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Abstract. In this paper we consider two commonly used classes of finite volume
weighted essentially non-oscillatory (WENO) schemes in two dimensional Cartesian
meshes. We compare them in terms of accuracy, performance for smooth and shocked
solutions, and efficiency in CPU timing. For linear systems both schemes are high
order accurate, however for nonlinear systems, analysis and numerical simulation re-
sults verify that one of them (Class A) is only second order accurate, while the other
(Class B) is high order accurate. The WENO scheme in Class A is easier to implement
and costs less than that in Class B. Numerical experiments indicate that the resolution
for shocked problems is often comparable for schemes in both classes for the same
building blocks and meshes, despite of the difference in their formal order of accuracy.
The results in this paper may give some guidance in the application of high order finite
volume schemes for simulating shocked flows.

AMS subject classifications: 65M08
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1 Introduction and the setup of the schemes

In this paper we are interested in numerically solving two dimensional conservation law
systems

ut+ f (u)x+g(u)y =0 (1.1)
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with suitable initial and boundary conditions, using the finite volume schemes on Carte-
sian meshes. For this purpose, the computational domain is decomposed to rectangular
cells

Ωij =[xi−1/2,xi+1/2]×[yj−1/2,yj+1/2],

and for simplicity we assume the mesh sizes ∆x= xi+1/2−xi−1/2 and ∆y=yj+1/2−yj−1/2

are constants. This assumption is not essential: finite volume schemes in this paper can
be defined on arbitrary Cartesian meshes, even those with abrupt changes in mesh sizes,
without affecting their conservation, accuracy and stability, in contrast to high order con-
servative finite difference schemes which can only be defined on smooth meshes. Finite
volume schemes are also easier to implement in an adaptive mesh environment, for ex-
ample in the AMR type schemes (e.g., [18]). This is the main reason that high order
finite volume schemes are still commonly used in practice, even though high order finite
difference schemes are much less expensive in multi-dimensions in uniform or smooth
Cartesian meshes, see for example [3] for a comparison of finite volume and finite differ-
ence schemes in the context of essentially non-oscillatory (ENO) reconstructions.

In a finite volume scheme we seek approximations to the cell averages

¯̃ui,j =
1

∆x∆y

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

u(x,y)dxdy. (1.2)

We use the notation ū to denote the cell averaging operation in the x-direction (integral
in the cell [xi−1/2,xi+1/2] divided by the cell size ∆x), and ũ to denote the cell averaging
operation in the y-direction. The two dimensional cell average ¯̃u can be obtained by
successively performing the cell averaging operators in x and in y. If we integrate the
conservation law (1.1) over the cell Ωij and then divide by its area, we obtain
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+

1

∆x

(

f̃i+ 1
2 ,j− f̃i− 1

2 ,j

)

+
1

∆y

(
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where ¯̃ui,j is the cell average (1.2) and
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2 ,j =
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)

dx (1.4b)

are the physical fluxes, which are cell averages of f (u) in y at x= xi+1/2 and of g(u) in x
at y= yj+1/2 respectively. Although (1.3) looks like a scheme, we should emphasize that
it is actually an equality satisfied by the exact solution of the PDE (1.1).

Notice that the equality (1.3) describes the evolution of the cell averages ¯̃ui,j while
requiring the information of point values of the solution u in evaluating the physical
fluxes in (1.4a) and (1.4b). In order to convert the equality (1.3) to a scheme (commonly
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referred to as a finite volume scheme, since it solves for the cell averages ¯̃ui,j rather than
point values of the solution) in the following form

d ¯̃ui,j

dt
+

1

∆x

(

f̂i+ 1
2 ,j− f̂i− 1

2 ,j

)

+
1

∆y

(

ĝi,j+ 1
2
− ĝi,j− 1

2

)

=0, (1.5)

we must use a reconstruction procedure to obtain the approximate fluxes f̂i+1/2,j and ĝi,j+1/2

in (1.5) as accurate approximations to the physical fluxes f̃i+1/2,j and ḡi,j+1/2 in (1.4a) and
(1.4b).

We consider two classes of finite volume schemes in this paper. Both of them depend
crucially on the following one-dimensional reconstruction procedure.

One-dimensional reconstruction procedure

Given the cell averages

ūi =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

u(x)dx

of a piecewise smooth function u(x), the procedure uses these cell averages in several
neighboring cells ūi−ℓ,··· ,ūi+k (the collection of these neighboring cells is referred to as
the stencil of the reconstruction) to obtain an approximation to the point value u(xi+1/2)
at the cell interface or at another point u(x∗) where x∗ is in the cell [xi−1/2,xi+1/2]. We
require the reconstruction to be high order accurate when u(x) is smooth in the stencil,
and to be essentially non-oscillatory near discontinuities.

Such reconstruction procedure has been extensively studied in the literature, among
high order ones we mention the essentially non-oscillatory (ENO) reconstruction [6] and
the weighted ENO (WENO) reconstruction [8, 9]. In the appendix we list the fifth order
WENO reconstruction procedure [8] that we use in this paper. More details about WENO
reconstruction can be found in, e.g., [10,13,14]. Further development of ENO and WENO
schemes can be found, in, e.g., [2, 7, 12].

For a given physical flux f (u), based on monotonicity in the scalar case and on char-
acteristic information and Riemann solvers in the system case, we can define a numerical
flux f̂ (u−,u+) where u− and u+ approximate the left and right limits of the function u
respectively. The numerical flux f̂ (u−,u+) is at least Lipschitz continuous for both argu-
ments, and is consistent with the physical flux in the sense that f̂ (u,u)= f (u). Examples
of numerical fluxes for systems of conservation laws in fluid dynamics can be found in,
e.g., [11, 16]. In this paper we use the Lax-Friedrichs flux and the HLLC flux as represen-
tative examples.

In the construction of finite volume schemes we often need to use a q-point Gaussian
quadrature to approximate line integrals such as those in (1.4a) and (1.4b):
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where βk are the Gaussian quadrature weights, and yk
j and xk

i are the Gaussian quadra-

ture points. In this paper we consider only schemes up to fifth order accuracy, hence q=3
suffices.

We are now ready to define the two classes of finite volume schemes that we will
study in this paper. The first class (Class A) of these methods has the following algorithm
flowchart:

Finite volume scheme, Class A

1. Using the two dimensional cell averages ¯̃ui,j, perform a one-dimensional reconstruc-
tion procedure in y to obtain a high order accurate approximation to the cell average of
u in x at y=yj+1/2, denoted by ūi,j+1/2. For the purpose of upwinding and stability, typ-
ically two different approximations, denoted by ū−

i,j+1/2 and ū+
i,j+1/2, based on stencils

biased to the left and to the right respectively, are obtained.

2. Using the two dimensional cell averages ¯̃ui,j, perform a one-dimensional recon-
struction procedure in x to obtain a high order accurate approximation to the cell average
of u in y at x= xi+1/2, denoted by ũi+1/2,j. Again, two different approximations, denoted
by ũ−

i+1/2,j and ũ+
i+1/2,j, based on stencils biased to the left and to the right respectively,

are obtained.

3. Form the approximate fluxes simply as

f̂i+ 1
2 ,j = f̂

(

ũ−
i+ 1

2 ,j
,ũ+

i+ 1
2 ,j

)

, ĝi,j+ 1
2
= ĝ

(

ū−
i,j+ 1

2

,ū+
i,j+ 1

2

)

. (1.7)

4. Obtain the finite volume scheme (1.5), then discretize it in time by the TVD Runge-
Kutta time discretization [15]. We use the third order version in the numerical tests per-
formed in this paper.

This finite volume scheme is very simple and efficient, and hence is widely used in
applications. However, this scheme is only second order accurate for general nonlinear
systems (systems in which the physical fluxes f (u) and g(u) are nonlinear functions of u),
regardless of the order of accuracy in the one-dimensional reconstruction procedure used
in Steps 1 and 2 above. The problem arises in the approximation of the fluxes in Step 3
above, both in the sense of using line averages as inaccurate approximations to the point
values in the numerical fluxes and in the sense of inaccurate numerical quadrature. We
will give a proof of the second order accuracy of the Class A schemes in the Appendix.
Numerical experiments in next section clearly demonstrate this second order accuracy.
There is however an important exception. If the system is linear (that is, the physical
fluxes f (u)= Au and g(u)= Bu, where A and B are constant matrices), such as the linear
Maxwell equations and linearized Euler equations, the same high order accuracy as in
the one-dimensional reconstruction is achieved, see the Appendix for a proof and next
section for numerical verification.

The second class (Class B) of the finite volume methods that we will study in this
paper has the following algorithm flowchart:
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Finite volume scheme, Class B

1. Using the two dimensional cell averages ¯̃ui,j, perform a one-dimensional reconstruc-
tion procedure in y to obtain a high order accurate approximation to the cell average of
u in x at y=yj+1/2, denoted by ūi,j+1/2. For the purpose of upwinding and stability, typ-
ically two different approximations, denoted by ū−

i,j+1/2 and ū+
i,j+1/2, based on stencils

biased to the left and to the right respectively, are obtained. This step is the same as the
first step for the finite volume scheme in Class A.

2. Using the one dimensional cell averages ū±
i,j+1/2, perform a one-dimensional re-

construction procedure in x to obtain a high order accurate approximation to the point
values of u at the Gaussian quadrature points xk

i , denoted by u±
ik,j+1/2.

3. Using the two dimensional cell averages ¯̃ui,j, perform a one-dimensional recon-
struction procedure in x to obtain a high order accurate approximation to the cell average
of u in y at x= xi+1/2, denoted by ũi+1/2,j. Again, two different approximations, denoted
by ũ−

i+1/2,j and ũ+
i+1/2,j, based on stencils biased to the left and to the right respectively,

are obtained. This step is the same as the second step for the finite volume scheme in
Class A.

4. Using the one dimensional cell averages ũ±
i+1/2,j, perform a one-dimensional recon-

struction procedure in y to obtain a high order accurate approximation to the point values
of u at the Gaussian quadrature points yk

j , denoted by u±
i+1/2,jk

.

5. Form the approximate fluxes using the Gaussian quadrature (1.6):

f̂i+ 1
2 ,j =
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βk f̂
(
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2 ,jk
,u+
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)

, ĝi,j+ 1
2
=

q
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k=1
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(
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ik,j+ 1

2

,u+
ik,j+ 1

2

)

. (1.8)

6. Obtain the finite volume scheme (1.5), then discretize it in time by the TVD Runge-
Kutta time discretization [15].

Comparing with the finite volume scheme in Class A, we can observe that the finite
volume scheme in Class B is more complicated and more costly, because of the additional
reconstructions in Steps 2 and 4 and the Gaussian quadrature sums in Step 5. However,
these additional reconstructions and quadratures are necessary to obtain high order ap-
proximations to the necessary point values of the solution at suitable quadrature points
from the knowledge of two-dimensional cell averages, which are the only information
available in a finite volume scheme. The scheme in Class B is genuinely high order accu-
rate for nonlinear systems. We will give a proof of this fact in the Appendix. Numerical
experiments in next section clearly demonstrate the high order accuracy.

The focus of this paper is on spatial discretization. We use the same third order TVD
Runge-Kutta time discretization for a fair comparison among different spatial discretiza-
tions. For more options of time discretization techniques, with improvements in accuracy
or efficiency over the third order version used in this paper, we refer to [4].
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2 Numerical experiments

We use the two dimensional Euler equations for compressible gas dynamics, namely (1.1)
with

u=









ρ

ρv
ρw
E









, f (u)=









ρv
ρv2+p

ρvw
v(E+p)









, g(u)=









ρw
ρvw

ρw2+p
w(E+p)









,

where ρ is the density, (v,w) is the velocity, E is the total energy, i.e.,

E=
p

γ−1
+

1

2
ρ(v2+w2),

where p is the pressure, with γ = 1.4 in our computation. The two classes of finite vol-
ume WENO schemes considered in the previous section are compared for accuracy (both
linear and nonlinear cases), resolution for shocked solutions, and CPU costs. Time dis-
cretization is by the third order TVD Runge-Kutta method [15], with a suitably reduced
time step for the accuracy tests so that spatial errors dominate.

In some of the tests we also compare the results with those obtained with a traditional
second order TVD scheme [5], which is similar to the Class A scheme except that the
reconstructions in Steps 1 and 2 are produced using a piecewise linear polynomial with
a minmod limiter, and the time discretization is by the second order TVD Runge-Kutta
method in [15]. We use the HLLC numerical flux and do not perform local characteristic
decompositions for this scheme. We will refer to this scheme as Class C below. It will be
observed that, even though both Class A and Class C schemes are formally second order
accurate for nonlinear problems, the results from the Class A scheme are usually much
more accurate on the same mesh.

Example 2.1. The initial condition is set to be



















ρ(x,y,0)=1+0.5sin(π(x+y)),

v(x,y,0)=1,

w(x,y,0)=1,

p(x,y,0)=1,

(2.1)

with periodic boundary conditions. The exact solution is



















ρ(x,y,0)=1+0.5sin(π(x+y−2t)),

v(x,y,0)=1,

w(x,y,0)=1,

p(x,y,0)=1.

(2.2)

It is easy to check that, in this special case, the Euler equations actually become a linear
system.
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Table 1: Example 2.1. L1 errors and orders of accuracy for density. Class A finite volume scheme.

Lax-Friedrichs Flux HLLC Flux
h CFL Error Order Error Order

2/20 0.9 7.31E-04 7.25E-04
2/40 0.8 2.36E-05 4.95 2.34E-05 4.95
2/80 0.6 7.60E-07 4.96 7.53E-07 4.96

2/160 0.5 2.60E-08 4.87 2.58E-08 4.87
2/320 0.3 7.95E-10 5.03 7.89E-10 5.03

Table 2: Example 2.1. L1 errors and orders of accuracy for density. Class B finite volume scheme.

Lax-Friedrichs Flux HLLC Flux
h CFL Error Order Error Order

2/20 0.9 1.87E-03 7.25E-04
2/40 0.8 6.12E-05 4.93 2.34E-05 4.95
2/80 0.6 1.94E-06 4.98 7.53E-07 4.96

2/160 0.5 6.28E-08 4.95 2.58E-08 4.87
2/320 0.3 1.95E-09 5.01 7.88E-10 5.03

The computational domain is taken as [−1,1]×[−1,1]. We use uniform meshes with
∆x = ∆y = h, and give the results with both the Lax-Friedrichs and the HLLC fluxes at
time t=2.0 in Tables 1 and 2. Clearly, for this linear system case both classes of the finite
volume schemes are fifth order accurate.

This example is often used in the literature to test accuracy of schemes. As we can
see here, this is not a stringent test case. The Class A finite volume scheme, which is only
second order accurate for general nonlinear problems, easily passes this test as a fifth
order scheme.

Table 3: Example 2.1. CPU time (in seconds) for both classes of finite volume schemes.

Lax-Friedrichs Flux HLLC Flux
h Class A Class B Ratio Class A Class B Ratio

2/20 0.41 1.77 4.31 0.46 1.90 4.13
2/40 3.51 15.25 4.34 3.96 16.33 4.12
2/80 36.97 158.51 4.29 41.57 170.32 4.10

2/160 351.63 1504.30 4.28 396.45 1615.41 4.07
2/320 6014.95 20340.81 3.38 6641.45 21856.00 3.29

The CPU time used for both classes of the finite volume WENO schemes is listed in
Table 3. Here and below the CPU time is measured on a 1.5GHz Itanium 2 Madison
64 bit CPU. We can see that the Class B finite volume WENO scheme uses about 3 to
4 times more CPU time than the Class A scheme on the same mesh. This is consistent
with operation counts of these two classes of schemes (we do not give explicit operation
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Table 4: Example 2.1. L1 errors and orders of accuracy for density, and CPU time (in seconds). CFL=0.8.
Traditional second order Class C scheme.

h Error Order CPU time
2/20 5.11E-02 0.16
2/40 2.28E-02 1.16 1.31
2/80 6.70E-03 1.77 10.10

2/160 1.91E-03 1.81 86.55
2/320 5.15E-04 1.89 718.36

counts here to save space; they can be easily obtained from the algorithm flowcharts
given in Section 1).

In Table 4, we list the L1 errors and orders of accuracy for the density and the CPU
time used for the traditional second order scheme (Class C). We observe that the CPU
time is much smaller than that of either Class A or Class B for the same mesh, but the
magnitudes of the error are much larger. For this particular example, to reach an error
threshold below 10−4, both Class A and Class B schemes will cost less CPU time than the
Class C scheme.

Example 2.2. (2D vortex evolution). This example [13] is a nonlinear example, for which
we can observe different orders of accuracy for the two classes of finite volume WENO
schemes. The setup of the problem is as following. The mean flow is ρ=1, p=1, (v,w)=
(1,1), and the computational domain is [0,10]×[0,10]. We add, to the mean flow, an
isentropic vortex, which corresponds to perturbations in (v,w) and the temperature T =
p/ρ and no perturbation in the entropy S= p/ργ:

(δv,δw)=
ε

2π
e0.5(1−r2)(−ȳ, x̄), δT =−

(γ−1)ε2

8γπ2
e1−r2

, δS=0,

where (x̄,ȳ)= (x−5,y−5), r2 = x̄2+ ȳ2, and the vortex strength ε =5. Periodic boundary
condition is used, which has little effect on the solution since the vortex is close to zero at
the initial boundary. It is clear that the exact solution is just the passive convection of the
vortex with the mean velocity. The errors at time t =0.2 calculated by the two classes of
finite volume WENO schemes are listed in Tables 5 and 6, respectively. We can observe
clearly that the accuracy for the Class A finite volume scheme is only second order, while
the accuracy for the Class B scheme is fifth order. The errors and orders of accuracy for
the traditional second order Class C scheme are listed in Table 7. Even though both Class
A and Class C schemes are second order accurate for this example, the error magnitudes
of the Class A scheme is much smaller than that of the Class C scheme on the same mesh.
In fact, for this particular example, the errors of the Class C scheme with 6402 cells are
larger than that of the Class A scheme with 802 cells. This translates to a saving in CPU
time even though the Class A scheme is much more expensive than the Class C scheme
on the same mesh.
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Table 5: Example 2.2. L1 errors and orders of accuracy for density. Class A finite volume scheme.

Lax-Friedrichs Flux HLLC Flux
h CFL Error Order Error Order

10/40 0.8 6.38E-05 5.45E-05
10/80 0.6 5.24E-06 3.61 4.51E-06 3.60

10/160 0.5 5.81E-07 3.17 5.67E-07 2.99
10/320 0.3 1.38E-07 2.07 1.38E-07 2.04
10/640 0.1 3.46E-08 2.00 3.46E-08 2.00

Table 6: Example 2.2. L1 errors and orders of accuracy for density. Class B finite volume scheme.

Lax-Friedrichs Flux HLLC Flux
h CFL Error Order Error Order

10/40 0.8 7.99E-05 5.39E-05
10/80 0.6 6.54E-06 3.61 3.98E-06 3.76

10/160 0.5 2.20E-07 4.90 1.20E-07 5.06
10/320 0.3 4.83E-09 5.51 2.69E-09 5.48
10/640 0.1 1.31E-10 5.21 7.44E-11 5.18

Table 7: Example 2.2. L1 errors and orders of accuracy for density. CFL=0.8. Traditional second order Class
C scheme.

h Error Order
10/40 6.34E-04
10/80 2.32E-04 1.45

10/160 8.45E-05 1.46
10/320 2.77E-05 1.61
10/640 8.59E-06 1.69

Example 2.3. We add suitable source terms to the right-hand side of the Euler equations
such that the following smooth functions are exact solutions of the resulting nonlinear
PDE system



















ρ(x,y,t)=1+0.5sin(π(x+y−3t)),

v(x,y,t)=cos(π(x+2y+2t)),

w(x,y,t)=1−0.5sin(π(2x+y−3t)),

p(x,y,t)=1+0.5sin(π(x−y+4t)).

The computational domain is [−1,1]×[−1,1] and periodic boundary condition is applied.
The error at time t = 3.0 calculated by the two classes of finite volume WENO schemes
are listed in Tables 8 and 9, respectively. We observe once more that the accuracy for
the Class A finite volume scheme is only second order, while the accuracy for the Class
B scheme is fifth order. In Table 10, we list the error at time t = 3.0 calculated by the
traditional second order Class C scheme. We again observe that, even though both Class
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Table 8: Example 2.3. L1 errors and orders of accuracy for density. Class A finite volume scheme.

Lax-Friedrichs Flux HLLC Flux
h CFL Error Order Error Order

2/20 0.8 9.72E-02 1.03E-01
2/40 0.6 9.76E-02 0.00 9.88E-02 0.06
2/80 0.5 3.19E-02 1.61 3.14E-02 1.65
2/160 0.3 8.07E-03 1.98 8.04E-03 1.96
2/320 0.1 2.04E-03 1.98 2.05E-03 1.97

Table 9: Example 2.3. L1 errors and orders of accuracy for density. Class B finite volume scheme.

Lax-Friedrichs Flux HLLC Flux
h CFL Error Order Error Order

2/20 0.8 9.98E-02 9.68E-02
2/40 0.6 6.93E-02 0.52 6.15E-02 0.65
2/80 0.5 7.38E-03 3.23 3.66E-03 4.07
2/160 0.3 2.64E-04 4.81 1.11E-04 5.05
2/320 0.1 8.17E-06 5.01 3.43E-06 5.01

Table 10: Example 2.3. L1 errors and orders of accuracy for density. Traditional second order Class C scheme.
CFL=0.8, t=3.0.

h Error Order
2/20 1.00E-01
2/40 1.26E-01 -0.33
2/80 6.58E-02 0.94

2/160 2.50E-02 1.40
2/320 7.41E-03 1.75

A and Class C schemes are second order accurate, the error magnitudes of the Class A
scheme is much smaller than that of the Class C scheme on the same mesh.

In Fig. 1, we plot the relationship between the L1 error of density and CPU time for
all classes of schemes in this example. Even though, on the same mesh, the Class B finite
volume WENO scheme uses about 3 to 4 times more CPU time than the Class A scheme,
and the Class A finite volume WENO scheme uses about 3 to 4 times more CPU time
than the traditional second order Class C scheme, to reach a given error tolerance below
2.0×10−3, the Class B scheme uses the least less CPU time, the Class A scheme follows
in CPU cost, and the Class C scheme is the most expensive. This is consistent with the
general conclusions about high order schemes: they are more economical when high
precision simulation is required.

Example 2.4. (Oblique Lax shock tube). The purpose of this test is to assess the capability
of the two classes of WENO schemes in resolving waves that are oblique to the computa-
tional mesh. The two dimensional Lax problem is solved where the initial jump makes an
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Figure 1: Example 2.3. L1 error of density versus CPU time for all schemes.

angle θ against x-axis (0<θ6π/2). If θ=π/2, we have the one-dimensional Lax problem.
If 0< θ < π/2, all the waves produced will be oblique to the rectangular computational
mesh. We take our computational domain to be [0,14]×[0,14], and θ = π/4. The initial
jump starts at (x,y)=(0,0). That is, initially we have

(ρ,v,w,p)=







(

0.445,0.698cos
(

− π
4

)

,0.698sin
(

− π
4

)

,3.528
)

, if x<y,

(0.5,0,0,0.571), otherwise.
(2.3)

The solution is computed up to t=1.3 for the mesh size ∆x=∆y=1/30.
We show in Fig. 2 the densities at y=7. The solid lines are the exact solution. We can

observe that both classes of the finite volume WENO scheme give visually similar results
on the same meshes, despite of their different formal order of accuracy.
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Figure 2: Oblique Lax shock tube. Density at y = 7. ∆x = ∆y = 1/30, CFL=0.6, HLLC flux. Left: Class A
WENO; Right: Class B WENO.
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(a) ∆x =∆y=1/160, Class A WENO

 0  0.5  1  1.5  2  2.5  3
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b) ∆x =∆y=1/160, Class B WENO

 0  0.5  1  1.5  2  2.5  3
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
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(d) ∆x =∆y=1/320, Class B WENO

Figure 3: Flow past a forward facing step. 30 contours from 0.1 to 6.6, Lax-Friedrichs flux. CFL=0.6.

Example 2.5. (A Mach 3 wind tunnel with a step). This model problem has been carefully
examined in Woodward and Colella [17] and later by many others. The setup of the
problem is the following. The wind tunnel is 1 length unit wide and 3 length units long.
The step is 0.2 length unit high and is located 0.6 length units from the left-hand end of
the tunnel. The problem is initialized by a right going Mach 3 flow. Reflective boundary
conditions are applied along the walls of the tunnel and in-flow and out-flow boundary
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conditions are applied at the entrance (left-hand end) and the exit (right-hand end). For
the treatment of the singularity at the corner of the step, we adopt the same technique
used in [17], which is based on the assumption of a nearly steady flow in the region near
the corner. The numerical results are shown in Fig. 3, for the mesh sizes ∆x=∆y=1/160
and 1/320. We can observe that both classes of the finite volume WENO scheme give
visually similar results on the same meshes, despite of their different formal order of
accuracy.

Example 2.6. (Double Mach reflection of a strong shock). The computational domain
for this problem is chosen to be [0,4]×[0,1]. The reflecting wall lies at the bottom of the
computational domain starting from x = 1/6. Initially a right-moving Mach 10 shock
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(c) Blow-up regions near the Mach stem for details. Left: Class A WENO; Right: Class B WENO

Figure 4: Result for the double Mach reflection. ∆x = ∆y=1/480, CFL=0.8, Class A WENO (a) and Class B
WENO (b), HLLC flux.
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(c) Blow-up regions near the Mach stem for details. Left: Class A WENO; Right: Class B WENO

Figure 5: Result for the double Mach reflection. ∆x = ∆y=1/960, CFL=0.8, Class A WENO (a) and Class B
WENO (b), HLLC flux.

is positioned at x = 1/6, y = 0, and makes a 60◦ angle with the x-axis. For the bottom
boundary, the exact postshock condition is imposed for the part from x = 0 to x = 1/6
and a reflective boundary condition is used for the rest. At the top boundary of our
computational domain, the flow values are set to describe the exact motion of the Mach
10 shock. See [17] for a detailed description of the problem.

We give the results of both classes of the finite volume WENO schemes in Fig. 4 with
∆x = ∆y = 1/480. The results with ∆x = ∆y = 1/960 are given in Fig. 5. Again, we can
observe that both classes of the finite volume WENO scheme give comparable resolutions
on the same meshes, despite of their different formal order of accuracy. We also present
the results of the traditional second order Class C scheme in Fig. 6. Even though both
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Figure 6: Result for the double Mach reflection. Traditional second order Class C scheme. CFL=0.8. ∆x =
∆y=1/480 (a) and ∆x=∆y=1/960 (b).

Class A and Class C schemes are formally second order accurate, it is clear that the Class
A result with ∆x=∆y=1/480 is better than that of Class C with the finer mesh ∆x=∆y=
1/960, in terms of resolving the ”roll-ups” of the slip lines.

3 Conclusions

Two classes of finite volume WENO schemes are discussed and tested in this paper. We
observe numerically and prove theoretically that they are both high order accurate for
linear systems, however the Class A schemes are only second order accurate for nonlinear
systems, while the Class B schemes are still high order accurate. The conclusion holds for
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any two point consistent numerical flux, we have tested the Lax-Friedrichs flux and the
HLLC flux and have observed no major difference. The operation count and CPU timing
for the Class B schemes are about 3 to 4 times of those for the Class A schemes on the same
mesh. However, for high precision simulation of smooth flows, Class B schemes could
take less CPU time to reach the same error threshold than Class A schemes. For problems
with shocks, at least for the test problems that we have experimented in this paper, the
two classes of finite volume schemes give comparable resolution on the same meshes,
despite of their difference in formal order of accuracy. Results in this paper might shed
some light on the popularity of Class A schemes in applications.

We have also performed some comparison with the traditional second order TVD
scheme based on piecewise linear reconstructions, termed Class C scheme in Section 2.
Even though both Class A and Class C schemes are formally second order accurate for
nonlinear problems, the Class A scheme has much more accurate solutions on the same
mesh than the Class C scheme. If we would like to reach a low error threshold or to
achieve resolution for fine structures in the solution (e.g., to resolve the ”roll-ups” of the
slip lines in the double Mach reflection problem), the Class A scheme may need less CPU
time than the Class C scheme since the former can use a much coarser mesh.
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Appendix

In this appendix we describe briefly the fifth order WENO reconstruction procedure, and
prove the orders of accuracy for the two classes of WENO schemes studied in this paper.

A.1 Fifth order WENO reconstruction

We use the fifth-order WENO reconstruction procedure, described in [8]. Lower or higher
order reconstructions are also possible, see for example those in [1, 9].

For a piecewise smooth function v(x), we denote v̄i as its cell average. The fifth-order
accurate reconstruction with a left-biased stencil is defined as

v−
j+ 1

2

=ω0v0+ω1v1+ω2v2, (A.1)

where vk are the reconstructed values obtained from cell averages in the k-th stencil Sk =
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(j−k, j−k+1, j−k+2):

v0 =
1

6
(−v̄i+2+5v̄i+1+2v̄i), (A.2a)

v1 =
1

6
(2v̄i+1+5v̄i− v̄i−1), (A.2b)

v2 =
1

6
(11v̄i−7v̄i−1+2v̄i−2), (A.2c)

and ωk, k=0,1,2 are the nonlinear WENO weights given by

ωk =
αk

∑
2
l=0αl

, α0 =
0.3

(ε+ IS0)2
, α1 =

0.6

(ε+ IS1)2
, α2 =

0.1

(ε+ IS2)2
. (A.3)

Here ε is a small parameter which we take as ε = 10−6 in our numerical tests. We refer
also to [7] for a discussion of the effect of ε on the accuracy for various WENO strategies.
The smoothness indicators ISk are given by [8]

IS0 =
13

12
(v̄i−2v̄i+1+ v̄i+2)

2+
1

4
(3v̄i−4v̄i+1+ v̄i+2)

2, (A.4a)

IS1 =
13

12
(v̄i−1−2v̄i+ v̄i+1)

2+
1

4
(v̄i−1− v̄i+1)

2, (A.4b)

IS2 =
13

12
(v̄i−2−2v̄i−1+ v̄i)

2+
1

4
(v̄i−2−4v̄i−1+3v̄i)

2. (A.4c)

The right-biased reconstruction v+
i+1/2 is obtained by symmetry with respect to the loca-

tion i+1/2. Reconstructions to values v(x∗) for x∗ inside the interval [xi−1/2,xi+1/2] can
be obtained along the same lines, in fact only the formulas for the reconstructed values
obtained from the small stencils in (A.2) and the linear weights (0.3, 0.6 and 0.1) in (A.3)
would change. We refer to, e.g., [10] for more details.

For the systems of conservation laws, a local characteristic decomposition is used in
the reconstruction. We refer to [8, 13] for more details.

A.2 Accuracy for the two classes of finite volume WENO schemes

Theorem A.1. The Class B finite volume WENO scheme is accurate to the order of accuracy of
the reconstruction and quadrature rules.

Proof. We take as an example the case of a fifth order reconstruction and three point
quadrature rules used in this paper. The proof for the general case is the same. The
values u±

i+1/2,jk
at the Gaussian points in (1.8) are reconstructed by the fifth-order WENO

procedure, which yields

u±
i+ 1

2 ,jk
=u(xi+ 1

2
,yk

j )+O(∆x5+∆y5), (A.5)



824 R. Zhang, M. Zhang and C.-W. Shu / Commun. Comput. Phys., 9 (2011), pp. 807-827

where u(x,y) is the exact solution of the PDE (we have suppressed the t variable for
simplicity, as we are considering truncation errors in space only). Since the numerical
flux f̂ is Lipschitz continuous, we have

| f̂ (u−
i+ 1

2 ,jk
,u+

i+ 1
2 ,jk

)− f (u(xi+ 1
2
,yk

j ))|

=| f̂ (u−
i+ 1

2 ,jk
,u+

i+ 1
2 ,jk

)− f̂ (u(xi+ 1
2
,yk

j ),u(xi+ 1
2
,yk

j ))|

6| f̂ (u−
i+ 1

2 ,jk
,u+

i+ 1
2 ,jk

)− f̂ (u−
i+ 1

2 ,jk
,u(xi+ 1

2
,yk

j ))|

+| f̂ (u−
i+ 1

2 ,jk
,u(xi+ 1

2
,yk

j ))− f̂ (u(xi+ 1
2
,yk

j ),u(xi+ 1
2
,yk

j ))|

6L
(

|u+
i+ 1

2 ,jk
−u(xi+ 1

2
,yk

j )|+|u−
i+ 1

2 ,jk
−u(xi+ 1

2
,yk

j )|
)

=O(∆x5+∆y5). (A.6)

The error for the 3-point Gaussian integration in (1.6) is

f̃i+ 1
2 ,j =

3

∑
k=1

βk f (u(xi+ 1
2
,yk

j ))+O(∆y6). (A.7)

So we can get the error of the flux f̂i+1/2,j in (1.8) as

f̃i+ 1
2 ,j = f̂i+ 1

2 ,j+O(∆x5+∆y5). (A.8)

Assuming the leading term in the error O(∆x5+∆y5) in (A.8) is smooth, we have

1

∆x
( f̃i+ 1

2 ,j− f̃i− 1
2 ,j)−

1

∆x
( f̂i+ 1

2 ,j− f̂i− 1
2 ,j)=O(∆x5+∆y5). (A.9)

Similarly, we have

1

∆y
(ḡi,j+ 1

2
− ḡi,j− 1

2
)−

1

∆y
(ĝi,j+ 1

2
− ĝi,j− 1

2
)=O(∆x5+∆y5). (A.10)

We can see from (A.9) and (A.10) that the local truncation error for the Class B WENO
scheme is fifth order.

Theorem A.2. The Class A finite volume WENO scheme is second order accurate for general
nonlinear conservation laws, but it is accurate to the order of the reconstruction and quadrature
rules for linear conservation laws with constant coefficients.

Proof. The values ũ±
i+1/2,j in (1.7) are reconstructed by the fifth order WENO procedure,

hence we have

ũ±
i+ 1

2 ,j
= ũi+ 1

2 ,j+O(∆x5). (A.11)
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By the Lipschitz continuity of the numerical flux f̂ , we have

| f̂i+ 1
2 ,j− f (ũi+ 1

2 ,j)|=| f̂ (ũ−
i+ 1

2 ,j
,ũ+

i+ 1
2 ,j

)− f̂ (ũi+ 1
2 ,j,ũi+ 1

2 ,j)|

6| f̂ (ũ−
i+ 1

2 ,j
,ũ+

i+ 1
2 ,j

)− f̂ (ũ−
i+ 1

2 ,j
,ũi+ 1

2 ,j)|

+| f̂ (ũ−
i+ 1

2 ,j
,ũi+ 1

2 ,j)− f̂ (ũi+ 1
2 ,j,ũi+ 1

2 ,j)|

6L
(

|ũ−
i+ 1

2 ,j
−ũi+ 1

2 ,j|+|ũ+
i+ 1

2 ,j
−ũi+ 1

2 ,j|
)

=O(∆x5). (A.12)

That is

f̂i+ 1
2 ,j = f (ũi+ 1

2 ,j)+O(∆x5). (A.13)

Therefore we have

f̂i+ 1
2 ,j− f̂i− 1

2 ,j

∆x
=

f (ũi+ 1
2 ,j)− f (ũi− 1

2 ,j)

∆x
+O(∆x5). (A.14)

Notice that the cell average of a function agrees with its value at the center of the cell to
second order:

ũi+ 1
2 ,j =u(xi+ 1

2
,yj)+O(∆y2), (A.15)

and

f̃i+ 1
2 ,j = f (u(xi+ 1

2
,yj))+O(∆y2), (A.16)

the combination of which gives

f (ũi+ 1
2 ,j)= f (u(xi+ 1

2
,yj)+O(∆y2))= f (u(xi+ 1

2
,yj))+O(∆y2). (A.17)

We now have

f̃i+ 1
2 ,j = f (ũi+ 1

2 ,j)+O(∆y2), (A.18)

which is the crucial source of second order error regardless of the order of reconstruction.
We have, therefore,

1

∆x
( f̃i+ 1

2 ,j− f̃i− 1
2 ,j)−

1

∆x
( f̂i+ 1

2 ,j− f̂i− 1
2 ,j)

=
1

∆x
( f̃i+ 1

2 ,j− f̃i− 1
2 ,j)−

1

∆x
( f (ũi+ 1

2 ,j)− f (ũi− 1
2 ,j))+O(∆x5)

=
1

∆x
( f̃i+ 1

2 ,j− f (ũi+ 1
2 ,j))−

1

∆x
( f̃i− 1

2 ,j− f (ũi− 1
2 ,j))+O(∆x5)

=O(∆x5)+O(∆y2), (A.19)

where f̂i+1/2,j is defined with (1.7).
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Similarly,

1

∆y
(ḡi,j+ 1

2
− ḡi,j− 1

2
)−

1

∆y
(ĝi,j+ 1

2
− ĝi,j− 1

2
)=O(∆x2)+O(∆y5). (A.20)

From (A.19) and (A.20), we can see that the scheme is only second order accurate.
Now, if f (u)= Au is linear, then

∫ y
j+ 1

2

y
j− 1

2

f (u(xi+ 1
2
,y))dy= f

(

∫ y
j+ 1

2

y
j− 1

2

u(xi+ 1
2
,y)dy

)

, (A.21)

that is, instead of (A.18) we now have

f̃i+ 1
2 ,j = f (ũi+ 1

2 ,j), (A.22)

thereby avoiding the crucial second order error. From (A.19), we can then get

1

∆x
( f̃i+ 1

2 ,j− f̃i− 1
2 ,j)−

1

∆x
( f̂i+ 1

2 ,j− f̂i− 1
2 ,j)=O(∆x5), (A.23)

which leads to fifth order in the local truncation error for this linear case.
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