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Abstract. A multiple-image method is proposed to approximate the reaction-field po-
tential of a source charge inside a finite length cylinder due to the electric polarization
of the surrounding membrane and bulk water. When applied to a hybrid ion-channel
model, this method allows a fast and accurate treatment of the electrostatic interac-
tions of protein with membrane and solvent. To treat the channel/membrane inter-
face boundary conditions of the electric potential, an optimization approach is used
to derive image charges by fitting the reaction-field potential expressed in terms of
cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy
the boundary conditions at the planar membrane interfaces. In the end, we convert
the electrostatic interaction problem in a complex inhomogeneous system of ion chan-
nel/membrane/water into one in a homogeneous free space embedded with discrete
charges (the source charge and image charges). The accuracy of this method is then
validated numerically in calculating the solvation self-energy of a point charge.

AMS subject classifications: 31B05, 92C05, 65Z05
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1 Introduction

Biological ion channels, which play a central role in controlling the appropriate electro-
static properties across the cell membrane [10, 14], are of interest in many areas of re-

∗Corresponding author. Email addresses: xuzl@sjtu.edu.cn (Z. Xu), wcai@uncc.edu (W. Cai), chengx@

ornl.gov (X. Cheng)

http://www.global-sci.com/ 1056 c©2011 Global-Science Press



Z. Xu, W. Cai and X. Cheng / Commun. Comput. Phys., 9 (2011), pp. 1056-1070 1057

search such as neuroscience, cell biology, and biomedical science. To study the structural
and functional properties of ion channels by dynamics simulations at the atomic scale, it
is important to develop fast and accurate computational models [20, 30, 33] for treating
long-ranged electrostatic interactions, in particular, to reflect the influence of the solvent
and membrane.

Models employing explicit lipid and solvent molecules are impractical in many cases
for large simulation systems. Implicit continuum methods (the Poisson-Boltzmann the-
ory) provide a reasonable approximation of the electrostatic polarization effect of sol-
vent on the structures and interactions of biomolecules in solution. For instance, the
approaches [17, 19, 32, 34] based on the generalized Born theory are widely adopted in
practical simulations. Hybrid explicit/implicit solvent models [28, 38] have attracted
great attention for molecular simulations in aqueous solutions, which seek to take ad-
vantage of both the accuracy of explicit all-atom approaches [7, 9, 26] and the reduced
cost of implicit ones [11, 15, 25, 35]. Typically, the hybrid models truncate the target sys-
tem by a fixed volume which includes the solute and some explicit solvent molecules,
and treat the outside solvent as a continuum medium. The benefits of such a treatment
are several-fold. The primary benefit over explicit methods is the greatly reduced system
size with only a small number of explicit solvent molecules to be simulated. Second, the
artificial periodicity associated with most of explicit methods is avoided. Further, as the
number of explicit waters is flexible, the dielectric boundary can be selected as of a reg-
ular shape, and thus analytical-based algorithms [3, 4, 36, 39] can be developed to speed
up the calculations.

Membrane

Bulk water

Explicit pore

εi

εw

εm

Bulk water

Figure 1: Schematic illustration of an ion-channel model. The molecules inside the cylindrical pore are treated
explicitly at the atomic scale, while outside the pore the membrane and water are treated as homogeneous
media, characterized by dielectric constants εm and εw, respectively.

In the presence of a membrane, such as in the simulation of a protein ion channel
embedded in a membrane lipid bilayer, however, it is challenging to develop analytical-
based algorithms for the hybrid model due to the dielectric inhomogeneity of the medium.
As schematically shown in Fig. 1, a hybrid ion-channel model uses a cylindrical cavity as
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the explicit region, which includes the protein, ions, waters, and a portion of membrane.
Outside the cavity, the membrane and bulk water are separated by two parallel planes,
and characterized by dielectric permittivities εm and εw, respectively. The exact solution
of this model is very difficult, and a fast and accurate approximation has to be developed.
It is with this purpose in mind, we will present in this paper an image charge method to
calculate the reaction field for a point charge within a finite length cylindrical cavity. Our
novel technique converts the potential problem in an inhomogeneous system to that in
a homogeneous system with a cluster of point charges, which in turn can be handled
by techniques such as Fast Multipole Methods (FMMs) [5, 13, 24, 41] for achieving linear-
scaling computational cost.

Image methods, which represent the reaction field of a point charge due to the sur-
rounding medium by some image charges, have been widely studied in the potential
theory for various shapes of dielectric or conducting materials [23,31]. In molecular sim-
ulations, the single image methods of Friedman [12], and Abagyan and Totrov [1] are of-
ten employed with spherical cavities. More accurate methods include the multiple image
methods [4, 8, 21, 39], developed recently by representing the exact line image [22, 27, 42]
by discrete charges using numerical quadratures. However, the analytical derivation for
image approximation in a cylinder remains an open problem. In this paper, multiple
images for the case of a finite cylindrical cavity are constructed by solving an optimiza-
tion problem. Specifically, the charge strengths and locations of the images are obtained
by minimizing the error of the reaction-field potentials between the exact solution and
the image-based representation. This approach is an extension of the least-square image
charge method for a three-layer sphere model [29], though it is more complex for the
cylinder case as the locations of image charges are unknown, and thus the optimization
problem becomes nonlinear.

The organization of this paper is as follows. For an infinite cylinder, the exact series
solution in terms of cylindrical harmonics was recently derived [6]. We start with an
overview of this solution in Section 2. In Section 3, we develop a method to approximate
the exact solution by image point charges, and then extend it to solve the hybrid ion-
channel model. In Section 4, numerical tests are performed to show the accuracy of image
charge approximations. In Section 5, concluding remarks are made.

2 Cylindrical harmonic expansion

Let us first consider a point charge, q, located at position rs inside an infinite cylinder of
radius a, surrounded by a continuum dielectric. The cylindrical surface Γ separates the
space into two regions Ωi and Ωm, characterized by dielectric permittivities εi and εm,
respectively. The electrostatic potential Φ for the system satisfies the Poisson equation,
which can be written in the cylindrical coordinate system r=(ρ,ϕ,z) as:

∂2Φ

∂ρ2
+

1

ρ

∂Φ

∂ρ
+

1

ρ2

∂2Φ

∂ϕ2
+

∂2Φ

∂z2
=−

4πq

εi
δ(r−rs), (2.1)
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and boundary conditions at the interface Γ from the continuities of the potential and the
normal component of the dielectric displacement:

Φi =Φm, and εi
∂Φi

∂ρ
= εm

∂Φm

∂ρ
, for ρ= a. (2.2)

The potential Φi inside the cylinder can be rewritten as a sum of a Coulombic contribution
Φcoul(r) = q/εi|r−rs| and a reaction potential Φrf which is a harmonic function. The
Coulombic potential can be expanded in terms of cylindrical harmonics [18], for ρ>ρs,

Φcoul(r)=
∫ ∞

0
dkcosk(z−zs)

∞

∑
m=0

(4−2δm0)q

πεi
Im(kρs)Km(kρ)cosm(ϕ−ϕs), (2.3)

where δm0 is the Kronecker delta function, Im and Km are the modified Bessel functions
of the first and second kind [2]. Also, because the reaction potential Φrf and the potential
in region Ωm, Φm, satisfy a Laplace equation, their solutions can be written as series of
cylindrical harmonics,

Φrf(r)=
∫ ∞

0
dkcosk(z−zs)

∞

∑
m=0

Am(k)Im(kρ)cosm(ϕ−ϕs), (2.4a)

Φm(r)=
∫ ∞

0
dkcosk(z−zs)

∞

∑
m=0

Bm(k)Km(kρ)cosm(ϕ−ϕs), (2.4b)

respectively, where Am(k) and Bm(k) are unknowns to be determined by the boundary
conditions. By using the orthogonality of the cylindrical harmonics, the boundary condi-
tions (2.2) lead us to a linear system of two equations for each order m,

cm Im(kρs)Km(ka)+Am(k)Im(ka)= Bm(k)Km(ka), (2.5a)

cm Im(kρs)K′
m(ka)+Am(k)I ′m(ka)=

1

ε
Bm(k)K′

m(ka), (2.5b)

where ε=εi/εm and cm=(4−2δm0)q/πεi are constants. Solving these linear systems yields

Am(k)=
(ε−1)cm Im(kρs)Km(ka)K′

m(ka)

Im(ka)K′
m(ka)−εKm(ka)I ′m(ka)

, (2.6a)

Bm(k)= εcm Im(kρs)
I ′m(ka)Km(ka)− Im(ka)K′

m(ka)

Im(ka)K′
m(ka)−εKm(ka)I ′m(ka)

, (2.6b)

and the corresponding reaction field inside the cylinder reads [6]

Φrf(r)=
∫ ∞

0
dkcosk(z−zs)

∞

∑
m=0

cosm(ϕ−ϕs)
(ε−1)cm Im(kρs)Km(ka)K′

m(ka)

Im(ka)K′
m(ka)−εKm(ka)I ′m(ka)

Im(kρ). (2.7)
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3 Image charge methods

3.1 Multiple-image representation for the infinite cylinder

The image charge method is a promising way to speed up the calculation of electrostatic
interactions in dielectric or conducting objects, in comparison with directly truncating
the exact series solution. For spherical geometries, numerical evidence [4] illustrated that
the pairwise sum of the image method is dozens of times faster than the direct series
expansion method for the same level of accuracy. The exact solution for the cylindrical
geometry is even more expensive because Eq. (2.7) includes not only an infinite series, but
also an infinite domain integral. The so-called image charge method is to find some image
point charges outside the cylinder such that their electrostatic contributions approximate
the exact reaction field Φrf(r),

Φ
img
rf (r)=

q

εi

M

∑
m=1

fm

|r−xm |
, for r∈Ωi, (3.1)

where unknown fm and xm are the strength and location of the m-th image charge. Once
we obtain these unknowns for each source charge located at rs, the potential can be cal-
culated by a pairwise sum of Coulombic interactions, which becomes feasible to take
advantage of fast techniques [21], such as FMMs [5, 13, 41].

We compute the locations and charge strengths by minimizing the following sum of
the squares of the errors of the approximate reaction field using the images

E2 =min
N

∑
n=1

[

Φ
img
rf (rn)−Φrf(rn)

]2
, (3.2)

where rn is the location of the n-th monitoring point. The minimization problem is non-
linear and most optimization algorithms can only find a local minimum, and thus it is
necessary to give suitable initial values for iterations (the results with fewer monitoring
points are used to estimate the initial data). Naturally, we can search the minimum on the
plane z=zs as the reaction potential has only one extremum along the z-axis, and thus the
m-th image location can be defined by xm = (ρm,ϕs+ϕm,zs). Each image is represented
by three unknowns, fm, ρm and ϕm, which depend only on the radius, ρs, of the source
charge.

A program based on Mathematica 7 is developed to calculate the locations and
strengths of images for a given set of dielectric parameters, in which the ”FindMinimum”
subroutine [37] is used to solve the minimization problem. In order to show the feasibility
and the performance of the code, we consider the case of εi=1 and εm=2. Here εi=1 repre-
sents a vacuum phase inside the cylinder, which is usually used as the dielectric constant
of the explicit region. A relative small εm is selected to represent the dielectric constant
of the membrane, such that the model can be used to study ion channels in the future.
In all the calculations, we take N = 640 monitoring points uniformly distributed in four
circular disks inside the cylinder. To show the results, we take M=4, and due to the sym-
metry of the reaction field, the four charges can be denoted as ( fm, ρm, ϕm)=( f1, ρ1, ±ϕ1)
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Figure 2: Relative L2 errors (3.4) of the approximate reaction field of the infinite cylinder with four image charges
as a function of p=ρs/a. The diamonds represent the minimization results and the solid lines are results with
the fifth order polynomial fittings.

and ( f2, ρ2, ±ϕ2). So we have 6 unknowns for the minimization problem. It should be
noted that the strengths, and azimuths of the images only depend on the ratio, p=ρs/a,
and the radial coordinates of the images are linear functions of a. The six minimized un-
knowns are further fitted by fifth order polynomials of variable p. These polynomials are
expressed in the matrix form as

















f1

ρ1/a
ϕ1

f2

ρ2/a
ϕ2

















=

















0.1312 −0.1977 0.1109 −0.0051 −0.0779 −0.1513
−0.2686 0.3460 −0.1735 −0.1624 −0.2040 1.4747
0.3395 −0.7958 0.5599 −0.2468 −0.6227 0.7850
−0.2220 0.3788 −0.2358 0.0762 0.0742 −0.1512
3.1136 −5.5166 3.5964 −1.1565 0.2990 1.4730
−0.7020 1.5219 −1.0178 0.3509 −0.6686 2.3567

































p5

p4

p3

p2

p
1

















. (3.3)

Fig. 2 illustrates the relative L2 errors

Erel =

√

√

√

√

N

∑
n=1

[

Φ
img
rf (rn)−Φrf(rn)

]2/ N

∑
n=1

Φrf(rn)2, (3.4)

of both the original minimized data and the fitted data. The error curve shows that the
polynomial fitting is in agreement with the minimized data. Overall, the relative errors
to the cylindrical expansion solution are less than 2%, demonstrating the high accuracy
of the multiple-image method using only 4 images. It is also evident that the method of
images is less accurate for a source at the cylindrical axis than near the interface, while
the opposite is observed for the image method in a sphere [4]. This difference can be ex-
plained as follows. When the source is at the center of the cylinder, the image can be con-
sidered as a plane integral where the integrand is symmetric in ϕ, and thus many points
are required to accurately discretize this integral. However, as the source approaches
the surface, the surface can be approximated as a wall for which only one image will
represent the reaction field exactly.
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It should be stressed that, the fitted polynomials are independent of the cylindrical
radius, and therefore they can be readily used for any other cylindrical geometry. But
they do depend on the dielectric ratio εm/εi. For each ratio, new polynomials have to be
regenerated. The Mathematica program is available (upon request) for generating such
polynomials.

3.2 Multiple images for the ion-channel model

For the infinite cylinder, we have represented the reaction field (due to the source charge
at rs) by four image charges,

Φ
img
rf (r)=

q

εi

M

∑
m=1

fm

|r−xm |
, (3.5)

where M=4 and xm =(ρm,ϕs+ϕm,zs), and ρm and ϕm are functions of p=ρs/a, given by
Eq. (3.3).

We extend this result to solve the ion-channel model illustrated in Fig. 1. In this
model, the explicit region, composed of embedded biomolecules, some water molecules,
ions, and a portion of membrane, is a finite cylinder surrounded on the side by the rest of
membrane. Beyond the cylindrical cavity and membrane is the bulk water. These three
regions are characterized by dielectric constants εi, εm, and εw, respectively.

Suppose the two infinite boundaries of the bulk water are the parallel planes z = 0
and z = b with b being their distance, and the origin is located on the bottom plane. We
assume the medium between the two planes is homogeneous with dielectric εi, namely,
we assume that εm = εi. Then for a source charge q at rs = (xs,ys,zs) with 0 < zs < b, the
reaction potential due to the two boundary planes can be described by a sum of infinite
images [40]:

Φ
planes
rf (r)=

q

εi

∞

∑
l=−∞

(1−δl0)γ|l|

|r−x(l)|
, for 0< z<b, (3.6)

where

x(l) =
(

xs,ys,(−1)l
(

zs−
b

2

)

+
(

l+
1

2

)

b
)

, and γ=
εi−εw

εi+εw
.

Outside the two planes, a simple calculation with the boundary conditions (2.2) gives the
electric potential,

Φ
planes
w (r)=



















2q

εi+εw

∞

∑
l=0

γl

|r−x(l+1)|
, for z≤0,

2q

εi+εw

∞

∑
l=0

γ−l

|r−x(−l−1)|
, for z≥b,

(3.7)

which is an infinite sum of images in the opposite half space.
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In practice, the infinite summation needs to be truncated at a finite term l = L, so an
estimate of the truncation error of Eq. (3.6) is necessary. We consider the self energy of a
point q inside the domain between the two planes, V(rs)=qΦrf(rs)/2, then the error can
be expressed as

EL(rs)=
q2

2εi

∞

∑
l=L+1

γl

|(−1)l(zs−
b
2)+(l+ 1

2)b−zs|
+

γl

|(−1)l(zs−
b
2)−(l− 1

2)b−zs|
. (3.8)

Thus, when L=2N, the error can be rewritten as

E2N(rs)=
q2

2εi

∞

∑
n=N

γ2n+1
[ 1

(2n+2)b−2zs
+

1

2nb+2zs
+

2γ

(2n+2)b

]

.

Clearly, each term in the above sum is negative for zs ∈ [0,b], and the maximum error is
reached at two ends zs =0 and b, given by

max
zs∈[0,b]

|E2N(rs)|=−
q2

2εi

∞

∑
n=N

γ2n+1 2(1+γ)n+1

n(2n+2)b
. (3.9)

Similarly, we have

E2N+1(rs)=
q2

2εi

∞

∑
n=N

γ2n+2
[ γ

(2n+4)b−2zs
+

γ

(2n+2)b+2zs
+

2

(2n+2)b

]

,

in which, each term is positive. The maximum error is obtained at zs =b/2, which yields

max
zs∈[0,b]

|E2N+1(rs)|=
q2

2εi

∞

∑
n=N

γ2n+2 2(1+γ)n+(3+2γ)

(n+1)(2n+3)b
. (3.10)

As γ≈−1, the convergence rate of the infinite series is on order 1/N2.
Now, we can obtain the image representation of the ion-channel model by combining

the cylindrical images (3.5) and the planar images (3.6). Suppose the origin is the inter-
section between the bottom plane and the cylindrical axis. Obviously, the source charge
and the M image charges are bounded by the two membrane boundaries. For conve-
nience, denote the position of the source by rs = x0 = (ρ0,ϕs+ϕ0,zs) and let f0 = 1. The
total reaction field due to the source charge inside the cylinder can be expressed by

Φrf(r)≈
q

εi

∞

∑
l=−∞

M

∑
m=0

(1−δl0δm0)γ|l| fm

|r−x
(l)
m |

, (3.11)

where
x

(l)
m =

(

ρm,ϕs+ϕm,(−1)l
(

zm−b/2
)

+
(

l+1/2
)

b
)

.

The major assumption of using Eq. (3.6) to construct images of the ion-channel model is
the homogeneity of the medium between the two planes by disregarding the dielectric
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difference between the membrane and the interior of the cylinder, which is reasonable
because both εi and εm are very small in comparison to the water dielectric, εw, roughly,
the error is bounded by |εi−εm|/εw. As the boundary condition on the cylindrical surface
remains correct when using the formula (3.11), the inhomogeneity only introduces an
error in satisfying the planar boundary condition. However, the region of interest is the
explicit pore, and we use εi as the dielectric of the region between the two planes. It
turns out that the formula (3.11) represents a reaction potential which precisely matches
the boundary conditions on the surface of the explicit pore-the region of interest. The
mathematical error analysis would be a difficult issue, therefore we will demonstrate the
error performance by numerical experiments.

4 Numerical results

The image solution (3.11) for the ion-channel model is tested by calculating the self en-
ergy V(rs)=qΦrf(rs)/2 of a unit point charge located within a finite cylinder. The cylinder
is of radius 4Å, and height 12Å. In the calculations, we set the source charge at (x,0,z)
where x takes two values, 0 and 2Å, and z varies from 2 to 10Å. To compare the results, the
Poisson-Boltzmann equation is numerically solved by a 3D finite difference (FD) method
in [16] with grid size h=0.5Å.

The infinite sum in Eq. (3.11) is truncated at l ≤ L =±15, say, the images with z
(l)
m <

180Å are all included, and therefore, it is accurate enough to approximate the infinite
sum. Figs. 3(a) and (b) give the comparative results between the image-based and finite
difference self energies for the case of εm =2. It can be seen from Fig. 3(b) that the relative
errors are all less than 1.1%. As is known, Eq. (3.6) is only an approximation by assuming
the region between two planes is homogeneous. The main reason for this high accuracy is
because the membrane permittivity is close to 1 of the explicit region in comparison to the
water dielectric constant, and the boundary conditions on the two ends of the cylinder
are precisely satisfied. To see the accuracy of the formula (3.11) for higher membrane
dielectrics, the image-based and FD solutions are also calculated for εm =4 for which the
fitted polynomials of image parameters are given in Appendix A. The self-energy results
and the relative errors are again plotted in Figs. 3(c) and (d). It is seen that the maximum
error is 2.3% relative to the FD solution. This result is not surprising as the dielectric
ratio of membrane and water is doubled, the error is expected to increase. In order to
investigate the error performance of the self energy near the boundary, Fig. 4 plots the
results for the charges located at 1 Å distance to the bottom plane. The average error
is below 1%, while for charges close to the radial boundary the error increases to 1.5%,
which shows the method of images is accurate for charges close to the planar boundary.

One natural concern with fast calculation of the reaction field is the correct truncation
terms l ≤ L for the infinite sum of Eq. (3.11), for which we expect to take the smallest L
for a desired accuracy. In Fig. 5, we have calculated the maximum relative errors of the
sampling points by comparing with the FD solutions, where the source charge is on the
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Figure 3: Self energy of a unit charge located at (x,0,z) within the ion channel. The membrane dielectric takes
(a)(b) εm =2, and (c)(d) εm =4.
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Figure 4: Self energy of a unit charge located at (x,0,1) near the interface between the cylinder and water for
x varying from -3.5 to 3.5 Å. The membrane dielectric takes εm =2.

cylindrical axis (0,0,z) for z varying from 2 to 10Å. The membrane dielectrics take two
values εm =2 and 4. The results indicate that when εm =2 the error rapidly converges to
a level of 1% in comparison to the reference solution if using an odd L, while the error
when using even number of terms remains about 0.7% larger than the odd case with the
increase of L. This differential converging behavior does not agree with the error analysis
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Figure 6: Two limiting cases. (a) εw = ∞, where the result with εw =80 is also plotted; (b) the finite cylinder
immersed in the bulk solvent, say, εm = εw =80.

shown in Eqs. (3.8) and (3.10). However, noticing that the reference solutions are also
numerically obtained, and it could be an error cancelation between the finite difference
solver and the method of images for odd L. As E2N+1(rs) and E2N(rs) are opposite in
sign, the error cancelation for odd images implies an error accumulation for even ones.
This saw-like error phenomenon also appears in the case of εm = 4, whereas, the errors
keep about 2.3% because of the higher dielectric ratio between membrane and water.

For the purpose of comparison, we also perform the calculations for the following
two limiting cases: i) the conductor limit of the water dielectric (ǫw →∞) with the mem-
brane dielectric εm =2, for which the infinite images for planes are exact; and ii) the finite
cylinder immersed in the bulk water (both the membrane and water dielectrics are set
to 80). The position of the source charge varies along the cylindrical axis. Fig. 6 dis-
plays the results of these two cases. We see the image result agrees well with the finite
difference result for a large εw, which is theoretically exact in the conductor limit. As is
shown, due to the high dielectric property of the solvent, the conductor limit is a good
approximation to the reaction potential. For the second case with a large εm, the image
approximation breaks down with the maximum error being 1.73 kcal/mol (4.77% in rela-
tive error), which highlights the proper treatment of membrane environment is essential
in the ion-channel model.
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5 Concluding remarks

In conclusion, we have developed a multiple-image method to approximate the reaction
field due to a point charge in a hybrid ion-channel model, which uses a cylindrical cavity
of a finite height as the explicit region and everything outside as a continuum character-
ized by two dielectric constants. The main challenge for simulation of an ion channel is
that the simulation system is made up of not only protein itself, but also the lipid bilayer,
water and ions, and thus computer resources are usually limited to treat such an inho-
mogeneous system. The implicit approaches based on the Poisson-Boltzmann theory can
treat this system more efficiently, but are still very slow for dynamics simulations. The
image charge approximation can successfully treat an inhomogeneous system by repre-
senting the polarization effects with multiple image charges, leading to a homogeneous
system with the source charges and their corresponding images, thus many existing fast
algorithms can be used to accelerate the pairwise Coulombic interactions.

Many issues remain to be addressed, such as how to take into account of ionic effects
in solution, and to assess the performance in force calculations. The incorporation of the
developed method into practical molecular simulations is currently under way.
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Appendix

A Fitting polynomials for membrane dielectric=4

For membrane dielectric εm =4, the fitting polynomials are given by
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


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B Images for force calculations

In this Appendix, we consider how to find force images. The expression based on mini-
mizing the reaction potential error could be simply used. However, more accurate image
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approximation can be derived by minimizing the force error. For a test point charge of
unit strength at field point r, its force, due to the source charge q, is expressed as

F(r)=−∇[Φcoul(r)+Φrf(r)]. (B.1)

Similar to the setting of free energy calculations, we solve the following minimization
problem by comparing the forces along the radial and axial directions,

Err
(

{ fm,xm}|
M
m=1

)

=min
N

∑
n=1

[ ∂

∂ρ
Φ

img
rf (rn)−

∂

∂ρ
Φrf(rn)

]2
+

[ ∂

∂z
Φ

img
rf (rn)−

∂

∂z
Φrf(rn)

]2
. (B.2)

Again, for the case of four images, we suppose the four charges have parameters
( fm, ρm, ϕm)=( f1, ρ1, ±ϕ1) and ( f2, ρ2, ±ϕ2), i.e., we have 6 unknowns. These polyno-
mial fitting functions read
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