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Abstract. A quasi non-overlapping hybrid scheme that combines the finite-difference
time-domain (FDTD) method and the finite-element time-domain (FETD) method with
nonconforming meshes is developed for time-domain solutions of Maxwell’s equa-
tions. The FETD method uses mixed-order basis functions for electric and magnetic
fields, while the FDTD method uses the traditional Yee’s grid; the two methods are
joined by a buffer zone with the FETD method and the discontinuous Galerkin method
is used for the domain decomposition in the FETD subdomains. The main features of
this technique is that it allows non-conforming meshes and an arbitrary numbers of
FETD and FDTD subdomains. The hybrid method is completely stable for the time
steps up to the stability limit for the FDTD method and FETD method. Numerical
results demonstrate the validity of this technique.
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1 Introduction

The finite-difference time-domain (FDTD) method [1] is an efficient and robust time-
domain technique based on a structured grid and is ideal for modeling large homo-
geneous volumes and regular structures, while the finite-element time-domain (FETD)
method [2] is more flexible in geometric modeling because of its unstructured mesh.
However, the FETD method is not as popular as the FDTD method because a sparse
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matrix solution is required for time stepping, which can become very expensive even for
moderate-size problems. Therefore, a hybrid FDTD-FETD method can potentially take
advantages of both the flexibility of the FETD method and the efficiency of the FDTD
method.

Significant efforts have been reported for hybridization of the FETD method with the
FDTD method [3–9, 17, 18]. For example, the hybrid FD/FE methods has been devel-
oped to solve Maxwell’s equations in the time domain, but a weak instability has been
reported [3, 4]. A stable hybrid FDTD/FETD method has been presented by [5]. The
FETD method utilized in these hybrid methods is based on the second-order wave equa-
tion derived from the original first-order Maxwell’s equations with a single variable E or
H [10]. A pyramid element is used to joint the structured FDTD grid with the unstruc-
tured FETD mesh [11]. To our knowledge, the mesh between subdomains is required to
be conformal in the previous approaches.

To improve efficiency and flexibility, a non-conforming mesh between different sub-
domains is desirable for simulating multi-scale structures. Furthermore, multiple FETD
and FDTD regions are necessary when the number of unknowns becomes large. It is the
objective of this work to develop such a hybrid scheme that can allow nonconforming
meshes and multiple subdomains similar to the discontinuous Galerkin spectral element
time-domain (DG-SETD) method in [12]. To facilitate a non-conforming mesh, the dis-
continuous Galerkin method [13] would be an appropriate framework for hybridizing
the FETD and FDTD methods, as the discontinuous Galerkin method allows discontinu-
ous basis functions across different subdomains. Highly parallel discontinuous Galerkin
time-domain methods have been recently employed for the solution of Maxwell’s equa-
tions [13–20], but apparently this idea has not been used in the hybridization of the FETD
method with FDTD method.

A new hybrid FDTD/FETD method is presented in this study. The FDTD grid and
the FETD mesh can be quasi non-overlapping, i.e., they can have completely different
meshes except that a buffer zone is needed to stitch them together. Furthermore, this
scheme allows multiple FETD subdomains, an important feature for large-scale prob-
lems. In Section 2, we present the spatial discretization of the DG-FETD for this hy-
brid method. Section 3 demonstrates the coupling scheme between the FETD and FDTD
methods. Numerical examples are given in Section 4 to show the validity of this method
and its applications.

2 Formulation

We aim to solve for the electric and magnetic fields from Faraday’s and Ampere’s laws
in Maxwell’s equations. For the sake of simplicity without losing generality, only lossless
media are considered here, although the implementation includes arbitrary conductivity
losses:

ǫ
∂E

∂t
−∇×H=−J, (2.1a)
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µ
∂H

∂t
+∇×E=0, (2.1b)

where E and H are the time varying electric and magnetic fields; J represents the electric
current density; ǫ and µ denote material’s permittivity and permeability, respectively.

2.1 The overall scheme

As shown in Fig. 1, a complex structure is divided into several subdomains. The FDTD
method is employed to simulate large and smoothly inhomogeneous media without com-
plex structures; the FETD method is used for subdomains with complex geometries with-
out causing substantial stair-casing errors as in the FDTD method. The interfaces between
adjacent subdomains are in general non-conformal, i.e., the meshes on either sides of the
interface can be unmatched.

Figure 1: Domain decomposition with the FDTD and discontinuous Galerkin FETD methods. The FDTD
method is used in a subdomain with a regular grid (the red region with a rectangular grid), while the DG-FETD
method is used in subdomains with unstructured or structured meshes (blue triangular and blue rectangular
regions) for complex geometry. A buffer zone (the heavy red rectangular elements) connects the FETD and
FDTD subdomains. Shown here are two FETD subdomains with unstructured triangular meshes, two FETD
subdomains with structured rectangular meshes and one FDTD subdomain.

2.2 The FDTD method

The FDTD method is the most popular and established method in time-domain simula-
tion of electromagnetic waves. It was proposed by Yee in 1966 [1]. In this work we adopt
the conventional FDTD scheme using central differences on a staggered Cartesian grid
with a leap-frog scheme for the time integration. The detail will not be elaborated here
due to the space limitation.

2.3 The DG-FETD method for the first-order PDEs

The discontinuous Galerkin FETD method is used for subdomains with complex struc-
tures. Denote Ne and Nh as basis/testing functions for E and H, respectively. The corre-
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sponding weak-forms of Maxwell’s equations are

∫

Si

(

ǫNe ·
∂E

∂t
−Ne ·∇×H+Ne ·J

)

ds=0, (2.2a)

∫

Si

(

µNh ·
∂H

∂t
+Nh ·∇×E

)

ds=0, (2.2b)

where Si denotes the area of the i-th subdomain. There can be one or more elements in a
subdomain. Using integration by parts and the Gauss’s theorem for the above equations
and applying some simple identities, we obtain

∫

Si

(

ǫNe ·
∂E

∂t
+Ne ·J

)

ds=
∫

Si

∇×Ne ·Hds+
∫

Li

Ne ·(n̂×H)dl, (2.3a)

∫

Si

µNh ·
∂H

∂t
ds=−

∫

Si

∇×Nh ·Eds−
∫

Li

Nh ·(n̂×E)dl, (2.3b)

where Li denotes the subdomain surface, n̂ is the outward unit normal of the boundary.
The interface relationship between fields in subdomain i and its neighbor subdomain
can be evaluated as numerical fluxes n̂×E and n̂×H. The two surface integral items
∫

Li
Ne ·(n̂×H)dl and

∫

Li
Nh ·(n̂×E)dl are over the interfaces between subdomains. In the

DG-FETD method the basis functions Ne and Nh are not required to be continuous across
interfaces between adjacent subdomains. So a non-conforming mesh can be utilized be-
tween subdomains. The Riemann solver (i.e., the upwind scheme) [21–23] is used here
to calculate the above numerical fluxes. Take the i-th subdomain as the local subdomain
and assume it is adjacent to the j-th subdomain. The corrected fields on the interface will
be

n̂×E= n̂×Y(i)E(i)+Y(j)E(j)

Y(i)+Y(j)
−n̂×n̂×H(i)−H(j)

Y(i)+Y(j)
, (2.4a)

n̂×H= n̂× Z(i)H(i)+Z(j)H(j)

Z(i)+Z(j)
+n̂×n̂× E(i)−E(j)

Z(i)+Z(j)
, (2.4b)

where E(i) and H(i) are fields from the local (i-th) subdomain, E(j) and H(j) are from the
neighbor (j-th) subdomain

Z(i) =
1

Y(i)
=

√

µ(i)

ǫ(i)
, (2.5a)

Z(j) =
1

Y(j)
=

√

µ(j)

ǫ(j)
, (2.5b)

Z and Y are wave impedance and admittance of the medium for the i-th subdomain and
the j-th subdomain, respectively.
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The discretized equations by the DG-FETD for the i-th subdomain are

M
(i)
ee

de(i)

dt
=K

(i)
ee e(i)+K

(i)
eh h(i)+f(i)+∑

j

L
(ij)
ee e(j)+∑

j

L
(ij)
eh h(j), (2.6a)

M
(i)
hh

dh(i)

dt
=K

(i)
he e(i)+K

(i)
hh h(i)+∑

j

L
(ij)
he e(j)+∑

j

L
(ij)
hh h(j), (2.6b)

where e(i) and h(i) are vectors of the discretized electric and magnetic fields, M
(i)
ee and

M
(i)
hh are the mass matrices, K

(i)
ee , K

(i)
hh , K

(i)
eh and K

(i)
he are the stiffness matrices and f(i) is

the discretized excitation vector in the i-th subdomain. These matrices and vectors are
defined as

[

M
(i)
ee

]

mn
=

∫

Si

ǫN
(i)
em ·N

(i)
en ds,

[

M
(i)
hh

]

mn
=

∫

Si

µN
(i)
hm
·N(i)

hn
ds, (2.7a)

[

K
(i)
ee

]

mn
=

∫

Li

N
(i)
em ·

n̂× n̂×N
(i)
en

Z(i)+Z(j)
dl,

[

K
(i)
hh

]

mn
=

∫

Li

N
(i)
hm
·
n̂× n̂×N

(i)
hn

Y(i)+Y(j)
dl, (2.7b)

[

K
(i)
eh

]

=
∫

Si

∇×N
(i)
em
·N(i)

hn
ds+

∫

Li

N
(i)
em
·
{n̂×N

(i)
hn
}Z(i)

Z(i)+Z(j)
dl, (2.7c)

[

K
(i)
he

]

mn
=−

∫

Si

∇×N
(i)
hm
·N(i)

en
ds−

∫

Li

N
(i)
hm
· {n̂×N

(i)
en }Y(i)

Y(i)+Y(j)
dl, (2.7d)

[

L
(ij)
ee

]

mn
=−

∫

Li

N
(i)
em ·

n̂×n̂×N
(j)
en

Z(i)+Z(j)
dl,

[

L
(ij)
hh

]

mn
=−

∫

Li

N
(i)
hm
·
n̂× n̂×N

(j)
hn

Y(i)+Y(j)
dl, (2.7e)

[

L
(ij)
eh

]

mn
=

∫

Li

N
(i)
em ·

{n̂×N
(j)
hn
}Z(j)

Z(i)+Z(j)
dl,

[

L
(ij)
he

]

mn
=−

∫

Li

N
(i)
hm
· {n̂×N

(j)
en
}Y(j)

Y(i)+Y(j)
dl, (2.7f)

[

f(i)
]

m
=−

∫

Si

N
(i)
em
·Jds. (2.7g)

The matrices L
(ij)
ee , L

(ij)
eh , L

(ij)
he and L

(ij)
hh are obtained from the boundary integrals over the

interface between the i-th subdomain and the j-th subdomain and they can be viewed as
the coupling matrices between the local subdomain and its neighboring subdomains. In
general, they are very sparse matrices. All the detailed formulations of the above matrices
and vectors can be referred to [12] and [24–26].

Following the spatial discretization, we obtain Eqs. (2.6a) and (2.6b) for i-th subdo-
main. Then we can obtain similar equations for other subdomains with similar explana-
tions. These equations constitute an ordinary differential (ODE) system with only time
derivatives.

By employing the discontinuous Galerkin technique, a large global mass matrix is
therefore replaced by a set of smaller mass matrices corresponding to each subdomain,
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which are much easier to be inverted or factorized. Several different time-stepping meth-
ods can be used for the discretized system (2.6a) and (2.6b) based on the properties of
each subdomain. For example, an explicit scheme such as the 4th-order Runge-Kutta
method (RK4) can be used for subdomains with relatively coarse meshes. While the
largest time step by RK4 is generally determined by the spectrum of the discretized sys-
tem by DG-FETD, which may call some expensive eigensolver, we found an empirical
stability criterion for DG-FETD method with RK4 time stepping scheme as:

∆tDG−FETD≤
(

√
3

4

hmin

c

)

, (2.8)

where hmin denotes the shortest edge among the DG-FETD meshes of all subdomains and
c denotes the speed of light.

So the stability limit of the time step in the hybrid FDTD/FETD method will be

∆t≤min
{

∆tFDTD,∆tDG−FETD

}

, (2.9)

where ∆tFDTD denotes the well-established stability criterion for the FDTD method.

2.4 Coupling between the DG-FETD and FDTD methods

For the example of 2-D TMz case in Fig. 2, the edges (Hx, Hy) in FDTD subdomains of
the rectangular Yee’s grid are updated using the traditional FDTD scheme. Thereafter,
the edges marked by crosses in Fig. 2 are exported from the rectangular FDTD grid to the
FETD mesh. This provides the discretized system of Eqs. (2.6a) and (2.6b) with a Dirichlet
boundary condition:

h(i) =hFE
Γ , on Γ

(i)
FE, (2.10)

where Γ
(i)
FE denotes the boundary of Ω

(i)
FE between the FETD and FDTD subdomains (i.e.,

all the edges marked by crosses in Fig. 2).
During the RK4 time integration in the FETD subdomains, at each sub-step, the solu-

tion associated with the edges marked by circles (Hx and Hy in the FDTD subdomain) in
Fig. 2 is exported to the explicit FETD grid as the known field values. Then the updated
magnetic field at the circles in Fig. 2 is used to calculate the electric and magnetic fields
at the next time steps. This completes one cycle in the time stepping scheme and the
FDTD scheme can again be applied to update the fields. Specifically, let us assume that
the fields

En− 1
2 = ẑE

n− 1
2

z ,

and
Hn = x̂Hn

x + ŷHn
y ,

are known in the FDTD grid and En−1/2 and Hn are known on the FETD mesh, where the
superscripts denote the time step index. To advance the fields to the next time step, we
use the following procedures:
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Figure 2: Unknowns associated with edges marked by crosses, HFD in the TMz case, are exported from the
FDTD grid to the FETD mesh; and those marked by circles, HFE, are exported from the FETD mesh to the
FDTD grid. The TEz case is dual to this configuration and is not shown here.

1. Use the FDTD method to advance the electric field to En+1/2 using the known En−1/2 and Hn

in the FDTD grid in Fig. 2.

2. Use the FDTD method to advance the magnetic field to Hn+1 using the known Hn and En+1/2

in the FDTD grid in Fig. 2.

3. Pass Hn+1
FD components, marked by crosses in Fig. 2, from the FDTD grid to the FETD buffer

zone as the boundary values. Together with Hn
FD at the previous step, one can calculate these boundary

values

H
n+ 1

2
FD =

Hn
FD+Hn+1

FD

2
,

by simple linear interpolation. These known boundary values are denoted as ỹn
b and ỹn+1/2

b , respectively.

4. Use the RK4 time integration method to advance the fields in the FETD subdomain from n-th
time step to (n+1)-th time step. We denote all the unknown fields in all subdomains by y=[ỹb,yi]

T,
where yi denotes the fields other than those given by the known boundary values in Step 3 above. The
system in Eq. (2.7a) can be written as

dy

dt
=Ay+s,

where A is a matrix and s is an excitation. Then by the RK4 scheme, we have

yn+1 =yn +
∆t

6
(k1+2k2+2k3+k4), (2.11)

where

k1 =A

[

ỹn
b

yn
i

]

+sn, k2 =A

[

ỹ
n+ 1

2
b

yn
i + ∆t

2 k1,i

]

+sn+ 1
2 , (2.12a)

k3 =A

[

ỹ
n+ 1

2
b

yn
i + ∆t

2 k2,i

]

+sn+ 1
2 , k4 =A

[

ỹn+1
b

yn
i +∆tk3,i

]

+sn+1, (2.12b)

and kj,i denotes the interior components of the kj (j=1,2,3,4) vectors, similar to the definition of yi.
After this RK4 time integration for one full time step, the magnetic field values at the circles in Fig. 2,
denoted by Hn+1

FE are known together with the other field values in the FETD subdomains.
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5. Pass Hn+1
FE to the FDTD subdomain so that the fields in the whole FDTD subdomain are now

known for the (n+1)-th time step.

6. Go to Step 1 and repeat the process until the specified length of time window has been reached.

The above hybrid scheme has been implemented for two-dimensional TMz and TEz

problems and has been validated and applied as shown in the following section.

3 Numerical examples and discussions

3.1 Plane wave incident in open area

The first example is to simulate the propagation of a plane wave in open area. The com-
putational domain a 7.2 m × 0.9 m rectangular area. The time-varying form of the plane
wave is a Gaussian pulse:

E(i) =exp
[

− 4π(t−1.6×10−9)2

(5.0×10−9)2

]

. (3.1)

We test this example with the hybrid FDTD/FETD with different discretization density
and use the results by FDTD with a very fine grid as the reference. Fig. 3 shows the rela-
tive error versus the sampling density in terms of the number of points per wavelength
(PPW), from which we can see that the hybrid FDTD/FETD method approximately has
a second order accuracy.

10
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10
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10
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−5
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−3

PPW

R
el

at
iv

e 
er

ro
r

Figure 3: The L2 relative error versus the sampling density in terms of the number of points per wavelength
(PPW) for a plane wave incident in an open area.

3.2 A cylinder in a rectangular cavity

This example is a circular cylinder inside a rectangular cavity. As shown in Fig. 4, the
size of the rectangular cavity is 0.8 m × 1.0 m and the circular cylinder of radius 0.1
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Figure 4: A nonconforming mesh for the hybrid FETD-FDTD modeling of a circular cylinder in a 0.8 m ×1.0
m rectangular cavity. Cells marked by heavy dashed lines are in the buffer zone between the FETD and FDTD
subdomains.

m is co-centered with the rectangular cavity. The circular cylinder is discretized by an
unstructured triangular mesh. The region with triangular elements is contained in a box
of 5 × 7 FDTD cells; the buffer zone (head red dashed lines) contains 28 FDTD cells (also
exactly 28 FETD rectangular elements). The rest of the cavity is discretized by 20 × 20
FDTD cells. The outer boundary of the cavity is set as PEC.

First, the circular cylinder is set as air, the same material as the rest of the cavity. We
use the ∆t = hmin/(4c) and test the stability by taking 500000 time steps. No instability
issues has been found.

The resonance frequencies of this cavity is calculated by discrete Fourier transform
of the time-varying Ez fields and listed in Table 1. Good agreement is found between
numerical and analytical solutions.

Table 1: Eigenvalues from the hybrid FDTD/FETD method for a rectangular cavity of dimensions 0.8 m ×1.0
m with air.

Mode Numerical [GHz] Exact [GHz] Error [%]
TM11 0.242 0.240 0.96
TM21 0.354 0.354 0.00
TM12 0.403 0.404 0.13
TM31 0.479 0.480 0.31
TM22 0.491 0.487 0.85
TM32 0.582 0.582 0.03

We also set the cylinder as a dielectric one with relative permittivity equal to 4. Ta-
ble 2 shows good agreement between numerical results of the resonant frequencies by
the hybrid FDTD/FETD and reference results by FEM with a very dense mesh.



B. Zhu, J. Chen, W. Zhong and Q. H. Liu / Commun. Comput. Phys., 9 (2011), pp. 828-842 837

Table 2: Eigenvalues of the rectangular cavity (0.8 m ×1.0 m) with a circular dielectric cylinder (ǫr =4) from
hybrid FDTD/FETD and FETD methods.

Mode number Numerical [GHz] FEM [GHz] Error [%]
1 0.195 0.194 0.68
2 0.344 0.344 0.00
3 0.387 0.387 0.05
4 0.412 0.413 0.12
5 0.477 0.480 0.66
6 0.541 0.546 0.90

3.3 A dielectric in an open area

As shown in Fig. 5, a square dielectric cylinder with side length equal to 0.225 m is placed
in an unbounded area. Here and in following cases the unbounded medium is truncated
by applying a perfectly matched layer (PML) absorbing boundary condition. The origin
of the coordinate system is placed at the center of the dielectric. The positive x and y axes
both coincide with the diagonal lines of the dielectric cylinder. The dielectric constant of
this cylinder is set as ǫr =16. A Blackman-Harris window (BHW) pulse [14,27] is used as
the source located at (-0.35353, 0) m. The receiver is located at (0.35353, 0) m.

Figure 5: A dielectric square with ǫr =16 in an open space. Cells marked by heavy dashed lines are in the buffer
zone between the FETD and FDTD subdomains, but the uniform FDTD grid outside the buffer zone is not
shown here for clarity.

We carry out the time integration for 8000 steps by the proposed hybrid FDTD/FETD
scheme with ∆t = hmin/(4c). We use calculated results by FDTD with a relatively fine
grid as the reference. In the reference FDTD solution, the model of the dielectric cylinder
is rotated 45◦ so that the square is aligned with coordinate axes to remove the substan-
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Figure 6: Comparison of the Ez result from the hybrid FETD-FDTD method and that from the FDTD with a
very fine grid for the problem in Fig. 5. Top: The Ez component versus time. Bottom: The relative error of
the hybrid result (normalized by the peak value of Ez).

tial stair-casing errors in the conventional FDTD method. Fig. 6 shows the comparison
between numerical results by the hybrid FDTD/FETD method and the reference results,
from which we can clearly see that these two results agree well.

3.4 Two PEC strips in an open area

Fig. 7 shows two PEC strips with a 90◦ corner in an unbounded domain. We use three
subdomains in this problem: one subdomain uses triangular elements for the region sur-
rounding the strips; the second subdomain uses rectangular elements for the buffer zone;
and last subdomain is the FDTD grid used in the outermost region. It is a nonconforming
mesh between the rectangular mesh and the buffer zone. An electric dipole line source
with the BHW pulse marked as an arrow is placed between the strips at the upper left
corner. The receiver is placed at the other end of the strips. This case is therefore a TEz

case with the electric field perpendicular to the z axis.

We carry out the time integration for 8000 steps by the proposed hybrid FDTD/FETD
scheme with a denser mesh and a coarser mesh as shown in Fig. 7. Fig. 8 shows the
numerical results by the proposed hybrid FDTD/FETD with a denser mesh and a coarser
mesh, from which we can clearly see that these two results are reasonable.
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(a) (b)

(c)

Figure 7: Two PEC strips with a 90◦ cor-
ner excited by an electric dipole source (red
arrow) between the strips (TEz case). The
receiver is shown at the opposite end from
the source (blue arrow). (a) Geometry. (b)
A coarser mesh. (c) A denser mesh.
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Figure 8: Transverse electric field component Et versus time at the end of the strips in Fig. 7 as calculated by
a coarser mesh and by a denser mesh.
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Figure 9: Part of the mesh for the hybrid FDTD/FETD method for two dielectric square cylinders (ǫr = 4) in
an unbounded region. Triangular elements are used in two FETD subdomains to model the tilted dielectric
cylinders, while a rectangular grid is used in the FDTD region for the homogeneous area.

3.5 Two dielectrics in an open area

As shown in Fig. 9, two square dielectric cylinders (ǫr = 4) with side length 0.25 m are
both rotated at a 45◦ angle with respect to the x axis and placed side by side in an un-
bounded domain. The centers of the two dielectrics are located at (−

√
2, 0) and (

√
2,

0) m, respectively. The outer boundary is modeled as an absorbing boundary condition
through the perfectly matched layer (PML). The computational domain is meshed by an
FDTD region outside (∆x=0.0354, ∆y=0.0354 m), while the two square dielectric cylin-
ders are discretized by two triangular FETD meshes. The FETD buffer zones with one
cell thick surrounding the FETD subdomains coincide with the FDTD grid. The FETD
meshes are non-conformal to the outer FDTD grid. An electric line source with the BHW
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Figure 10: Comparison of the results from the hybrid FETD-FDTD method and from the reference FDTD
solution with a fine grid for the problem in Fig. 9. Top: Ez versus time. Bottom: Relative difference normalized
by the peak value of Ez.



B. Zhu, J. Chen, W. Zhong and Q. H. Liu / Commun. Comput. Phys., 9 (2011), pp. 828-842 841

pulse is located at (−3
√

2/2, 0) m, while the receiver is located at (3
√

2/2, 0) m.
We carry out the time integration for 8000 steps by the proposed hybrid FDTD/FETD

scheme with ∆t = 3.5236 ps for this TEz case. The numerical result for Ez is shown in
Fig. 10. For comparison we also plot the reference numerical result by the FDTD method
with a much finer grid. From this figure we observe that the two results agree well.

4 Conclusions

We propose a new hybrid scheme to combine the finite difference time-domain method
and finite element time method for transient electromagnetic simulations. This method
allows multiple FETD subdomains and the mesh can be arbitrary non-conformal be-
tween different subdomains. Thus, the mesh in the proposed method can be flexible
and efficient for a large number of realistic problems and it is much easier for mesh-
ing during preprocessing than the conventional FDTD method or FETD method because
different subdomains can be meshed independently. By dividing a large domain into sev-
eral smaller subdomains the proposed method can solve much larger problems than the
conventional FETD methods without sacrificing accuracy. To the best of our knowledge,
this is a new method in the hybridization of FDTD and FETD methods for multiscale
electromagnetic simulations. Numerical examples demonstrate the effectiveness of this
method.
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