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Abstract. Spectral element methods are well established in the field of wave propa-
gation, in particular because they inherit the flexibility of finite element methods and
have low numerical dispersion error. The latter is experimentally acknowledged, but
has been theoretically shown only in limited cases, such as Cartesian meshes. It is
well known that a finite element mesh can contain distorted elements that generate
numerical errors for very large distortions. In the present work, we study the effect
of element distortion on the numerical dispersion error and determine the distortion
range in which an accurate solution is obtained for a given error tolerance. We also dis-
cuss a double-grid calculation of the spectral element matrices that preserves accuracy
in deformed geometries.
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1 Introduction

Spectral element methods are high-order finite element methods that use collocation
points derived from orthogonal polynomials with the goal of enhancing approximation
properties, in the spirit of spectral methods [3]. Spectral elements have been used in
fluid mechanics [12, 17, 26, 29] and wave propagation [5, 13, 16, 28, 36]. Both triangular
(tetrahedral) and quadrilateral (hexahedral) elements have been developed with various
collocation point schemes, which for quadrilateral (hexahedral) element may take the
simple form of a cartesian product of either Gauss-Lobatto-Legendre (GLL, [4, 5, 12]) or
Gauss-Lobatto-Chebyshev (GLC, [9, 18, 37, 39]) nodes.
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These methods are particularly popular in computational seismology because they
are able to simulate long-wave propagation events with low numerical dispersion, when
compared with finite difference or standard finite element methods. Quadrilateral (hex-
ahedral in 3D) meshes are the standard choice in computational seismology [5] because
they naturally inherit the best approximation properties from the optimality of the collo-
cation points and the algorithmic structure from the 1D case. Mercerat et al. [23] applied
recent triangular spectral element techniques to elastic wave propagation problems and
noted that quadrangular elements are more efficient in these problems, although high-
order methods with triangular and tetrahedral meshes have shown to be competitive in
other fields [13]. However, mesh design is a major bottleneck in this field, and it is nec-
essary to seek a trade-off between honouring geological features and keeping the defor-
mation of the mesh elements small enough for the desired accuracy [5]. In fact, realistic
complex geological model automatic mesh generators (e.g., [18, 27]) may produce mil-
lions of elements (or even more) that cannot be visually verified and some of them can
be very distorted (slivers). Knowing in advance the maximum allowed error for a simu-
lation, a maximum element distortion can then be imposed to the mesh generator for the
desired accuracy.

The effect of mesh deformation on the accuracy of finite elements has long been rec-
ognized. Although optimal error estimates may be preserved, the constant present on
the error estimate becomes progressively larger as the distortion increases [15]. Maday
and Rønquist [20] analyzed GLL spectral elements on deformed geometries and find an
estimate whose constant is greater than |1/J|, where J is the determinant of the Jacobian
of the transformation. Note that J may be zero for cases where quadrilaterals collapse
into triangles by coalescing two nodes [15].

Some of the known sources of error in distorted meshes are the ill conditioning gener-
ated when corner angles are nearly 180◦ [2] and the fact that the computation of stiffness
matrices may lead to rational integrands [40]. While the former relies on mesh design,
the latter can be controlled by numerical or analytical integration techniques (see current
approaches to this issue in [40]).

Some authors have briefly addressed the accuracy of spectral elements on distorted
meshes. Melenk et al. [22] advocated the need of over-integration to account for mesh
distortion for Legendre spectral elements, while in [7, 20] this method was found to per-
form well with a standard set of integration points, even for large distortions.

One of the most significant measures of the accuracy of wave propagation modeling is
numerical dispersion. Dispersion analysis is an essential tool for setting up discretization
parameters for an efficient numerical simulation of wave propagation with a prescribed
level of accuracy. The dispersion properties of low-order and high-order finite elements
are well understood on Cartesian grids [1, 10, 32], but few authors have considered de-
formed grids [7, 38].

The purpose of this paper is to describe the dependency of accuracy on mesh dis-
tortion in a systematic manner, providing a better understanding of spectral element
methods on complex geometries, as well as unresolved issues such as the need of over-
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integration noted above. We measure accuracy by the phase velocity error and the mesh
distortion by internal angles between element edges and by aspect ratio. The phase ve-
locity error is studied with a new dispersion analysis methodology based on the Rayleigh
quotient, which holds for any operator order and is easily extended from 1D to 2D and
3D [32, 34]. We present a new double-grid representation of the inverse Jacobian func-
tion to correctly compute GLC spectral element matrices without resorting to high-order
quadratures or increasing the polynomial degree of the shape functions. This approach
generalizes [17] and can be seen as a Taylor truncation of inverse Jacobians [40].

By assuming an unbounded, periodic mesh formed by the repetition of a patch of
elements [7], we estimate the numerical phase velocity of spectral element approxima-
tions of the 2D acoustic wave equation. Such an estimate depends only on the local
mass and stiffness matrices in the elements in the patch. Next, we compute these ma-
trices using the methodologies from [17, 31]. Then, we discuss numerical experiments
on several patterns of element deformation that reflect anomalies that may be present on
automatically-generated meshes.

2 Dispersion analysis

We consider the 2D acoustic wave equation in an unbounded, homogeneous medium:

ü(x,t)= c2∆u(x,t). (2.1)

Let us write the spectral element semi-discretization in space of (2.1) in the form

Mü
∗(t)+c2

Ku
∗(t)=0, (2.2)

where u
∗={u∗

I (t)} is the unknown solution vector with u∗
I (t)≈u(xI ,t), where xI the I-th

global mesh node, whereas M,K are the global mass and stiffness matrices, respectively.
The superscript ∗ is employed to identify an object as a numerical approximation. Plug-
ging into this system a harmonic plane wave u

∗(t)=exp(−iω∗t)w, where w={wl} and
wI =exp(iκ ·xI), we find

Kw=χ∗
Mw, χ∗=

(ω∗

c

)2
. (2.3)

This is an over-constrained system of equations where the only unknown is χ∗. On the
other hand, we may consider a weaker condition: that the residual (K−χ∗

M)w be or-
thogonal to w; that is, w

T(K−χ∗
M)w = 0. From this Galerkin condition (see [14]) we

find

χ∗=
w

T
Kw

w
T

Mw
, i.e., ω∗=ω∗(κ)=c

√

w
T

Kw

w
T

Mw
. (2.4)

Note that χ∗ is now well-defined and corresponds to the Rayleigh quotient associated
with the generalized eigenvalue problem (2.3). The dispersion estimate (2.4) predicts the
minimum number of grid points per wavelength (G) needed to keep the dispersion error
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below a prescribed level α. For this purpose, we parametrize the wave vector κ with
respect to G; rewrite the approximate angular frequency ω∗ as a function of G; calculate
the numerical phase (or group) velocity c∗ = c∗(G); and determine the lowest value G̃
such that |c∗(G)−c|≤α for any G≥ G̃ and for any direction of the wave vector κ.

We have shown in [33–35] that such a prediction agrees with the classical dispersion
analysis and with the dispersion study proposed in [24]. Moreover, Eq. (2.4) gives a faster
and computationally more efficient estimate for high order elements, since the evaluation
of the Rayleigh quotient is simpler than computing eigenvalues. This is more evident
on 2D and 3D analysis with distorted elements, where the eigenvalue problem cannot be
reduced to 1D eigenvalue problems [7]. Further discussion on advantages and limitations
of using Rayleigh quotients to analyze numerical dispersion may be found in [11, 35].

Figure 1: Mesh 4×16 elements generated by a patch of four non-rectangular elements (Ne =4 and n=16).

Let us consider a mesh that is formed by the repetition of a patch of Ne elements as in
Fig. 1 and in [7]. An element-by-element evaluation of w

T
Kw yields

w
T

Kw=
n

∑
l=1

( Ne

∑
e=1

we,l
T

K
e
w

e,l
)

, (2.5)

where K
e is the elemental stiffness matrix and w

e,l is the restriction of the global array w

to the e-th element Ωe,l of the patch Pl (1≤ l≤n), which is given by

Pl =
Ne
⋃

e=1

Ωe,l. (2.6)

Note that K
e does not depend on l. Moreover, if x

e,l is the lower left vertex of Pl, then

w
e,l =exp(iκ·xe,l)w

e, (2.7)

where the vector w
e is defined by

we
j =exp

(

iκ·(xj−x
e,l)

)

, xj ∈Ωe,l.

Because the vector xj−x
e,l is invariant to Pl, we have that w

e does not depend on l. On
the other hand, let us substitute (2.7) into (2.5):

w
T

Kw=
n

∑
l=1

( Ne

∑
e=1

exp(iκ·xe,l)we
T

K
e exp(iκ·xe,l)w

e
)

=n
Ne

∑
e=1

weT
K

e
w

e. (2.8)
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Analogously, we find

w
T

Mw=n
Ne

∑
e=1

weT
M

e
w

e, (2.9)

where M
e is the elemental mass matrix. We have from (2.4), (2.5) and (2.9) that

χ∗=

Ne

∑
e=1

weT
K

e
w

e

Ne

∑
e=1

weT
M

e
w

e

. (2.10)

Note that χ∗ does not depend on the number of patches n, hence it can be extended to
an unbounded mesh, which is a standard assumption on dispersion analysis [1, 7]. Since
Eq. (2.10) may be evaluated in any patch Pl, we drop the patch index l from here on; in
particular, we refer to the element Ωe,l of an arbitrary patch Pl as Ωe.

For Cartesian meshes, expression (2.10) reduces to Rayleigh quotients of element ma-
trices from 1D problems [32]. Similar estimates (2.10) hold in fully-discrete schemes (e.g.,
χ∗=(2sin(ω∗∆t/2)/∆t)2 in the case of time discretization by leapfrog scheme, see [25]).

3 Element matrices

To proceed with the analysis, we need to compute the terms in Eq. (2.10). Let us arrange
the collocation points at an element Ωe as (N+1)×(N+1) matrices (rather than (N+1)2

vectors) and arrange nodal values likewise. For instance, [we] is the (N+1)×(N+1)
matrix associated with the vector w

e.
As described in the Appendix, if we choose Gauss-Lobatto-Legendre (GLL) colloca-

tion points and use these as integration points to compute the element mass and stiffness
matrices, then

weT
M

e
w

e =[W] :
(

[we]◦[we]◦[J]
)

, (3.1a)

weT
K

e
w

e =[W] :

(

[∇1w]◦[∇1w]◦ 1

[J]
+[∇2w]◦[∇2w]◦ 1

[J]

)

, (3.1b)

where [W] is the array that contains the GLL integration weights, [∇1w] and [∇2w] are
nodal values of first-order derivatives of the interpolant of [we], and [J] are nodal values
of the determinant of the Jacobian of the isoparametric transformation from Ω̂=[−1,1]×
[−1,1] to Ωe. The symbol ◦ denotes the Haddamard product (A.14), whereas the colon
denotes the double contraction operator defined in (A.17). Moreover, for the SEM with
Gauss-Lobatto-Chebyshev (GLC) collocation points we find

weT
M

e
w

e = tr
(

[we]
T ·B+ ·[we]

)

, (3.2a)

weT
K

e
w

e = tr
(

[∇1w]
T ·B− ·[∇1w]+[∇2w]

T ·B− ·[∇2w]
)

, (3.2b)
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where

B
+ = B

T ·[J]·B and B
−= B

T ·
( 1

[J]

)

·B,

and the elements of the matrix B are expressed as

Bl,p,q =
∫ 1

−1
φl(ζ)φp(ζ)φq(ζ)dζ, (3.3)

and φp(ζ) are the 1D Lagrange interpolation shape functions of degree N defined by
φp(ζq) = δp,q, ζp =−cos(πp/N), 0 ≤ p, q ≤ N. The transposition operator and the dot
product must be suited to third-order tensors, as in (A.23).

The computation of weT
K

e
w

e depends on an integral that involves the rational func-
tion 1/J. To improve the accuracy of this computation in the case of GLC collocation
points, we propose an approximation of the inverse Jacobian with an independent set of
shape functions of higher degree:

1

J
(ξ,η)=

L

∑
q1 ,q2=0

1

[[J]]q1,q2

φL
q1

(ξ)φL
q2

(η). (3.4)

Here φL
p(ζ) is the p-th 1D Lagrange interpolation shape function of degree L,L ≥ N,

whereas [[J]] is the (L+1)×(L+1) matrix that samples J(ξ,η) at the collocation points
of the temporary grid defined by (ζL

q1
,ζL

q2
), 0≤q1,q2≤L. The evaluation of Eq. (3.2) in this

case is described in the Appendix.
This approach is based on the double-grid spectral element method [31], where the

material properties are written with respect to shape functions of higher degree than
the trial space. Although the original purpose of the double-grid method is to enhance
resolution on heterogeneous media, it perfectly fits our aim of improving the resolution
of 1/J.

4 Numerical results

In this section we study the numerical dispersion under mesh distortion of the following
spectral element methods (SEM):

GLC: consistent SEM with Gauss-Lobatto-Chebyshev (GLC) points [36];

GLL: mass-diagonal SEM with Gauss-Lobatto-Legendre (GLL) points [7].

The finite element meshes are generated as in Fig. 1 from the patches (a) to (d) in
Fig. 2, and they represent various cases of element distortion. The chosen meshes do
not represent real meshes, in general. The estimates lead to limit errors, and provide a
constraint on the maximum element distortion that can be tolerated in real meshes.

We parametrize these meshes with the internal angle α indicated in the figure. As
α approaches 180◦, some elements degenerate and collapse into triangles or disappear.
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Figure 2: Summary of the element patches considered in the numerical experiments. The parameter α is the
internal angle shown in each patch.

The dispersion error increases as the angle α increases, and we are able to obtain the
maximum allowed element distortion for a given error tolerance.

Let κ=κ(cosθ,sinθ). We evaluate κ from the number of grid points per wavelength

G=
λ

∆x
=

2π

|κ|∆x
, (4.1)

where ∆x is defined as the diagonal of any of the elements in the patches (a) to (c), or as
the diagonal of the central element in the patch (d). We compute ∆x when α = 90◦ and
use this value of ∆x also in distorted elements.

The first experiment confirms that the sensitivity of the phase velocity error to mesh
distortion decreases as the double-grid parameter L in (3.4) increases. This is illustrated
in Fig. 3 with the fourth-degree GLC method. The choice L = 12 delivers sufficiently

90 100 110 120 130 140 150 160 170 180α-0.002

-0.001

0.000

0.001

0.002

0.003
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0.005

L=4
L=6
L=8
L=12

Figure 3: Average phase velocity error of the GLC method versus element distortion for the patch (d). We
consider several degrees of resolution (L) of the inverse Jacobian function and take N =4 and G=4.
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Figure 4: Location of the central node on element patch (a).

accurate results also for higher polynomial degrees and other mesh patterns, thus we
will employ L=12 in GLC from here on. We do not depart from the standard integration
procedure for the GLL method in the experiments below.

The element patch (a) was employed by Cohen [7] to analyze the numerical disper-
sion of GLL spectral elements of degree up to five. Note that the central node of the patch
moves along a direction that is not aligned with the diagonals or the sides of the patch
(Fig. 4).

Let us first present a comparison with the work by Cohen in Fig. 5. Following the
experiment on [7, pp. 232], we consider cubic elements and use nine grid points per
wavelength. The relative difference between the phase velocity estimates from the eigen-
value that is closer to the acoustic mode and the Rayleigh quotient is of order 10−4.

Fig. 6 shows the average phase velocity error ε = (ω∗/κ−c)/c as a function of the
internal angle α when G = 4. We take the average error over the propagation directions

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
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1.0001

1.0002

c p
h
/
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h
/
c

θ=0θ=15θ=30θ=45

Figure 5: Normalized phase velocity estimates of the cubic Legendre SEM computed with the eigenvalue that
is closer to the acoustic mode (left, see also [7, Fig. 12.8]) and the Rayleigh quotient (right). We consider nine
grid points per wavelength. For comparison purposes, we use the parameter a from [7, Fig. 12.8] that locates
the central node of the patch (i.e., the central node coordinates of the patch [0,h]×[0,h] are (ah,(3a−1)h/2),
0.6≤ a≤1.4).
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Figure 6: Average phase velocity error of GLC (left) and GLL (right) methods versus element distortion for the
patch (a) with a grid resolution of four grid points per wavelength.
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Figure 7: Study of maximum phase velocity deviation of the GLC method with respect to the undistorted mesh
in the patch (a). Left: maximum deviation when the number of grid points per wavelength is G = 4; right:
maximum distortion parameter such that the maximum deviation is 0.1%.
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Figure 8: Same as Fig. 7, except with the GLL method.

κ=κ(cosθ,sinθ), θ =0,π/24,2π/24,··· ,2π. We see that the error grows with the element
distortion and decreases as the element order increases. Moreover, higher order elements
are less sensitive to element distortion.

In Figs. 7-8 we consider a slightly different quantity: the relative deviation of the
numerical phase velocity on a deformed mesh (α > 90◦) with respect to the numerical
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phase velocity when α=90◦; that is, given c∗(α)=ω∗/κ, we consider

∆c∗(α)=
c∗(α)−c∗(90◦)

c∗(90◦)
. (4.2)

Besides the variation of phase deviation with respect to α, we also indicate the maximum
element distortion, such that the phase deviation is below 0.1% as a function of the num-
ber of grid points per wavelength. We also contrast the spectral element methods with
low-order finite element methods. As expected, the increase of the number of grid points
per wavelength G makes the error less sensitive to the element distortion. On the other
hand, low order elements are very sensitive to the distortion.

Figs. 9-10 illustrate the numerical anisotropy of each SEM when G = 4. We first set
the polynomial degree as N = 6 and take α = 90◦,110◦,130◦. Then, we fix α = 130◦ and
let N =4,6,8,12. For viewing purposes, we emphasize the error by displaying the scaled
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Figure 9: Polar graph of phase velocity error of the GLC method in the patch (a) with a grid resolution of
four grid points per wavelength and N =6 (left) and N =4,··· ,12 with α=130◦ (right). The error is scaled as
1+103ε.
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Figure 10: Same as Fig. 9, except with the GLL method.
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Figure 11: Average phase velocity error of GLC (left) and GLL (right) methods versus element distortion for
the patch (b) with a grid resolution of four grid points per wavelength.
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Figure 12: Study of maximum phase velocity deviation of the GLC method with respect to the undistorted mesh
in the patch (b). Left: maximum deviation when the number of grid points per wavelength is G = 4; right:
maximum distortion parameter such that the maximum deviation is 0.1%.
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Figure 13: Same as Fig. 12, except with the GLL method.

phase error 1+103ε. We can see that the numerical anisotropy of the error depends on
the distortion and decreases as the element order increases.

The numerical experiments are repeated for all the other patches and the results show
a similar behavior. The same comments as above apply and will be not repeated in the
following.
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The patch (b) considers the situation where quadrilateral elements collapse into tri-
angles. Fig. 11 shows average phase velocity errors, as in Fig. 6. Notice that in this
case the maximum distortion angle, for geometrical reasons, is smaller than in the other
cases and that the error blows up as the distortion angle approaches cos−1(−2/

√
5). In

the distortion limit, when all quadrilaterals collapse into triangles, the angle is actually
cos−1(2/

√
5).

Analogously, Figs. 12-13 consider the maximum phase deviation, as in Figs. 7-8, while
Figs. 14-15 present the numerical anisotropy of the methods GLC and GLL in the patch
(b). Note from Fig. 12 (right) and Fig. 13 (right) that the we need a larger number of grid
points per wavelength (with respect to other patches) to reduce the sensitivity of the error
with the element distortion.
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Figure 14: Polar graph of phase velocity error of the GLC method in the patch (b) with a grid resolution of
four grid points per wavelength and N =6 (left) and N =4,··· ,12 with α=130◦ (right). The error is scaled as

1+103ε.
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Figure 15: Same as Fig. 14, except with the GLL method.
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Figure 16: Study of maximum phase velocity deviation of the GLC method with respect to the undistorted
mesh in the patch (c). Left: maximum deviation when the number of grid points per wavelength is G=4; right:
maximum distortion parameter such that the maximum deviation is 0.1%.
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Figure 17: Same as Fig. 16, except with the GLL method.

In patch (c) we have the presence of a sliver element. Although the distortion seems
more severe than in the former examples, we found that the phase deviations (Figs. 16-17)
are very similar to those observed on patch (b). This can be explained since we keep the
number of grid points per wavelength constant with respect to the distortion parameter
α. The area of the upper right element on patch (c) becomes small as α increases, but
the concentration of grid points within this element increases with α, compensating the
distortion effect.

Patch (d) also suffers from slivering. Moreover, the diameter of the central element
approaches the diameter of the entire patch, hence this element remains under-sampled
(with respect to the other elements) along one direction. In order to have errors and devi-
ations with the same order of magnitude as in the other examples, we use six grid points
per wavelength in this patch. Note from Figs. 18-20 that the difference between low-order
and high-order elements is more evident on patch (d). This indicates the importance of
using higher-order spectral elements when sliver elements are present.

Remark 4.1. The spectral element method with GLC collocation points generates larger
dispersion errors, which overestimate the correct phase velocity. Such a behavior is usu-
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Figure 18: Average phase velocity error of GLC (left) and GLL (right) methods versus element distortion for
the patch (d) with six grid points per wavelength.
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Figure 19: Study of maximum phase velocity deviation of the GLC method with respect to the undistorted mesh
in the patch (d). Left: maximum deviation when the number of grid points per wavelength is G = 6; right:
maximum distortion parameter such that the maximum deviation is 0.1%.
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Figure 20: Same as Fig. 19, except with the GLL method.

ally present in consistent formulations of the mass matrix and may be corrected by com-
bining consistent and lumped formulations [6] or by employing reduced integration, as
the GLL method [8]. This is illustrated in Fig. 21, where the M-optimal blended spectral
element method, a weighted consistent and lumped formulation with GLC points [32] is
compared with the GLL method.
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Figure 21: Average phase velocity error of M-OB (left) and GLL (right) methods versus element distortion for
the patch (d) with six grid points per wavelength.

90 100 110 120 130 140 150 160 170 180α-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

N=6
N=8
N=12

90 100 110 120 130 140 150 160 170 180α-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

N=6
N=8
N=12

Figure 22: Average group velocity error of M-OB (left) and GLL (right) methods versus element distortion for
the patch (d) with six grid points per wavelength. The error of fourth-degree elements, which is above 0.005
on both methods, is not shown in this figure.

Remark 4.2. For simplicity, the results presented herein were based on the error on phase
velocity. By taking derivatives with respect to κ on both sides of (2.4), we can retrieve
formulae for the numerical group velocity and carry out the analysis using this quantity.
For instance, Fig. 22 is the counterpart of Fig. 21 when group velocity is considered. Note
that the errors of the spectral elements of degree N = 8,12 are low also in this case. To
the authors’ knowledge, up to date there is no analytical or numerical study of group
velocity error of high-order finite element methods on distorted meshes.

5 Conclusions

We have studied the numerical dispersion of two differing two-dimensional spectral el-
ement methods using meshes generated by repetition of distorted elements. In practical
applications a finite element mesh may present several patterns of distortion. We con-
sider each pattern individually, extending the approach reported in [7] for more complex
cases, and for each we obtain the maximum element distortion allowed for both a fixed
error tolerance and an element degree N. In the case of real simulations, the average error
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will be therefore in the tolerance range if all elements in the mesh have a distortion less
than the allowed maximum.

We found that the dispersion errors of Gauss-Lobatto-Legendre (GLL) spectral ele-
ment methods remain insensitive to mesh distortion until near the distortion limit in the
examples above. This provides additional support for the claim that GLL spectral ele-
ment methods perform well with the standard set of integration points even for large
distortions [7, 20]. We note that there is not a consensus regarding the need for overinte-
gration of GLL spectral element methods [22].

We enhanced spectral element methods based on Gauss-Lobatto-Chebyshev (GLC)
points by using a double-grid calculation of the inverse Jacobian function. This technique
increases the robustness of GLC methods and at the same time preserves the implemen-
tation framework of spectral elements, and may be useful in other applications such as
fluid mechanics and elasticity.

In general, we can see that the numerical dispersion of low order finite elements (N=
1,2) is significantly larger than expected from studies on rectangular meshes [7, 21, 24]
when distortion takes place, but spectral elements with degree N≥6 are very robust and
perform well even at large distortion and in the presence of slivering.

Appendix: Element calculations

For the sake of completeness and in order to introduce some notation used in this work,
on this appendix we review some classic finite element calculations involving isopara-
metric transformations [17]. We also provide the details of our proposed double-grid
representation of the inverse Jacobian.

Let us evaluate the products weT
M

e
w

e and weT
K

e
w

e from (2.10) in an arbitrary ele-
ment Ωe. It is convenient to represent node coordinates and nodal values of functions as
(N+1)×(N+1) arrays, which we indicate with brackets. For instance,

[Xe]=











Xe
0,0 Xe

0,1 ··· ··· Xe
0,N

Xe
1,0 Xe

1,1 ··· ··· Xe
1,N

... ··· ··· ··· ···
Xe

N,0 Xe
N,1 ··· ··· Xe

N,N











(A.1)

is the matrix representation of the x-coordinates of the element nodes of Ωe (similarly for
[Ye]), while we also represent the vector w

e by the matrix [we].
The element integrals in the reference element Ω̂=[−1,1]×[−1,1] are mapped to Ωe

by the isoparametric transformation






















X(ξ,η)=
N

∑
q1 ,q2=0

Xe
q1,q2

φq1
(ξ)φq2(η),

Y(ξ,η)=
N

∑
q1,q2=0

Ye
q1,q2

φq1
(ξ)φq2(η),

(A.2)
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where φp(ζ), with ζ ∈ [−1,1], is the p-th 1D Lagrange interpolation shape function of
degree N defined by φp(ζq) = δp,q, 0≤ p,q ≤ N. Here ζq represents the q-th collocation

point in [−1,1] and (ξ,η)∈ Ω̂. Analogously, we define

w(ξ,η)=
N

∑
q1 ,q2=0

we
q1,q2

φq1
(ξ)φq2(η). (A.3)

We have from (A.2) that

weT
M

e
w

e =
∫ 1

−1

∫ 1

−1
w(ξ,η)w(ξ,η)J(ξ,η)dξdη, (A.4)

weT
K

e
w

e =
∫ 1

−1

∫ 1

−1
∇̂w(ξ,η) ·∇̂w(ξ,η)

1

J(ξ,η)
dξdη, (A.5)

where J(ξ,η)= ∂ξ X(ξ,η)∂ηY(ξ,η)−∂ξY(ξ,η)∂η X(ξ,η) is the determinant of the Jacobian
of the transformation (A.2) and

∇̂w(ξ,η)=

[

∇̂1w(ξ,η)
∇̂2w(ξ,η)

]

=

[

∂ηY(ξ,η)∂ξ w(ξ,η)−∂ξY(ξ,η)∂ηw(ξ,η)
−∂ηX(ξ,η)∂ξ w(ξ,η)+∂ξ X(ξ,η)∂η w(ξ,η)

]

. (A.6)

The nodes of the element Ωe are related to the spectral element collocation points by the
isoparametric transformation (A.2). These points are defined by the tensor product of
the 1D collocation points ζp (0≤ p≤N). In the following we characterize the arrays that

sample J and ∇̂w at the collocation points.

The derivative matrix D is defined as

Dp,q =∂ζ φq(ζp)≡
∂φq(ζ)

∂ζ

∣

∣

∣

ζ=ζp

. (A.7)

Let [g] be a (N+1)×(N+1) array. The polynomial g(ξ,η) that interpolates [g] at the local
grid nodes (ζq1

,ζq2), 0≤q1,q2≤N, is defined as

g(ξ,η)=
N

∑
q1 ,q2=0

gq1 ,q2φq1
(ξ)φq2(η). (A.8)

Let us define [∂ξ g] as

∂ξ gp1,p2 =∂ξ g(ζq1
,ζq2), 0≤ p1,p2≤N,

we have that

∂ξ gp1 ,p2 =
N

∑
q1,q2=0

gq1 ,q2

(

∂ξφq1
(ξp1

)
)

φq2(ηp2)=
N

∑
q1=0

Dp1,q1
gq1,p2 . (A.9)
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In the same fashion,

∂η gp1,p2 =∂η g(ζq1
,ζq2)=

N

∑
q2=0

Dp2,q2 gp1,q2 ; (A.10)

that is,
[∂ξ g]= D[g] and [∂η g]= [g]DT.

Thus, we can write the nodal values of J, ∇̂1w and ∇̂2w in matrix form (see also [17]) as

[J]=(D[Xe])◦([Ye]DT)−(D[Ye])◦([Xe ]DT), (A.11)

[∇1w]=([Ye]DT)◦(D[we])−(D[Ye])◦([we]DT), (A.12)

[∇2w]=(D[Xe])◦([we ]DT)−([Xe]DT)◦(D[we]), (A.13)

where ◦ denotes the Haddamard (termwise) product [19]:

C = A◦B=⇒Cp,q = Ap,qBp,q. (A.14)

When Gauss-Lobatto-Legendre (GLL) collocation points are employed to define the shape
functions φp (i.e., ζ0,··· ,ζN are roots of (1−ζ2)∂ζ PN(ζ), where PN denotes the Legendre
polynomial of degree N), the standard practice is to use these points also as quadrature
points. In this case, the quadrature is exact for polynomials of degree 2N−1 in each spa-
tial direction [3]. If [W] is the array that contains the integration weights corresponding
to (ζq1

,ζq2) and (1/[J])q1 ,q2 =1/Jq1 ,q2 , 0≤q1,q2≤N, then

weT
M

e
w

e =[W] :
(

[we]◦[we]◦[J]
)

, (A.15)

weT
K

e
w

e =[W] :

(

[∇1w]◦[∇1w]◦ 1

[J]
+[∇2w]◦[∇2w]◦ 1

[J]

)

, (A.16)

where the colon sign denotes the double-contraction operator:

A : B=
N

∑
p,q=0

Ap,qBp,q. (A.17)

Korczak and Patera [17] introduced an integration procedure that does not use inte-
gration points and weights in the case of Gauss-Lobatto-Chebyshev (GLC) points ζp =
−cos(πp/N), 0≤ p≤N. Let B be defined as

Bl,p,q =
∫ 1

−1
φl(ζ)φp(ζ)φq(ζ)dζ =

N

∑
i=0

N

∑
j=0

N

∑
k=0

sl,isp,jsq,kCi,j,k, (A.18)

with

Cl,p,q =
∫ 1

−1
Tl(ζ)Tp(ζ)Tq(ζ)dζ, (A.19)
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where Tp(ζ)=cos(pcos−1(ζ)) is the p-th Chebyshev polynomial, and

sp,q =
2

Ncpcq
cos

(

q
π(N−p)

N

)

, cp =

{

1, 0< p< N,

2, p=0,N.
(A.20)

Let us expand w(ξ,η) and J(ξ,η) with respect to the Lagrange polynomials φp as in (A.3)
and substitute these expansions into (A.4):

weT
M

e
w

e

=
∫ 1

−1

∫ 1

−1

N

∑
p1,p2=0

we
p1,p2

φp1
(ξ)φp2(η)

N

∑
q1,q2=0

we
q1,q2

φq1
(ξ)φq2(η)

N

∑
l1 ,l2=0

Jl1,l2 φl1(ξ)φl2(η)dξdη

=
N

∑
p1..l2=0

we
p1,p2

we
q1,q2

Jl1 ,l2

∫ 1

−1
φl1(ξ)φp1

(ξ)φq1
(ξ)dξ

∫ 1

−1
φl2(η)φp2(η)φq2(η)dη

=
N

∑
p1,p2=0

N

∑
q1,q2=0

we
p1,p2

we
q1,q2

N

∑
l1,l2=0

Jl1 ,l2 Bl1,p1,q1
Bl2,p2,q2

, (A.21)

or in tensor notation,

weT
M

e
w

e = tr
(

[we]
T ·B+ ·[we]

)

, B
+ = B

T ·[J]·B. (A.22)

We remark that the single contraction and the transposition operators above are taken in
the generalized sense [30], for instance:

(BT)l,p,q = Bp,q,l and
(

[J]·B
)

l,p,q
=

N

∑
j=0

Jl,jBj,p,q. (A.23)

Moreover, denoting with tr(·) also the double contraction of a fourth-rank tensor:

tr(A)=
N

∑
p,q=0

Ap,q,p,q, (A.24)

we have, analogously, that

weT
K

e
w

e = tr
(

[∇1w]
T ·B− ·[∇1w]+[∇2w]

T ·B− ·[∇2w]
)

, (A.25)

where B
− = B

T ·(1/[J])·B. Note that the presence of the rational function 1/J in the
integrand renders Eq. (A.25) inexact. As shown in the numerical tests, such an inaccuracy
does not pose problems if the polynomial degree of the shape functions is large enough,
but it does lead to dispersion errors on some spectral elements of interest, such as fourth-
degree polynomials [5].
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In order to avoid dispersion errors on spectral elements of lower degree, we propose
a simple approach based on the double-grid spectral element method [31]. We represent
the inverse Jacobian with polynomials with an independent set of shape functions of
higher degree, i.e.,

1

J
(ξ,η)=

L

∑
q1 ,q2=0

1

[[J]]q1,q2

φL
q1

(ξ)φL
q2

(η), (A.26)

where φL
p(ζ) is the p-th 1D Lagrange interpolation shape function of degree L,L ≥ N,

while [[J]] is the (L+1)×(L+1) matrix that samples J(ξ,η) at the collocation points of the
temporary grid defined by (ζL

q1
,ζL

q2
), 0≤ q1,q2 ≤ L. We use the notation [[·]] for (L+1)×

(L+1) matrices to avoid ambiguity with the notation [·] for (N+1)×(N+1) matrices.
Substituting (A.26) and (A.3) into (A.5), we find

weT
K

e
w

e = tr
(

[∇1w]
T ·B− ·[∇1w]+[∇2w]

T ·B− ·[∇2w]
)

, (A.27)

B
−=B

T ·
( 1

[[J]]

)

·B, Bl,p,q =
L

∑
i=0

N

∑
j=0

N

∑
k=0

,sL
l,isp,qsq,kCi,j,l, (A.28)

where Cl,p,q and sp,q are defined in (A.19)-(A.20), whereas

sL
p,q =

2

LcL
pcL

q

cos
(

q
π(L−p)

L

)

, cL
p =

{

1, 0< p< L,

2, p=0,L.
(A.29)
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