0.5 : (γl,ρl ,ul,pl)=(1.4,0.1,200.0,500.0),
x>0.5 : (γr,ρr,ur,pr)=(7.15,1.0,0.0,1.0).

(5.14)

This is a gas-water problem where a left shock wave and a right shock wave are gener-
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Figure 6: Comparison of the “second-order”
method with the implicit ARPS for Case 2. (a)
Density profile. (b) Velocity profile. (c) Pressure
profile.

ated in respective media. Figs. 7(a), 7(b) and 7(c) are the density, velocity and pressure
profiles obtained by the implicit ARPS and the explicit “second-order” method. For the
“second-order” method, the locations of both the interface and the left shock front are
captured accurately, but there is a little discrepancy at the location of the right shock
front. Comparatively speaking, the results by the implicit ARPS concur well with the
exact solution.

Case 4: The initial conditions are
{

x<0.5 : (γl,ρl ,ul,pl)=(1.4,0.2,−100.0,1000.0),
x>0.5 : (γr,ρr,ur,pr)=(7.15,1.202,0.0,9000.0).

(5.15)

This is a gas-water problem where a left rarefaction wave and a right rarefaction wave
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Figure 7: Comparison of the “second-order”
method with the implicit ARPS for Case 3. (a)
Density profile. (b) Velocity profile. (c) Pressure
profile.

are generated in respective media. The initial conditions violate condition (5.11), so the
explicit “second-order” method is not suited to this case. Nevertheless, we can still use
the implicit ARPS to predict the interfacial states because the initial conditions do not vi-
olate condition (5.8). Figs. 8(a), 8(b) and 8(c) show that the density, velocity and pressure
obtained by the implicit ARPS agree well with the theoretical results.

6 Conclusions

In this paper, a further analysis has been carried out rigorously for the MGFM when ap-
plied to any multi-fluid Riemann problem constituted with a stiffened gas EOS. Using
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Figure 8: The implicit ARPS for Case 4. (a)
Density profile. (b) Velocity profile. (c) Pressure
profile.

the properties of the MGFM and the ARPS in the process of estimating the errors associ-
ated in determination of the interfacial status, we found that for any multi-fluid Riemann
problem, the interfacial status captured by the MGFM can approximate the exact solu-
tion to “third-order accuracy”, regardless of the solution type. Furthermore, through the
discussion on choice of the predicted interfacial status, we recommended employing the
implicit ARPS based on a doubled shock structure, which is suited to almost any ini-
tial conditions. In contrast, the “natural” approach of “third-order accuracy” is severely
restricted and less useful, and another “second-order” method is not so accurate as the
implicit ARPS. Of course, the current analytical skill is generally effective for fluid with
stiffened gas EOS. The error estimation of the MGFM with a more general EOS will be
studied and analyzed in the future work with a more advanced analytical skill.
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