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Abstract. In this paper, we investigate the stability for a finite harmonic lattice under
a certain class of boundary conditions. A rigorous eigenvalue study clarifies that the
invalidity of Fourier modes as the basis results in the deficiency of standard reflection
coefficient approach for stability analysis. In a certain parameter range, unstable sur-
face modes exist in the form of exponential decay in space, and exponential growth
in time. An approximate eigen-polynomial is proposed to ease the stability analysis.
Moreover, the eigenvalues with small positive real part quantitatively explain the long
time instability in wave propagation computations. Numerical results verify the anal-
ysis.

PACS: 43.20.+g, 83.10.Rs, 63.20.D-
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1 Introduction

Interfaces/surfaces are of fundamental importance in materials science and engineering.
Substantial understanding of the physics has been obtained through studies on wave
propagations across an interface/surface. Generally speaking, the two materials across
an interface/surface yield different dispersion relations. Continuity of the wave function
requires a certain combination of waves with different propagation directions. Wave fea-
tures are then usually characterized by the reflection and transmission coefficients. In
the mean time, interfaces/surfaces also play an important role in numerical computa-
tions. For instance, in a multi-scale computation that couples atomistic dynamics and
continuum deformation, atomistic fluctuations need to be damped out through suitable
boundary conditions. As it is virtually impossible to cleanly transmit all fluctuations,
the reflected part enters back and cause spurious wave interactions inside the atomistic
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domain. Hence a key ingredient for a multi-scale algorithm is the design of interfacial
conditions for reflection reduction. In the literature, numerical absorption treatments
have been proposed, including a perfect matched layer, or a time history kernel convolu-
tion, or a velocity interfacial condition, etc [1,5,20,23–25]. Most of these methods adopt a
sinusoidal Fourier mode viewpoint, and are validated or analyzed through the resulted
reflection coefficients. A dynamic atomistic-continuum algorithm is even designed by
minimizing the reflection coefficient within a certain range of wave-numbers [6]. In ad-
dition, for continuous wave propagation in an unbounded domain, one assigns a finite
computing domain. Numerical boundary conditions are then also analyzed and opti-
mized through the reflection coefficient approach [3, 7, 10, 12, 13, 17, 27]. We remark that
rigorous analysis had also been performed for continuous wave equations by Kreiss and
others [8, 14], and for discrete schemes by Halpern, Li, and others [9, 15].

In this paper, we study carefully the validity of the reflection coefficient approach for
wave propagation applications. As is known for a long time, the Fourier modes do not
completely or accurately describe the wave features for finite lattice chains. We quanti-
tatively demonstrate, with a velocity interfacial condition, that this invalidity results in
the deficiency of the reflection coefficient approach and incorrect stability results. We
observe unstable surface modes in a parameter range where the reflection coefficient ap-
proach claims to be stable. An approximate eigen-polynomial is proposed, which has
a much lower order than the full problem. This may greatly ease a rigorous stability
analysis. The eigen modes are classified into unstable surface modes, absorption modes,
and vibration/propagation modes. Our results reveal the complexity of wave propaga-
tions in multiple media, and urges for substantiating numerical analysis for multi-scale
computations. We remark that the finite size effects may lead to possible discoveries for
micro-/nano-materials, similar to those for electronic states in a finite crystal [22].

The rest of the paper is arranged as follows. We describe the governing equations
and the reflection coefficient approach for a finite chain in Section 2. Then a full eigen-
problem study is performed in Section 3. Numerical tests are also presented. In Section
4, we discuss long time instability, which is a subtle issue in numerical simulations and
quantitatively explained by the current eigen-problem results. We make some concluding
remarks in Section 5.

2 Reflection coefficient

We consider a harmonic lattice consisting (N+2) atoms. The n-th atom deviates from its
equilibrium by a displacement un(t), and a velocity vn(t) = u̇n(t). We impose the same
type of boundary conditions at both ends. The governing system is as follows.

u̇0 =αu0+βu1, (2.1a)

u̇n =vn, n=1,··· ,N, (2.1b)

v̇n =un−1−2un+un+1, n=1,··· ,N, (2.1c)
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u̇N+1 =αuN+1+βuN . (2.1d)

Here α and β are constants. In a reflection coefficient approach, one actually considers
a semi-infinite chain instead, e.g., n = 0,1,2,··· . A monochromatic wave is decomposed
into a transmission component and a reflection component.

un(t)= ei(ωt−kn)+Rei(ωt+kn). (2.2)

From the Newton equations of the inner atoms, the frequency ω and the wave number
0≤ k≤π are related by the dispersion relation ω = 2sin(k/2). Substituting this into the
boundary condition, we obtain the reflection coefficient

R(k)=− (α+βcosk)+i(βsink−2sin(k/2))

(α+βcosk)+i(βsink+2sin(k/2))
. (2.3)

From this expression, it is obvious that |R|< 1 for β > 0, and |R|> 1 for β < 0. For a
finite chain, it is widely conceived that |R|<1 indicates energy decay and hence stability.
A possible interpretation is as follows. When a localized one-way wave package reaches
at the boundary, each Fourier mode is partially transmitted. Because |R|< 1, the reflec-
tion part has a smaller amplitude than the incident wave, and alternates the propagation
direction. By virtue of the Parseval’s relation, the whole reflection wave package has a
smaller energy. The energy repeatedly decreases when the wave package reaches at ei-
ther end. By a similar argument, instability is expected if |R(k)|>1 for a certain range of
k.

This interpretation assumes the Fourier mode decomposition. Later we shall com-
pute the eigen-modes, which turn out to be not the Fourier modes for the finite chain
with generic boundary conditions. In particular, because instability emerges in the form
of non-Fourier modes, the reflection coefficient approach may not be suitable for the sta-
bility analysis.

In solid state physics, an infinite periodic lattice is usually assumed. Though it is
known for long time that a real finite lattice does not possess the Fourier eigen modes,
the deviation is not precisely identified, and is believed to be negligible for a lattice
big enough. On the other hand, for a multiscale computation, the finite lattice consid-
ered here corresponds to the atomistic subdomain, where fine scale calculations are per-
formed. A surrounding infinite periodic lattice is assumed to be at equilibrium initially. If
an exact/transparent interfacial condition is posed, e.g., in the time history convolution
form, the Fourier modes still serve as the basis provided that the atomistic subdomain
has the same lattice structure. However, this does not hold when either a non-exact in-
terfacial condition is adopted due to time cut-off or discretization error, or the atomistic
subdomain has a different lattice structure. For such cases, the eigen modes are not in the
form of Fourier modes in the atomistic subdomain, even if they are so in the surrounding
lattice. Moreover, the atomistic subdomain together with the interfacial condition forms
a closed system. With the bridging scale technique, for instance, this closed system de-
scribes the fluctuation part of the motion in the atomistic subdomain. For both theoretical
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and numerical error analysis of interfacial conditions, one actually considers the reflec-
tion of the atomistic subdomain. Therefore, a substantial understanding of the dynamic
system (2.1a)-(2.1d) is crucial for both the physics and the multiscale computations.

3 Eigenvalue study for finite chain

We perform a complete eigenvalue study to substantiate the understanding on wave
properties of the finite chain.

3.1 Eigenvalue problem

Since the governing system is linear, we may find the eigenvalues and eigenvectors for
the coefficient matrix on the right hand side. The motion of the lattice is then explicitly
expressed as a superposition of these eigen-modes.

In addition to the standard matrix approach, an eigen-mode may also be obtained as
a solution in the form of un(t)= ũneλt and vn(t)=λũneλt. The time-independent variables
{ũn} solve

λũ0 =αũ0+βũ1, (3.1a)

λ2ũn = ũn−1−2ũn+ũn+1, n=1,··· ,N, (3.1b)

λũN+1 =αũN+1+βũN . (3.1c)

From (3.1b), we have a general expression for {ũn} as follows:

ũn = Aqn
++Bqn

−. (3.2)

Here
q±=[λ2+2±λ

√

λ2+4]/2 6=0

are the two roots to
q2−(λ2+2)q+1=0. (3.3)

Substituting this into (3.1a) and (3.1c), we find that the coefficients A and B satisfy

[

λ−α−βq+ λ−α−βq−
(λ−α)qN+1

+ −βqN
+ (λ−α)qN+1

− −βqN
−

][

A
B

]

=0. (3.4)

Nontrivial solutions A and B exist only when the coefficient matrix is singular. Due
to q−q+ =1, the condition amounts to

−qN+1
−

{

[(λ−α)q+−β]qN
++[λ−α−βq+]

}{

[(λ−α)q+−β]qN
+−[λ−α−βq+]

}

=0. (3.5)

The eigenvalues are therefore roots to the eigen-polynomials

V±
N (λ)=qN

+ [(λ−α)q+−β]±[λ−α−βq+ ]=0. (3.6)
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In particular, for an eigenvalue λ that is a root to V+
N (λ), it holds that λ−α = β(qN

+ +

q+)/(qN+1
+ +1). We take

A=(λ−α−βq−)
qN+1
+ +1

β(qN+1
+ −qN−1

+ )
, B=[−(λ−α)+βq+ ]

qN+1
+ +1

β(qN+1
+ −qN−1

+ )
. (3.7)

After some algebra, we compute the eigenvector as

ũn =q−n+1
+ +qn−N

+ , n=0,··· ,N+1. (3.8)

Because ũN+1−n = ũn, the eigenvector is symmetric.
Next, we check the eigenvalues and eigenvectors in more details. Let q=ρeiθ . We may

rewrite equation (3.3) as

λ=±(q1/2−q−1/2)=±
[

(
√

ρ− 1√
ρ
)cos

θ

2
+i(

√
ρ+

1√
ρ
)sin

θ

2

]

. (3.9)

Therefore, for an eigenvalue λ with |Reλ| not small, the corresponding |q+| is away from
1 by an amount not small. There are two consequences for such an eigenvalue. First,
the components of the corresponding eigenvector are negligible for n not close to 0 or
(N+1), compared with the components

ũ0 = ũN+1 =q++q−N
+ .

In addition, the components for n close to 0 or (N+1) decay on the order of q−n+1
+ or

qn−N
+ . The eigen-mode is therefore a kind of surface mode, decaying exponentially in

space away from the surface. Secondly, because either |qN
+ |≫ 1 or |qN

+ |≪ 1 in (3.6) for a
chain long enough, the eigenvalue approximately solves either

(λ−α)q+−β=0, (3.10)

or
(λ−α)−βq+ =0. (3.11)

In both cases, λ is approximately a root to the cubic polynomial

βλ3−(1+αβ)λ2+2(α+β)λ−(α+β)2 =0, (3.12)

subject to the constraint
|λ−α|< |β|. (3.13)

This serves as a simplified eigen-polynomial for stability analysis. Compared with (3.6),
it has a much lower order.

Similarly, for an eigenvalue λ that is a root to V−
N (λ), it holds that λ−α = β(qN

+−
q+)/(qN+1

+ −1). The eigenvector is found to be

ũn =q−n+1
+ −qn−N

+ , n=0,··· ,N+1. (3.14)

It is antisymmetric with respect to the space, namely, ũN+1−n =−ũn. When |Reλ| is not
small, an eigen-mode is a surface mode, and λ approximately solves (3.12). Moreover,
after some algebraic calculations, we find that the only situation for V+

N (λ) and V−
N (λ) to

possess a common root is λ=0 under the condition α+β=0.
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3.2 Unstable surface modes

In this subsection, we seek for a positive eigenvalue λ. Noticing that when λ≥0, we have
q+≥λ2+1. Hence as λ→+∞, it holds that

V±
N (λ)∼ (λ−α)qN+1

+ →+∞.

On the other hand, we observe that q+ = 1 at λ = 0. It gives V+
N (0) = −2(α+β), and

V−
N (0)=0. We further compute

dq+

dλ (0)=1, and

dV−
N (0)

dλ
=

{

qN+1
+ −1+[(λ−α)(N+1)qN

+−βNqN−1
+ +β]

dq+

dλ

}

λ=0

=−[(α+β)N+(α−β)]. (3.15)

Similarly, we compute for λ=α.

V+
N (α)=−βq+(qN−1

+ +1), V−
N (α)=−βq+(qN−1

+ −1). (3.16)

By the intermediate value theorem, we find that a positive eigenvalue λ+ exists for
V+

N (λ+) = 0 if α+β > 0. The eigenvalue λ+ > α if both α and β are positive. There also
exists another positive eigenvalue λ−>0 for V−

N (λ−)=0, if α+(N−1)β/(N+1)>0. The
eigenvalue λ−>α if both α and β are positive.

For a positive eigenvalue λ, the corresponding q+(λ)≥ λ2+1. As discussed in the
previous section, it is a root to (3.12). In particular, the difference between λ− and λ+

is negligible when N is big. Furthermore, the corresponding eigen-modes are surface
modes. We remark that the surface mode is purely a standing wave without propagation,
which grows exponentially in time [2, 4, 18, 21].

We further remark that when α+β=0, the total energy

E(t)=
1

2

N

∑
n=1

vn(t)2+
1

2

N

∑
n=0

(un+1(t)−un(t))2

decreases if α<0, increases if α>0, and conserves if α=0. The last case corresponds to a
fixed boundary.

3.3 Numerical tests

We illustrate the previous analysis by numerical tests. In particular, we take α=−1,β=2.
The modulus of the reflection coefficient is depicted in Fig. 1. It is less than 1 except at
k=0 and π.

For a relatively short lattice with N = 20, the 42 eigenvalues are displayed in Fig. 2.
There are three types of eigenvalues. First, there are a pair of positive real eigenvalues,
giving rise to the unstable surface modes. Even in such a short chain, they are very
close. The second type includes two pairs of eigenvalues with real parts about -0.438.
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Figure 1: Reflection coefficient for α=−1,β=2: the horizontal axis denotes the wave number k, and the vertical
axis denotes the reflection coefficient |R|.
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Figure 2: Eigenvalues for α=−1,β=2,N =20 in the complex plane. The last three subplots are zoom-in view

of the 3 pairs of eigenvalues. ‘+’: roots to V+
N (λ); ’o’: roots to V−

N (λ).
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Figure 3: Eigenvalues for α=−1,β=2 in the complex plane: top N =40, bottom N =80.

The corresponding eigen-modes are effectively absorbed. We refer to these modes as the
absorption modes. The subplots show the details for these eigenvalues. The above three
pairs of eigenvalues are approximately the roots to (3.12). The third type, located near
the imaginary axis, includes all other eigenvalues. Their real parts are between −0.06398
and −0.00037. The corresponding eigen-modes are stable, and are damped out very
slowly. They are referred as vibration/propagation modes. Checking the symmetry for
eigenvectors, we may detect whether an eigenvalue is a root to V+

N (λ) or V−
N (λ).

For a longer chain, the first two types of eigenvalues remain unchanged, whereas the
third type of eigenvalues get closer to the imaginary axis. See Fig. 3. For instance, the
real parts of these eigenvalues are between −0.0301 and −4.716×10−5 for N = 40; and
between −0.0146 and −5.914×10−6 for N = 80. More detailed numerical computations
show that the minimal real part goes on the order of O(N−1).

Some eigen-modes are displayed in Fig. 4 for a chain with 42 atoms. The two unsta-
ble surface modes are shown in the first two subplots. They are real. The exponential
decay away from the surface is evident. In contrast, the absorption modes in the next
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Figure 4: Eigen-modes for a chain with N = 40: ‘*’ represents the real part, and ‘o’ represents the imaginary
part. Subplots from top to bottom: eigen-mode for eigenvalue 0.376086 of V+

N (λ); eigen-mode for eigen-

value 0.376086 of V−
N (λ); eigen-mode for eigenvalue −0.43804+1.06658i of V+

N (λ); eigen-mode for eigenvalue

−0.43804+1.06658i of V−
N (λ); eigen-mode for eigenvalue −0.43804−1.06658i of V+

N (λ); eigen-mode for eigen-

value −0.43804−1.06658i of V−
N (λ).
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four subplots are complex, and oscillations present near the boundaries. As in both the
unstable modes and the absorption modes the inner atoms are essentially motionless,
the instability and absorption are observable only around the boundary. Moreover, the
third and fifth subplots are complex conjugates. So for the fourth and sixth subplots. The
numerical results verify the previous analysis.

Comparing with the stability condition β > 0 from the reflection coefficient analysis,
we observe that instability actually occurs when α+β > 0. The reflection coefficient ap-
proach gives irrelevant stability statement for the finite chain. This is due to the fact that
the Fourier modes in the form of ũn =eikn do not comply with the surface modes. Instead
of sinusoidal forms, the surface modes have exponential decay profiles. The absorption
modes do not have sinusoidal profiles either. Because the basis or general solution to the
governing system (2.1a)-(2.1d) differs from the Fourier modes, the reflection coefficient
approach naturally does not yield a correct stability result. Though the invalidity of the
Fourier modes has been known for a long time, our analysis quantitatively clarify this
point and its consequences.

4 Long time instability

We consider a special case when 0<α+β≡δ≪1. In addition, we assume that δ=o(1/N).
We expect a very small positive eigenvalue λ corresponding to V+

N (λ) = 0. Taking a
leading order approximation λ=aδ+o(δ), we easily find that q+ =1+aδ+o(δ), and qN

+ =
1+Naδ+o(δ). Using repeatedly δ=α+β, we compute

V+
N =[(aδ−α)(1+aδ)−β](1+Naδ)+[(aδ−α)−β(1+aδ)]+o(δ)

=2(a−1)δ+o(δ).

To make VN
+ (λ)= 0, we conclude that a = 1. That is, λ = δ on the leading order. The

positive eigenvalues for some small δ = α+β are listed in Table 1 (all computed with
N =40). We observe that the dependence on the particular choice of α and β gets weaker
as δ decreases. For the last three rows, we have δN = 0.04, and the maximal positive
eigenvalues are very close to δ=0.001.

We remark that α+β=0 is equivalent to the long-wave limit property for a boundary
condition in the form of (2.1a) or (2.1d). A minor violation of this condition may lead to a
very small yet non-zero eigenvalue. In real applications, particularly when a more com-
plex boundary condition is adopted, the long-wave limit property may likely be slightly
violated. If the violation leads to a positive eigenvalue, the long-time instability occurs.
This has been observed by some practitioners for absorbing boundary condition compu-
tations. Because of the smallness of the eigenvalue, the unstable mode usually reaches an
observable magnitude only after a long run, typically long after the main wave package
reaches at the boundary and gets well absorbed. Furthermore, if δ is negative instead,
the instability does not occur. As the boundary condition with |δ|≪1 is viewed as a per-
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Table 1: Maximal positive eigenvalue.

α+β α β maxλ+

0.1 -1 1.1 0.0540
0.1 -0.9 1 0.0410
0.1 0 0.1 0.0909

0.01 -1 1.01 0.0085
0.01 -0.99 1 0.0086
0.01 0 0.01 0.0095

0.001 -1 1.001 0.00098
0.001 -0.999 1 0.00098
0.001 0 0.001 0.00095

turbation from δ=0, instability presents only for a positive δ. The complexity makes the
long time instability a hidden problem for most calculations.

In the multiscale computation community, the instability is usually regarded as the
numerical error accumulation. As a matter of fact, for δ<0, numerical error also accumu-
lates, yet it does not lead to indefinite growth of the total energy. Instead, the total energy
is eventually damped out to the level of round-off error. By comparing with the case of
δ > 0, we show that this weak instability for the boundary condition better explains the
phenomenon.

The long time instability occurs not only for the velocity boundary conditions. For
instance, with a verlet algorithm to solve the Newton equations at a time step size ∆t =
1/64, a dynamic atomistic-continuum method takes the following boundary condition
[6]:

uk+1
0 =ηuk

0−0.074207uk
1−0.014903uk

2−0.95406uk−1
0

+0.074904uk−1
1 +0.015621uk−1

2 , (4.1)

uk+1
N+1 =ηuk

N+1−0.074207uk
N −0.014903uk

N−1−0.95406uk−1
N+1

+0.074904uk−1
N +0.015621uk−1

N−1. (4.2)

Here uk
n=un(k∆t), and the coefficient η is suggested as 1.95264 in [6]. With this choice,

it may be shown that the energy decays monotonically. However, if we take η =1.95265
instead, a slow exponential growth appears after a long run. In Fig. 5, we display the cal-
culation for a 401-atom-chain with initial data shown in the second subplot. The waves
are effectively absorbed at around t =200 when they arrive at both ends. See the fourth
subplot at t = 300. The unstable mode becomes evident at time around t = 700. In the
last subplot for t=800, the displacement profile is exactly the unstable eigen-mode. This
unstable mode keeps growing later on, and dominates the lattice motion. The growth
can be observed clearly from the energy in the first subplot. We remark that the latter
choice of η violates the long wave limit property R(0)=0. In the original design for the
atomistic-continuum method, R(0) = 0 is taken as a constraint for the reflection mini-
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Figure 5: Long time instability in a dynamic atomistic-continuum calculation with a perturbed boundary con-
dition. Subplots from top to bottom: evolution of the total energy (horizonal axis for time); displacements at
t=0, t=200, t=300, and t=800.
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mization problem. With the numerical example, we demonstrate the importance of this
constraint.

5 Conclusion

In this study, we check the validity of the reflection coefficient approach, which has been
widely adopted in the community of theoretical and computational physics. Through
careful explorations on a finite chain under a class of velocity boundary conditions, we
have revealed the deficiency of this approach. The cause for the deficiency lies in the
known fact that the Fourier modes are not the eigen-modes in general. We discover
that unstable surface modes exist with non-sinusoidal profiles, in a parameter range
where the reflection coefficient approach claims to be stable. Furthermore, we studied the
boundary condition which slightly violates the long-wave-limit property. A very small
yet positive eigenvalue may appear, leading to the long time instability, which have been
observed by some practitioners.

We would like to remark that this study mainly focuses on the unstable modes. Nu-
merical tests indicate that we do have stability away from the parameter region where the
unstable surface modes exist. Furthermore, the existence of such modes may be searched
from a low order polynomial, which greatly reduces the complexity of stability analysis.
The method we proposed may be extended to more general lattices.

The deficiency of the reflection coefficient approach requires revisits of the wave prop-
agations in physical sciences, as well as numerical algorithms. This may be particularly
critical at micro- or nano-scale. Absorbing boundary conditions for wave propagation
computations in an unbounded domain, or multi-scale computations with absorbing
boundary conditions are two important topics where the fidelity of the reflection coef-
ficient analysis needs better clarified. Moreover, it would be our future work to extend
the analysis to the stability in multiple dimensions, on which many important contribu-
tions have been made by Li et al [16], Liu’s group [11,19,26] and many other researchers.
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A Semi-infinite chain

To better understand the deficiency of the reflection coefficient approach, we consider a
semi-infinite chain



156 S. Tang and M. Fang / Commun. Comput. Phys., 8 (2010), pp. 143-158

u̇0 =αu0+βu1, (A.1a)

u̇n =vn, n=1,··· ,N,··· , (A.1b)

v̇n =un−1−2un+un+1, n=1,··· ,N,··· . (A.1c)

By a similar argument we find that un(t)= ũneλt with ũn = Aqn
++Bqn

−. The boundary
condition reads

λũ0 =αũ0+βũ1. (A.2)

To find the unstable modes, we seek for a real eigenvalue λ. Corresponding to such
an eigenvalue, we know from q+>1 that A=0 for a motion with a finite total energy. The
boundary condition then gives

λ=α+βq− . (A.3)

This algebraic equation is equivalent to (3.10). It has a positive root λ for either α≤
1,β >−α; or α > 1,−α > β >−(α+2

√
α2+3)/3[2α2 +3−2α

√
α2+3]. The neutral stability

curve is depicted in Fig. 6. The eigen-mode has an exact form of un(t) = qn
−eλt, which

exponentially decays in depth, and exponentially grows in time. Again, the reflection
coefficient approach can not account for the instability of the surface modes.

−10 −5 0 5 10
−10

−5

0

5

10

Figure 6: Neutral stability curve for a semi-infinite chain in (α,β) plane. Unstable surface modes exist for
parameter above the curve.

B Stability analysis for general boundary conditions

We consider a class of more general boundary conditions.

u̇0 =αu0+
J

∑
j=1

β juj, (B.1a)

u̇N+1 =αuN+1+
J

∑
j=1

β juN+1−j. (B.1b)
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The reflection coefficient is

R(k)=−

(

α+
J

∑
j=1

β j cos jk
)

+i
( J

∑
j=1

β j sin jk−2sin(k/2)
)

(

α+
J

∑
j=1

β j cos jk
)

−i
(

J

∑
j=1

β j sin jk+2sin(k/2)
)

. (B.2)

We have |R|<1 under the condition

J

∑
j=1

β j sin jk>0.

With the previous q±(λ), we may find that an eigenvalue is a root to

W±
N (λ)=

[

(λ−α)qN+1
+ −

J

∑
j=1

β jq
N+1−j
+

]

±
[

λ−α−
J

∑
j=1

β jq
j
+

]

=0. (B.3)

As λ→+∞, we have W±
N (λ)→+∞. At λ=0, we find that

W+
N (0)=−2

(

α+
J

∑
j=1

β j

)

, W−
N (0)=0,

and
dW−

N (0)

dλ
=−

[

α(N+1)−
J

∑
j=1

β j(N+1−2j)
]

.

At λ=α, we have

W±
N (α)=−

J

∑
j=1

β j(q
N+1−j
+ ±q

j
+).

Therefore, a positive eigenvalue λ+ exists for W+
N (λ+)=0 if α+∑

J
j=1 β j>0. The eigenvalue

λ+ >α if both

α>0 and
J

∑
j=1

β j(q
N+1−j
+ +q

j
+)>0.

There also exists another positive eigenvalue λ−>0 for W−
N (λ−)=0, if

α−
J

∑
j=1

β j(N+1−2j)

N+1
>0.

The eigenvalue λ−>α if both

α>0 and
J

∑
j=1

β j(q
N+1−j
+ −q

j
+)>0.
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The eigenvector corresponding to an eigenvalue that is a root to W+
N (λ+) is symmet-

ric. Up to a factor, it is

ũn =
J

∑
j=1

β j

(

q
N+1−n+j
+ −q

N+1−n−j
+ +q

n+j
+ −q

n−j
+

)

.

The eigenvector corresponding to W−
N (λ−) is antisymmetric. It may be taken as

ũn =
J

∑
j=1

β j

(

q
N+1−n+j
+ −q

N+1−n−j
+ −q

n+j
+ +q

n−j
+

)

.
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