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Abstract. In this paper, we investigate the effects of kinematic transports on the ne-
matic liquid crystal system numerically and theoretically. The model we used is a
”1+2” elastic continuum model simplified from the Ericksen-Leslie system. The nu-
merical experiments are carried out by using a Legendre-Galerkin spectral method
which can preserve the energy law in the discrete form. Based on this highly accurate
numerical approach we find some interesting and important relationships between
the kinematic transports and the characteristics of the flow. We make some analysis
to explain these results. Several significant scaling properties are also verified by our
simulations.
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1 Introduction

When the liquid crystals (LCs) are in nematic phase the molecules have long-range orien-
tational order and can be easily aligned by external forces. This property results in many
interesting and important phenomena, such as defects and textures. Many efforts have
been made on theories describing the behavior of nematic LCs, for example, Onsager
hard-rod model, Ericksen-Leslie (EL) theory, Maier-Saupe mean field theory, Q tensor
theory, etc. Each model developed through a theory has its own merits in studying some
aspects of nematic LCs.
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The kinematic motions of the molecules is a fundamental topic in the study of ne-
matic LCs. These motions can transform the alignment of molecules and further induce
the change of physical properties of nematic LCs. Based on a kinetic model extended
from Doi theory, Yu and Zhang studied the microstructure formation and defects dy-
namics arising in LC polymers in plane shear flow in [1]. Taken the long-range order
elasticity into account Tsuji and Rey used a Q tensor theory to make an extensive analy-
sis of the flow orientation modes of sheared liquid crystalline materials [2]. In [3] Feng
et al. simulated the roll cells and disclinations in sheared nematic polymers. All these
works were carried out with fixed tumbling parameter. Wang extended the Kuzuu and
Doi theory to get a model with different configurations of molecules [4].

In EL theory a vector field d is used to depict the alignment of the molecules. The
evolution of d expresses the kinematic motions. When the size of the molecules is small
compared with the scale of the macroscopic fluid, d is just transported by the flow tra-
jectory. When the size of the molecules are big enough, the effect of stretch by the fluid
on d must be taken into account. This difference is reflected by the kinematic transport
term of d. In the big molecule case, the parameter related to the shape of the molecules is
important. In the original EL theory this parameter is called tumbling parameter. Effect
of different tumbling parameter and Ericksen number on spatial development of director
orientation in pressure-driven channel flow was investigated by Chono et al. in [5].

Lin and Liu et al. simplified the EL system [6–9] and they used a penalty function to
relax the nonlinear constraint. Based on this simplified elastic continuum theory, many
numerical experiments have been carried out to study the kinematic behaviors of ne-
matic LCs. For small molecule cases, in [10] Liu and Walkington used a C1 finite element
to make sure that the test function is in the right space and the energy law is kept in dis-
crete form. A mixed finite element was applied in [11] to avoid the construction of the
complicated C1 element. But the mixed method introduces new variables and increase
the complication of implementation. In [12] Lin and Liu proposed a simpler C0 finite ele-
ment method to improve the efficiency of the numerical simulations. Spectral method for
the system on rectangle domains with periodic boundary conditions was studied in [13]
by Du et al.. For big molecule cases, a numerical scheme was proposed in [8] in order
to preserve the energy law. In [9] an efficient and accurate spectral method was carried
out on an axi-symmetric domain and dynamics of defect motions was studied. The nu-
merical simulations reveal the significant impact of molecule shape on the moving speed
of defects. Finite difference scheme in ”1+2” dimension case was designed in [14]. They
observed many valuable tumbling phenomena using the energy law preserving scheme.

In this paper, high order spectral method is used to simulate the ”1+2” model. This
model is similar to that in [14]. Instead of observations of tumbling phenomena therein,
we mainly focus on the effect of kinematic transports on the nematic LC system. The
kinematic transport is mainly determined by the shape of molecules and shear rate. We
want to show that even with this simple model, several flow modes can be predicted and
some significant scaling properties can be verified. Meanwhile, we want to reveal the
relationship between two important parameters and the flow behavior. Since the nonlin-
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ear constraint is relaxed by a penalty function, the spectral method which is usually used
for smooth functions is suitable for the simulations. Furthermore, we can use Galerkin
method to design a numerical scheme which satisfies the discrete energy law. The preser-
vation of discrete energy law can enhance the stability of system, especially when defects
are involved. Through the numerical results, we can find or verify some interesting and
important relationships between the kinematic transports and the characteristics of the
flow. We compare our results with those of other models. This paper is organized as
follows. We first introduce the model in Section 2. In the third section, we present the
numerical method. Numerical results and discussions are given in Section 4. Finally, we
have some conclusions and remarks.

2 Model

In this section, we introduce the elastic continuum model used in our simulations.

2.1 Governing equations

The original hydrodynamic theory of nematic LCs established by Ericksen and Leslie [15,
16] covers the conservation of mass, linear momentum and angular momentum. We start
from the following simplified model by Lin and Liu [6, 7]:

ut+(u·∇)u+∇p−µ∆u−λ∇·σ =0, (2.1a)

∇·u=0, (2.1b)

σ=(∇d)T∇d, (2.1c)

dt+(u·∇)d=γ(∆d−f(d)). (2.1d)

Here, u represents the velocity of the nematic LC fluid, p is the pressure, d is the orienta-
tion of the molecules, u,d :Ω×R

+→R
n, p :Ω×R

+→R and Ω⊂R
n, x∈Ω is the Eulerian

coordinate. µ,λ,γ are positive constants. f(d)=(4/ǫ2)(|d|2−1)d can be seen as a penalty
function to approximate the constraint |d|=1 which is due to the molecules being of sim-
ilar size. The corresponding energy density is F(d) = (1/ǫ2)(|d|2−1)2. Notice that the
transportation term of d here is D

Dt d=dt+(u·∇)d, which means that d is just transported
by the flow trajectory. This is due to the fact that the size of the molecules is small and
the directors are not affected by the stretching of the fluid.

For the big molecule case, the hydrodynamical system of nematic LCs becomes [8, 9]:

ut+(u·∇)u+∇p−µ∆u−λ∇·σ =0, (2.2a)

∇·u=0, (2.2b)

σ=(∇d)T∇d+β(∆d−f(d))dT +(β+1)d(∆d−f(d))T , (2.2c)

dt+(u·∇)d+Dβ(u)d=γ(∆d−f(d)), (2.2d)
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where
Dβ(u)= β∇u+(1+β)(∇u)T , for β∈R.

Here the kinematic transports of d are

D

Dt
d=dt+(u·∇)d+Dβ(u)d.

The extra term Dβ(u) comes from the stretching of the fluid and the parameter β depends
on the shape of the molecules [8, 9]. Notice that Dβ(u) can be rewritten as

Dβ(u)=−∇u−(∇u)T

2
−(−2β−1)

(∇u)T +∇u

2
.

The parameter −2β−1 is called the reactive parameter, or tumbling parameter in EL the-
ory [17]. For nematic LCs composed of rod-like molecules we have β <−0.5 while for
those composed of disc-like molecules β>−0.5. In [8,9] β is confined within the interval
[−1,0]. Actually β can take any real value and when |2β+1|< 1 the nematic LC is tum-
bling while when |2β+1|>1 it is flow-aligning. This is due to the fact that β also depends
on the second and fourth moments of the distribution of molecules about the nematic
director [18] and this dependence can not be predicted by EL theory itself. When the
nematic LC is flow-aligning it has steady state in a simple shear flow and there will be a
flow-aligning angle related to β. We will study all these cases in our simulations.

We want to point out that once we have the internal elastic energy

W(d)=
λ

2
‖∇d‖2

L2 +λ
∫

Ω
F(d)dx

and the kinematic transports of d, we can use the least action principle, or equivalently
the principle of virtual work to derive the induced stress term σ. The derivation with
the least action principle uses the variation with respect to domain. We refer to [19] for
the details. We can see from the expression of σ that this induced stress term depends
on the parameter β. σ and the kinematic transport of d are acting force and reacting
force between the flow and the molecules. Different kinematic transports give different
induced stresses and the dependency is reflected by β.

2.2 Boundary conditions

In order to investigate the behaviors of nematic LCs under shear flow, the boundary
condition (B.C.) of u is chosen as:

u·n=0,
∂(u·τ)

∂n
=gu ·τ, on ∂Ω, (2.3)

where n denotes the outer normal vector on the boundary and τ is the tangential com-
ponent to ∂Ω. This B.C. is used in our simulations to approximate the B.C. of the plane
Couette flow.
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Instead of strong anchoring B.C. which fixes d on the boundary, we apply the follow-
ing Robin B.C.:

∂d

∂n
=−2

δ
(d−d0), on ∂Ω, (2.4)

where δ>0. Actually under this choice of B.C., one term called anchoring energy is added
into the total energy. The parameter δ reflects the strength of the anchoring. We believe
that this is more reasonable than fixing d on the boundary.

Remark 2.1. Similar B.C.s for nematic LCs which are called free-slip B.C.s have been
studied analytically by Liu and Shen in [20]. The choice of B.C.s here has another signifi-
cance. When we use Galerkin method to approach the system, the solutions and the test
functions can be in the same space. This property of consistence makes the derivation of
energy law from weak form feasible, even when the B.C.s are nonhomogeneous.

2.3 Energy law

The system possesses the following energy law:

d

dt

(1

2
‖u‖2

L2 +
λ

2
‖∇d‖2

L2 +λ
∫

Ω
F(d)dx+

λ

δ

∫

∂Ω
|d−d0|2dS

)

=−
(

µ‖∇u‖2
L2 +

λ

γ
‖dt+(u·∇d)d+Dβ(u)d‖2

L2

)

+
∫

∂Ω
(gu ·u)dS+

∫

∂Ω
(σ1 : u⊗n)dS, (2.5)

where
σ1 = β(∆d−f(d))dT +(β+1)d(∆d−f(d))T .

The derivation is straightforward: add (2.2a) multiplied by u to (2.2d) multiplied by
λ/γ(dt+u·∇d+Dβ(u)d), and then integrate on Ω, reform the terms by integration by
parts if necessary. The energy law plays an important role in both theoretical [6, 7] and
numerical analysis, especially when the physical singularities are involved. It is worth
noticing that the nonhomogeneous B.C.s arouse some external forces acting on the sys-
tem, which may break the decay of energy.

Remark 2.2. If we replace the B.C. of u with the non-slip B.C. and replace dt+(u·∇d)d+
Dβ(u)d with −γ δW

δd , the energy law is then independent on the kinematic transports of
d. This is due to the fact that the forces between the fluid and the molecules are internal.

2.4 ”1+2” model

The so-called ”1+2” dimension model preserves many properties of the full system. We
will use this model in our simulations. Assume that

u=(0,v(z),0), p= p(z), d=(0,d2(z),d3(z)), z∈ [−1,1],
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then we have:

vt =µvzz+λτz, (2.6a)

τ = β(d2zz− f2)d3+(β+1)(d3zz− f3)d2, (2.6b)

d2t+βvzd3 =γ(d2zz− f2), (2.6c)

d3t+(β+1)vzd2 =γ(d3zz− f3). (2.6d)

Let ζ be the shear rate, then the B.C.s are taken as:

vz(−1)= ζ, vz(1)= ζ, (2.7a)

d2z(−1)=
2

δ
(d2(−1)−d0

2(−1)), d2z(1)=−2

δ
(d2(1)−d0

2(1)), (2.7b)

d3z(−1)=
2

δ
(d3(−1)−d0

3(−1)), d3z(1)=−2

δ
(d3(1)−d0

3(1)). (2.7c)

The parameters included in this system are µ,λ,γ,ǫ and β,ζ. We mainly focus on the
impact of β and ζ in this chapter.

3 Numerical method

The system (2.6a)-(2.7c) is solved by using a Legendre-Galerkin spectral method. In [14]
Zhang and Bai solved a similar system with a finite difference method preserving the
discrete energy law. As we will see in Section 4, the system with high shearing includes
many rotations in space and fast tumbling in time and thus we prefer the high order
spectral method. Fortunately, the discrete energy law can also be preserved based on
our choice of B.C.s and numerical method. The details for the realizations of general
Legendre-Galerkin spectral method can be found in [21]. We just present some key points
of our scheme here.

For the time discretization we adopt the Crank-Nicolson scheme:























































vn+1−vn

dt
−µ(vn+ 1

2 )zz−
λ

γ
(τn+ 1

2 )z =0,

dn+1
2 −dn

2

dt
+βv

n+ 1
2

z d
n+ 1

2
3 =γ

(

(d
n+ 1

2
2 )zz−g

n+ 1
2

2

)

,

dn+1
3 −dn

3

dt
+(β+1)v

n+ 1
2

z d
n+ 1

2
2 =γ

(

(d
n+ 1

2
3 )zz−g

n+ 1
2

3

)

,

τn+ 1
2 =

( dn+1
2 −dn

2

dt
+βv

n+ 1
2

z d
n+ 1

2
3

)

βd
n+ 1

2
3 +

( dn+1
3 −dn

3

dt
+(β+1)v

n+ 1
2

z d
n+ 1

2
2

)

(β+1)d
n+ 1

2
2 ,

where

vn+ 1
2 =

vn+1+vn

2
, d

n+ 1
2

2 =
dn+1

2 +dn
2

2
, d

n+ 1
2

3 =
dn+1

3 +dn
3

2
,



980 S. Zhang, C. Liu and H. Zhang / Commun. Comput. Phys., 9 (2011), pp. 974-993

and [8]

g
n+ 1

2
2 =

1

ǫ2
[(dn+1

2 )2+(dn+1
3 )2+(dn

2)2+(dn
3 )2−2](dn+1

2 +dn
2 ),

g
n+ 1

2
3 =

1

ǫ2
[(dn+1

2 )2+(dn+1
3 )2+(dn

2)2+(dn
3 )2−2](dn+1

3 +dn
3 ),

with initial data {v0,d0
2,d0

3} and B.C.s:

v
n+ 1

2
z (−1)= ζ, v

n+ 1
2

z (1)= ζ,

δd
n+ 1

2
2z (−1)=−2(d

n+ 1
2

2 (−1)+d0
2(−1)), δd

n+ 1
2

2z (1)=−2(d
n+ 1

2
2 (1)+d0

2(1)),

δd
n+ 1

2
3z (−1)=−2(d

n+ 1
2

3 (−1)+d0
3(−1)), δd

n+ 1
2

3z (1)=−2(d
n+ 1

2
3 (1)+d0

3(1)).

Notice that we have replaced γ(∆d−f(d)) with dt+(u·∇)d+Dβ(u)d in the stress term
to reduce the order of derivatives as in [8,12]. In [8,12] this replacement is used to imple-
ment a C0 finite element method. Although the high order terms are easier to deal with
by spectral method, we still do the replacement to reduce the loss of accuracy which is
caused by the high order derivatives.

Let Pn be the set of polynomials of degree not exceeding n where n∈N. The Legendre
spectral-Galerkin method is to find vn, dn

2 , dn
3∈PN(n=1,2,3,··· ,) such that for any p, q, r∈

PN,


























































































( vn+1−vn

dt
, p

)

+µ
(

v
n+ 1

2
z , pz

)

+
(λ

γ
τn+ 1

2 , pz

)

=
(

µvz p+
λ

γ
τn+ 1

2 p
)∣

∣

1

−1
,

( dn+1
2 −dn

2

dt
+β(v

n+ 1
2

z d
n+ 1

2
3 )+γg

n+ 1
2

2 ,q
)

+γ
(

d
n+ 1

2
2z ,qz

)

= ∑
z=−1,1

(

− 2γ

δ
(d

n+ 1
2

2 (z)−d0
2(z))q(z)

)

,

( dn+1
3 −dn

3

dt
+(β+1)(v

n+ 1
2

z d
n+ 1

2
2 )+γg

n+ 1
2

3 ,r
)

+γ
(

d
n+ 1

2
3z ,rz

)

= ∑
z=−1,1

(

− 2γ

δ
(d

n+ 1
2

3 (z)−d0
3(z))r(z)

)

,

τn+ 1
2 =

( dn+1
2 −dn

2

dt
+βv

n+ 1
2

z d
n+ 1

2
3

)

βd
n+ 1

2
3 +

(dn+1
3 −dn

3

dt
+(β+1)v

n+ 1
2

z d
n+ 1

2
2

)

(β+1)d
n+ 1

2
2 .

Actually we take the Legendre polynomials of degree not exceeding N to be the basis
functions of PN . This is mainly because the inner product in Legendre spectral method is
exactly the usual L2 inner product and the discrete energy law can be derived from the
weak form.

Let

En =
1

2
‖vn‖2

L2 +
λ

2
(‖dn

2z‖2
L2 +‖dn

3z‖2
L2)+λ

∫ 1

−1
F(dn

2 ,dn
3)dx

+
λ

δ

(

∑
i=2,3

(

∑
xj=−1,1

(dn
i (xj)+d0

i (xj))
2
))

,
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since vn,dn
2 ,dn

3 ,p,q,r are in the same space PN, we can take

p=vn+1+vn, q=
dn+1

2 −dn
2

dt
, r=

dn+1
3 −dn

3

dt

to find the following energy law based on the above weak form,

En+1−En

dt
=− λ

γ

(∥

∥

∥

dn+1
2 −dn

2

dt
+β(v

n+ 1
2

z d
n+ 1

2
3 )

∥

∥

∥

2

L2
+

∥

∥

∥

dn+1
3 −dn

3

dt
+(β+1)(v

n+ 1
2

z d
n+ 1

2
2 )

∥

∥

∥

2

L2

)

−µ‖v
n+ 1

2
z ‖2

L2 +
(

µvzvn+ 1
2 +

λ

γ
τn+ 1

2 vn+ 1
2

)∣

∣

∣

1

−1
,El

n+ 1
2

r .

The above system is still nonlinear. We are going to use the following fixed point iteration
method:











































































































(vs−vn

dt
, p

)

+µ
((vs+vn

2

)

z
, pz

)

+
( λ

γ
τs− 1

2 , pz

)

=
(

µvz p+
λ

γ
τs− 1

2 p
)∣

∣

∣

1

−1
,

(ds
2−dn

2

dt
+β(v

s− 1
2

z d
s− 1

2
3 )+γg

s− 1
2

2 ,q
)

+γ
(( ds

2+dn
2

2

)

z
,qz

)

= ∑
z=−1,1

(

− γ

δ

(ds
2(z)+dn

2(z)

2
−d0

2(z)
)

q(z)
)

,

(ds
3−dn

3

dt
+(β+1)(v

s− 1
2

z d
s− 1

2
2 )+γg

s− 1
2

3 ,r
)

+γ
(( ds

3+dn
3

2

)

z
,rz

)

= ∑
z=−1,1

(

− γ

δ

(ds
2(z)+dn

2(z)

2
−d0

3(z)
)

r(z)
)

,

τs− 1
2 =

( ds
2−dn

2

dt
+βv

s− 1
2

z d
s− 1

2
3

)

βd
s− 1

2
3 +

(ds
3−dn

3

dt
+(β+1)v

s− 1
2

z d
s− 1

2
2

)

(β+1)d
s− 1

2
2 ,

vs− 1
2 =

vs−1+vn

2
, d

s− 1
2

2 =
ds−1

2 +dn
2

2
, d

s− 1
2

3 =
ds−1

3 +dn
3

2
.

We take {vn,dn
2 ,dn

3} as the starting point inside one time-step and set vn+1 = vs, dn+1
2 =

ds
2, dn+1

3 =ds
3 when

‖vs−vs−1‖+‖ds
2−ds−1

2 ‖+‖ds
3−ds−1

3 ‖< tol.

The convergence of the fixed point iteration method is discussed numerically in Section
4.

Notice that all the inner products in the iteration system are integrations of polyno-
mials no more than 4N degree. They are evaluated by Legendre-Gauss-Lobatto (LGL)
quadrature. For integrations of polynomials of degree not exceeding 2N−1 the quadra-
ture with N+1 LGL points are accurate. For polynomials of degree larger than 2N−1
we need the quadrature with 2N+1 LGL nodes. Fortunately we can always calculate the
values of u(x)∈PN on the nodes of LGL quadrature with 2N+1 points. This is actually
an interpolation from the coarse grid to fine grid and the interpolation can be accurate
for polynomials.
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4 Numerical results and discussion

All the simulations are carried out with MATLAB and the results are visualized also by
MATLAB.

4.1 Parameters

We seek the solutions in the polynomial space P128, i.e., the number of the LGL nodes are
129. Tests with more nodes are also carried out and the results are almost the same. We
just give the results with 129 nodes. dt is chosen to be 1×10−4. In all of our simulations
this choice of dt can make sure the fixed point iteration method work. The main param-
eters in the system are β,ζ,γ,λ,µ,δ and ǫ. We mainly focus on the impact of β and ζ and
thus unless otherwise specified the other parameters are set to be: γ = 1,λ = 1,µ = 1,ǫ =
3×10−2,δ = 5×10−5. We want to point out that ǫ is usually set to be about twice of the
mesh size. Finally we set the tolerance of the fixed point iteration to be 1×10−12.

4.2 Tests of numerical scheme

We give a benchmark example first and illustrate how we express our results. Take ζ =
40,β=−0.6 and the initial values to be

v0(z)= ζz, d0
2(z)=−1, d0

3(z)=0, z∈ [−1,1].

The numerical result is depicted in Fig. 1.

The system goes to steady state finally. We can see the alignment of the molecules in
steady state in Fig. 1.

From the energy plotting we can see that the energy does not decay at the beginning.
This is due to nonhomogeneous B.C.s, or in other words, the action of external forces on

Figure 1: Top-left: Evolution of the d. Gray colors represent d2, i.e., the cosine value of the director angle.
Top-right: Total energy plotting with respect to time. Lower-left: The initial molecule alignment along z-axis.
Lower-right: The molecule alignment at t=4 when the solution is almost at steady state.
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Figure 2: Plotting of kinetic energy E1, elastic energy E2 and E3, surface energy E4.

the system. Let E=E1+E2+E3+E4, where

E1 =
1

2
‖v‖2

L2 , E2 =
λ

2
(‖d2z‖2

L2 +‖d3z‖2
L2),

E3 =λ
∫ 1

−1
F(d2,d3)dx, E4 =

λ

δ

(

∑
i=2,3

(

∑
xj=−1,1

(di(xj)−d0
i (xj))

2
)

)

.

The changes of these parts of total energy are depicted in Fig. 2. It can be seen from the
plottings that the main competition is between E1 and E2 in this example.

The scheme we use satisfies the discrete energy law. Set

Eln+ 1
2 =

∣

∣

∣

∣

En+1−En

dt
−El

n+ 1
2

r

∣

∣

∣

∣

.

We check the discrete energy law in this example and depict Eln+1/2 in Fig. 3. It can be
seen that Eln+1/2<1.2×10−7 all the time. This error arises from other factors, e.g., round-
ing error, other than numerical scheme. The discrete energy law insures the stability of
time revolution.

Now we turn to the convergence of the fixed point iteration. At the beginning of the
simulation it takes about 21 steps to converge inside one time-step. Denote the number of
steps inside the first time step as In. The dependence of In on β is depicted in Fig. 4. The
relationship between In and β given by linear fitness (polyfit) in MATLAB on −0.1≤β≤0
is

In ≈
16.608

0.019824−2ln(β+1)
.

Figure 3: Discrete energy law.
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Figure 4: Dependence of In on β.

Figure 5: Dependence of In on µ.

We also consider the dependence of In on the shear rate ζ when we fix β=−0.3. The
tests reveal that In increases with increased ζ but does not exceed 50 when ζ <3000.

The dependence of In on µ when β =−0.3 is given in Fig. 5 and the relationship by
linear fitness in MATLAB is

In ≈
17.73

0.7483+ln(µ)
.

Since ln(1+(−0.3))=−0.3568≈−0.7483/2 we can guess that

In ≈
17.73

ln(µ)−2ln(1+β)
.

This relationship can be proved by other tests. It tells us that µ > (1+β)2 should be
guaranteed for the convergence of the fixed point iterations. This criterion is useful when
|1+β| is large, i.e., for the simulations of flow-aligning nematic LCs.

Remark 4.1. The criteria µ> (1+β)2 is partly determined by the choice of the numerical
scheme. It is not necessary if you can solve the nonlinear system directly instead of fixed
point iteration method.
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Figure 6: Top: numerical results with initial data in case 1. Notice that due to shear flow the initial configuration
is mirror symmetrical while the configuration in steady state is not. Middle: numerical results with initial data
in case 2. This example demonstrates the well stability of our numerical method. The configuration goes from
disordered state to ordered state rapidly while the total energy decreases quickly. Bottom: numerical results
with initial data in case 3.

Now we want to observe the dependency of the solutions on the initial data. Fix
β =−0.6, ζ = 40 and v0 as in the above example while change the initial alignments of
directors to:

1. d2(z)=cos(πz), d3(z)=sin(πz), z∈ [−1,1];

2. Ainit(z)=2π ·rand(0,1), d2(z)=cos(Ainit(z)), d3(z)=sin(Ainit(z)), z∈ (−1,1),

d2(−1)=−1, d2(1)=−1, d3(−1)=0, d3(1)=0;

3. The same as in Case 2,

where rand(0,1) is the function generating random numbers from interval [0,1]. The
results with these initial values are illustrated in Fig. 6. These examples reveal that the
solutions of steady state are not unique and depend on the initial data. We can see the
comparison of the alignments in steady states.
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Figure 7: Solutions with different β. From top to bottom: β=−0.01,−0.05,−0.1,−0.2,−0.3,−0.4. Below each
gray picture is the director configuration at steady state. The figures in the right column are also Energy vs
Time.

4.3 Shape of molecules

In this subsection we consider the solutions with different β. First set ζ =40 and v0(z)=
ζz, z ∈ [−1,1]. We compute solutions with β =−0.01,−0.05,−0.1,−0.2,−0.3,−0.4,−0.5,
−0.6,−0.7,−0.8,−0.9,−0.95,−0.99. The results are depicted in Figs. 7 and 8. In all the
simulations the systems go to steady states finally, and the alignments in steady states
depend on β.
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Figure 8: Solutions with different β. From top to bottom: β=−0.5,−0.6,−0.7,−0.8,−0.9,−0.95,−0.99.

For our ”1+2” model we have

Dβ(u)=





0 0 0
0 0 βvz

0 (β+1)vz 0



.
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When the molecules are rod-like, Dβ(u)·(0,1,0)T = D−1(u)·(0,1,0)T =~0. Similarly, when

the molecules are disk-like, Dβ(u)·(0,0,1)T = D0(u)·(0,0,1)T =~0. Otherwise, Dβ(u)·
(0,d2,d3)T 6=~0 for any d2

2+d2
3 =1 and vz 6=0. These facts tell us that with proper boundary

conditions d2,d3 have constant solutions for steady states when β=−1 or β=0. In other
words, all the molecules can stay at the same direction when β =−1 or β =0. But when
−1<β<0, it can be checked that constant functions d2 =c2, d3 =c3 with c2

2+c2
3 =1 are not

solutions to the steady states.
We can see from Figs. 7 and 8 that when β=−0.01 and β=−0.99, which approximate

0 and −1, the solutions at steady states approach constant functions. Let θ be the angle
between the director and y-axis with θ ∈ [0,2π) and Θ be the total change of θ at steady
state defined as

Θ=
∫ 1

−1
|θz|dz.

We can see from the director alignments at steady states that Θ attains maximum at β =
−0.5. We give some explanations about this fact. Simply take d2t=d3t=0, d2

2+d2
3=1, vz=ζ

and consider the following equations:

Cβd3 =d2zz, C(β+1)d2 =d3zz,

where C = ζ/γ is a constant. Let C1 = 4
√

−C2β(β+1)/
√

2, then d3 has the following four
general solutions:

exp(C1z)cos(C1z), exp(C1z)sin(C1z), exp(−C1z)cos(C1z), exp(−C1z)sin(C1z),

and the same general solutions for d2. Obviously C1 has maximum value when β =
−0.5. Combined with the properties of sine and cosine function we can see that the fact
mentioned above is reasonable. Intuitively, when β =−0.5 the molecules are spheres.
They are easier to rotate than rods, disks and molecules of other shapes.

We want to point out that the total energy increases all the time when β=−0.01 while
in the case β =−0.99 it decreases. The situation is more complex when β is away from 0
and −1.

4.4 Shear rate

Now we turn to experiments with different ζ. Fix β=−0.6.
First we compute the solutions when ζ =10,20,30,40,50,60. The results are illustrated

in Fig. 9. We can see that the alignments in steady states depend on ζ. The behaviors of
the total energy are almost the same in all the cases. It is easy to find that Θ increases with
ζ. This can also be explained by the method we used in the above subsection. Just notice
the relationship between ζ and the general solutions of d2 and d3. Similar phenomenon
was observed by Chonoa et al. in [5] where they used a more complicated full EL model.

If we keep on increasing ζ some periodic solutions can be found, see Fig. 10. In these
cases the orientations of most molecules demonstrate a tumbling behavior in the flow
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Figure 9: Solutions with different ζ. From top to bottom: ζ =10,20,30,40,50,60. All the solutions go to steady
state.

field. It can be seen that singularities appear near the boundary. The fixed boundary and
the tumbling region are connected by a thin oscillatory layer. This is reported in [1, 2]
as in-plane tumbling-wagging composite state. It includes the competition between the
shear stress and the anchoring force. When ζ is small, the shear stress can not surpass the
strength of anchoring, so we just have steady solutions. This situation will change when
ζ is increased.
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Figure 10: Solutions with different ζ. In (a1)(b1)(c1) the gray colors represent the value of d2. In (a2)(b2)(c2)
the gray colors represent the length of the directors. (a1)(a2): ζ = 66; (b1)(b2): ζ = 70; (c1)(c2): ζ = 80. The
right column from top to bottom: ζ =66, ζ =70, ζ =80. Periodic solutions are obtained in these cases.

Figure 11: Left: dependence of P on ζ; Right: dependence of P on β.
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Theoretically, the dependence of the tumbling period P on ζ and β is given by [17]

P=
2π

ζ
√

1−(2β+1)2
. (4.1)

This formula can be verified by our simulations. First we can see the dependence of P on
ζ in Fig. 11(left) when β =−0.6. When ζ is small, the numerical values do not coincide
with the theoretical ones for the effect of the boundary anchoring. But as we increase the
value of ζ they are getting closer.

Set ζ = 240, the dependence of P on β is depicted in Fig. 11(right). With the strong
anchoring δ = 1×10−4 the numerical values differ from the theoretical ones while they
are close with the weak anchoring δ=1×10−1.

4.5 Flow-aligning nematic LCs

For flow-aligning nematic LCs with β <−1 or β > 0, it is predicted by Ericksen-Leslie
theory that there are always steady-state solutions and the director orientation is given
by [17]

θ =arctan

[

±
( β+1

β

)
1
2

]

. (4.2)

We list our numerical results for flow-aligning nematic LCs in Tables 1 and 2. The pa-
rameters are µ=10 and ζ =240 and the numerical director orientations are taken on z=0
at time t = 1. We can see from the tables that the numerical values are almost the same
with the theoretical ones, except when β = 0. This is also due to the strong boundary
anchoring. We want to point out that in these simulations a larger µ is used to insure the
convergence of fixed point iteration method.

Table 1: Flow-alignment angle when β<−1.

β −3 −2.5 −2 −1.5 −1
Theoretical (deg) 39.232 37.761 35.264 30.000 0.000
Numerical (deg) 39.232 37.761 35.264 30.000 0.000

Table 2: Flow-alignment angle when β>0.

β 0 0.5 1 1.5 2
Theoretical (deg) −90.000 −60.000 −54.736 −52.239 −50.768
Numerical (deg) −88.539 −60.000 −54.736 −52.239 −50.768

Remark 4.2. It is well-known that in simple shear flow, the nematic liquid crystal has
another important motion: wagging [1, 2]. The wagging state is not observed in our
simulations. We believe that this is due to the lack of short range order elasticity in this
model.
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Remark 4.3. In most of these simulations, the background flow can keep the profile of
shear flow very well including the large shear rate cases. The exception is that the back-
ground flow has small perturbations near the singularities when the solution is periodic.
This conclusion does not depend on µ heavily.

5 Conclusions

We applied the ”1+2” elastic continuum model to investigate the effect of kinematic trans-
ports. An accurate and efficient Legendre-Galerkin method which can preserve energy
law in discrete form was designed. With this numerical method we simulated the behav-
iors of systems with different kinematic transports. We did some tests of the numerical
scheme and gave a criterion to ensure the convergence of fixed point iteration method.
Numerical experiments with different β and ζ were carried out. For the systems with
steady state solutions, the number of spatial rotations is determined by β and ζ, i.e., the
shape of molecules and the shear rate. Theoretical analysis was made to explain the re-
sults. For the tumbling flow we verified the relationship between the tumbling period
and two important parameters. Flow-aligning nematic LCs were also studies by our sim-
ulations.
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