
Commun. Comput. Phys.
doi: 10.4208/cicp.230909.160310s

Vol. 9, No. 3, pp. 542-567
March 2011

Variance-Based Global Sensitivity Analysis via

Sparse-Grid Interpolation and Cubature

Gregery T. Buzzard and Dongbin Xiu∗

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA.

Received 23 September 2009; Accepted (in revised version) 16 March 2010

Available online 17 September 2010

To the memory of David Gottlieb

Abstract. The stochastic collocation method using sparse grids has become a popular
choice for performing stochastic computations in high dimensional (random) parame-
ter space. In addition to providing highly accurate stochastic solutions, the sparse grid
collocation results naturally contain sensitivity information with respect to the input
random parameters. In this paper, we use the sparse grid interpolation and cubature
methods of Smolyak together with combinatorial analysis to give a computationally
efficient method for computing the global sensitivity values of Sobol’. This method al-
lows for approximation of all main effect and total effect values from evaluation of f on
a single set of sparse grids. We discuss convergence of this method, apply it to several
test cases and compare to existing methods. As a result which may be of independent
interest, we recover an explicit formula for evaluating a Lagrange basis interpolating
polynomial associated with the Chebyshev extrema. This allows one to manipulate
the sparse grid collocation results in a highly efficient manner.

AMS subject classifications: 41A10, 41A05, 41A63, 41A55

Key words: Stochastic collocation, sparse grids, sensitivity analysis, Smolyak, Sobol’.

1 Introduction

The growing popularity of computational models in various fields of science and engi-
neering has led to a corresponding growth in interest in methods to understand param-
eter spaces. A common task in developing a model is to find parameters p=(p1,··· ,pn)
to minimize some cost function, C(p), often a sum of squared differences between model
output and experimental data. This is a particularly difficult task when the dimensional-
ity of the parameter space is large and the dependence of C on p is nonlinear. Hence, the
development of efficient tools for reducing the size of the search space is vital.

∗Corresponding author. Email addresses: buzzard@math.purdue.edu (G. T. Buzzard), dxiu@math.purdue.
edu (D. Xiu)

http://www.global-sci.com/ 542 c©2011 Global-Science Press

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 543

Local sensitivity analysis, which computes partial derivatives ∂C/∂pj , may be used to
determine which parameters are relatively more important than others at a single point
in the parameter space. In contrast, global sensitivity analysis (GSA) seeks a measure of
relative importance over the entire parameter space. One approach to GSA is variance
based. With an appropriate measure, we may regard the parameter space as a probability
space and C as a random variable on this space. The sensitivity of C to a given parameter
pj is then

Varpj

(

E[C|pj]
)

Var(C)
,

where E[C|pj] is the expected value obtained by fixing a given value of pj and integrating
over the remaining variables, and Varpj

is the variance as a function of pj only. As noted
by Saltelli et al. (see [6] and the references therein), this quantity has appeared in various
formulations in many places in the literature.

Sobol’ [10] provides a particularly appealing formulation of this quantity as a special
case of a more general approach to GSA for arbitrary subsets of parameters. The measure
above, which is meant to capture the effect of the single parameter pj, is often called the
main effect due to pj. By considering other subsets containing pj, the sensitivity values of
Sobol’ can be used to identify interaction effects among multiple variables. For instance,
by considering the sum of all sensitivity values in which pj takes part, we obtain what
is often called the total effect due to pj. Sobol’ [10] describes a method for evaluating the
main effect values using Monte Carlo or quasi-Monte Carlo methods. Saltelli et al. [6]
give a Fourier analysis based method for computing both the main and total effects. This
is often called the Extended FAST method.

The problem we address in this paper is to use the values of a function computed
at the nodes of sparse grids to compute these sensitivity values efficiently. In practice,
these function values are obtained through an expensive computation such as solving a
large ODE system or a PDE, and these values are often used to construct an interpolat-
ing polynomial that approximates the function itself. Here we use both interpolation and
cubature with these values to obtain all the main effect and total effect values without fur-
ther simulation effort. To this end, we demonstrate that even though multi-dimensional
Lagrange interpolation polynomials are not easy to manipulate in general, a highly ef-
ficient sensitivity analysis based on the Sobol’ decomposition can be accomplished by
utilizing the properties of sparse grids and Chebyshev polynomials. Moreover, the algo-
rithm presented here retains the high order approximation accuracy from the sparse-grid
simulations and can be carried out completely offline.

For a detailed discussion of many approaches to sensitivity analysis as well as a dis-
cussion of the Extended FAST method and many additional references, see [8]. For other
approaches to improve the efficiency of computing sensitivity values, see [2, 4, 7, 11] and
references therein. In contrast to these methods, our method is based on the idea of
stochastic collocation (see, e.g., [16]), which has become popular since [16] introduced the
use of sparse grids in the stochastic collocation method. The use of sparse grids alleviates

544 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

(to some extent) the problem of the curse of dimensionality and allows us to approximate
even the total effect sensitivity values in relatively high dimensional parameter spaces.
For a detailed review of stochastic collocation methods and their relation to polynomial
chaos expansion, see [15].

Some advantages of our method over existing methods include greater accuracy, com-
putational efficiency, provable convergence rates for differentiable functions, the fact that
there are no choices required to tune the algorithm to a given application, the fact that
any of the sensitivity values may be approximated using the values of the function on
a single set of sparse grids, and the fact that these values may be used to construct an
interpolating polynomial that can act as a surrogate for the original function to guide
optimization. Here we focus on the main effect and total effect values, but our approach
may be applied in principle to any of the sensitivity values.

We note here that there are many choices of grids in the stochastic collocation ap-
proach. Here we focus on the sparse grids constructed using the Chebyshev extrema
because of their popularity in practical computations, high order accuracy, and ease of
construction. For a comparison of integration via sparse grids using various underlying
quadrature rules, see [3].

As a result which may be of independent interest, we give a formula that general-
izes the standard discrete orthogonality formula for Chebyshev polynomials evaluated
at their extrema (Proposition 4.1). We use this to recover an explicit formula for evalu-
ating a Lagrange basis interpolating polynomial associated with the Chebyshev extrema
(Corollary 4.1). This latter formula may be derived from Lemma 6.4 of [5], but perhaps
deserves greater attention since it allows for evaluation at any point in the interval [−1,1]
and has computational cost O(1), independent of the degree of the interpolating polyno-
mial. In Section 2, we review the orthogonal decomposition of Sobol’. In Section 3, we use
this decomposition to define the main and total effect sensitivity values and then prove
an integral formula (Proposition 3.1) that may be seen as a generalization of Parseval’s
Theorem for this decomposition. This proposition also allows us to derive formulas for
the desired sensitivity values. In Section 4, we review Chebyshev interpolation and the
associated quadrature method of Clenshaw-Curtis, then state and derive a closed-form
formula for the value at any point in [−1,1] of the Lagrange interpolating polynomial
associated with the Chebyshev extrema (Corollary 4.1). In Section 5, we review the ideas
of sparse grid interpolation and cubature, and in Section 6, we apply these ideas in two
different ways to approximate the main and total effect sensitivity values. Finally, in Sec-
tion 7, we apply our method to several test functions and compare to quasi-Monte Carlo
and Extended FAST.

2 Orthogonal decomposition

Here we review the key ideas of [10]. The results here are all contained in [10]; however,
we provide somewhat different proofs than those contained in that paper. Also, we use

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 545

the interval [−1,1] for our calculation instead of the original [0,1] in order to dovetail
more easily with techniques of sparse grid cubature.

Let K =[−1,1] and f : Kn→R. Let x denote coordinates on Kn, α denote a multi-index
in {0,1}n , αj denote the j-th entry in α, 1 denote the multi-index with each entry equal to

1, 0 denote the multi-index with each entry equal to 0 and 1j denote the multi-index such

that 1
j
k =δjk. Also, let α′=1−α and |α|=∑j αj. Define a partial order on such multi-indices

by α≤ β if αj ≤ β j for all j, with the obvious notion of equality. With this order, the set of
γ satisfying α≤γ≤β is exactly the set of γ with αj≤γj≤β j, for all j. Finally, for purposes
of integration, let dµj = dxj/2 be normalized Lebesgue measure, let dµ = dµ1 ···dµn, and

for a multi-index α=∑
k
j=11ij , let dµα =dµi1 ···dµik

.

For the method of Sobol’, we assume that f is L2 integrable on Kn and look for a
functional decomposition

f = ∑
0≤α≤1

fα (2.1)

satisfying

(A) fα is independent of xj if αj =0.

(B)
∫

K fα(x)dµj =0 if αj =1.

(C)
∫

Kn fα fβdµ=0 if α 6= β.

We show below that this decomposition is achieved via the formula

fα(x)=
∫

Kn−|α|
f (x)dµα′− ∑

0≤β<α

fβ(x). (2.2)

Here we make the convention that

∫

K0
f (x)dµ1′ = f (x).

Note also that

f0(x)=
∫

Kn
f (x)dµ

is a constant function with value equal to the expected value of f in Kn, assuming uniform
distribution in each variable. From now on we use f0 for this expected value. The formula
in (2.2) agrees with the definition given in [10], although the presentation is more explicit
here.

Proposition 2.1. With fα as in (2.2), the decomposition (2.1) holds, and statements (A), (B) and
(C) are true.

546 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

Proof. We show first that

f = ∑
0≤α≤1

fα.

By definition of f1, we have

∑
0≤α≤1

fα = f1+ ∑
0≤α<1

fα

=
(

f − ∑
0≤α<1

fα

)

+ ∑
0≤α<1

fα = f .

To prove statement (A), we induct on |α|. Note that f0 is constant, hence independent of
all xj. Also, if αj=0, for some α 6=0, then β j=0, for all β<α, and hence fβ(x) is independent
of xj by induction. Moreover, in this case, α′ has α′

j =1, so
∫

Kn−|α| f (x)dµα′ is independent

of xj. Using this with the definition of fα in (2.2) verifies statement (A).
For statement (B), again we induct on |α|. If α = 0, statement (B) is vacuously true.

Next suppose that αj=1, and let α̂=α−1j. Note that if 0≤β<α, then either β< α̂, or β= α̂,

or 1j ≤β<α, and exactly one of these three cases holds. Using this with (2.2), we have

∫

K
fα(x)dµj =

∫

K

∫

Kn−|α|
f (x)dµα′dµj− ∑

0≤β<α

∫

K
fβ(x)dµj

=
∫

Kn−|α̂|
f (x)dµα̂′− ∑

0≤β<α̂

∫

K
fβ(x)dµj

−
∫

K
fα̂(x)dµj− ∑

1j≤β<α

∫

K
fβ(x)dµj.

Note that the first two terms in the final expression are exactly the definition of fα̂(x).
Also, since α̂j=0, we see that fα̂(x) is independent of xj by statement (A). Hence the third
term is also exactly fα̂(x), thus cancelling the first two terms. Moreover, each integral in
the final summation is 0 by induction since 1j ≤ β < α implies |β|< |α| and β j = 1. Thus
the terms of the final expression cancel to verify statement (B).

Statement (C) is true exactly as presented in Sobol’. That is, if α 6=β, then without loss,
there is some j so that αj =1 while β j =0. Integrating fα fβ with respect to xj and applying
statement (B) gives 0. Hence the entire integral is 0.

3 Variance and sensitivity values

In this section, we define the variance and sensitivity values as in Sobol’, then state and
prove Proposition 3.1, which is a generalization of Parseval’s Theorem to partial sums
of the Sobol’ orthogonal decomposition. This result is the foundation for our method of
computing sensitivity coefficients. While the case |α|=1 of this result appears in [10], this
generalized form is, to our knowledge, novel.

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 547

Definition 3.1. Let α be a multi-index and let 1≤ j≤n. Define

Dα =
∫

Kn
f 2
α dµ−

(

∫

Kn
fαdµ

)2
,

and

DTj
= ∑

1j≤α≤1

Dα, Sα =
Dα

D
, STj

=
DTj

D
.

Here Dα is the variance of fα; denote the variance of f by D (replace fα by f in the
expression for Dα). Also, DTj

is called the total variance for xj, Sα is called the sensitivity
for α and STj

is called the total sensitivity of xj (STj
).

By abuse of notation, let Dj = D1j and Sj = S1j . Note that Sj is often called the main
effect due to xj and STj

is called the total effect due to xj.
The next proposition is the main tool for computing sensitivity values via cubature.

Here and below, ‖ f‖2 denotes the L2 norm of f over Kn with measure µ.

Theorem 3.1. Let α be a multi-index. Then

∑
0≤β≤α

‖ fβ‖2
2 =

∫

K|α|

(

∫

Kn−|α|
f (x)dµα′

)2
dµα.

In the case α=1, this statement is a version of Parseval’s Theorem for the orthogonal
decomposition given by the fα. Hence this equality may be viewed as a generalization of
Parseval’s Theorem to the case of partial sums of the functions in the decomposition.

Proof. For α=0, the statement is true by definition. Hence, we assume α 6=0. In this case,
property (B) implies that

∫

Kn
fαdµ=0.

Combining this with property (A) and the fact that µj is a probability measure, we see
that

Dα =
∫

Kn
f 2
α dµ−

(

∫

Kn
fαdµ

)2
=

∫

K|α|
f 2
α (x)dµα.

Using this together with (2.2) and the definition of ‖ f‖2, we have

‖ fα‖2
2 =

∫

K|α|

(

∫

Kn−|α|
f (x)dµα′− ∑

0≤β<α

fβ(x)
)2

dµα

=
∫

K|α|

[

(

∫

Kn−|α|
f dµα′

)2
−2 ∑

0≤β<α

fβ

∫

Kn−|α|
f dµα′ +

(

∑
0≤β<α

fβ

)2
]

dµα.

Note that if β <α, then fβ depends only on the variables in xα and hence is independent
of the variables in xα′ . Since µj is a probability measure, we may integrate the final term

548 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

over Kn instead of K|α|. Using this, expanding the square and applying the orthogonality
result of property (C) and the independence result of (A) gives

∫

K|α|

(

∑
0≤β<α

fβ

)2
dµα =

∫

Kn
∑

0≤β<α
∑

0≤γ<α

fβ fγdµ= ∑
0≤β<α

‖ fβ‖2
2.

This same idea, plus the functional decomposition of (2.1) implies that if β<α, then

∫

K|α|
fβ

(

∫

Kn−|α|
f (x)dµα′

)

dµα =
∫

Kn
fβ ∑

0≤γ≤1

fγdµ=‖ fβ‖2
2.

Applying these previous two results in the expression for ‖ fα‖2
2, we see that

‖ fα‖2
2 =

∫

K|α|

(

∫

Kn−|α|
f (x)dµα′

)2
dµα− ∑

0≤β<α

‖ fβ‖2
2.

Moving the final sum to the left hand side gives the proposition.

Using this result, we have the following four corollaries. These results appear also
in [10], but the previous proposition provides a simple, direct proof for each. First we
express D in terms of the Dα, then express each of Dj and DTj

as an integral, where D is
the variance of f , Dj is the variance for the main effect for xj, and DTj

is the variance for
the total effect for xj.

Corollary 3.1.

D= ∑
0≤α≤1

Dα = ∑
0<α≤1

‖ fα‖2
2.

Proof. Note that property (B) implies that E[fα]=0 when α 6=0, in which case Dα =‖ fα‖2
2.

Also, since f0(x) is constant, D0 =0.

Applying this with the previous proposition and the formula for f0 gives

∑
0≤α≤1

Dα =
(

∑
0≤α≤1

‖ fα‖2
2

)

−‖ f0‖2
2 =

∫

Kn
f 2dµ−

(

∫

Kn
f dµ

)2
.

The final expression is exactly D.

Corollary 3.2.

Dj =
∫

K

(

∫

Kn−1
f dµ

1j ′

)2
dµj− f 2

0 .

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 549

Proof. Let I denote the integral in the expression above. Theorem 3.1 implies that

I = ∑
0≤α≤1j

‖ fα‖2
2.

Since only 0 and 1j satisfy the bounds on α in the sum, we have

I =‖ f0‖2
2+‖ f1j‖2

2 = f 2
0 +Dj,

hence Dj = I− f 2
0 .

Corollary 3.3.

DTj
= D+ f 2

0 −
∫

Kn−1

(

∫

K
f dµj

)2
dµ

1j ′ .

Proof. By definition and properties of Dα,

DTj
= ∑

1j≤α≤1

Dα = ∑
0≤α≤1

‖ fα‖2
2− ∑

0≤α≤1j′
‖ fα‖2

2.

From Corollary 3.1, the first of the final two sums is D+ f 2
0 . From the proposition, the

second of the final two sums is exactly the integral in the statement of this corollary.

The following corollary follows directly from the previous corollaries using the stan-
dard proof for showing that

E[(X−X)2]=E[X2]−X
2
,

where X is a random variable and X =E[X].

Corollary 3.4. As before, let

f0 =
∫

Kn
f dµ

be the mean of f and

D=
∫

Kn
f 2dµ− f 2

0

be the variance. Then the main effect sensitivity for xj on f is

Sj =
1

D

∫

K

(

∫

Kn−1
(f − f0)dµ

1j ′

)2
dµj,

and the total effect sensitivity for xj on f is

STj
=1− 1

D

∫

Kn−1

(

∫

K
(f − f0)dµj

)2
dµ

1j ′ .

550 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

4 Chebyshev interpolation and Clenshaw-Curtis quadrature

In this section, we review some results about interpolation and quadrature in one di-
mension, then give a formula that generalizes a standard discrete orthogonality formula
for Chebyshev polynomials. We use this to recover an explicit formula for evaluating a
Lagrange basis interpolating polynomial associated with the Chebyshev extrema. Much
of this section is well-known and based on ”Chebyshev Polynomials” by J. C. Mason
and D. C. Handscomb [5]. However, Proposition 4.1 and Corollary 4.1, which are conse-
quences of the Christoffel-Darboux identity for orthogonal polynomials and the abstract
formula for the value of a Lagrange interpolating polynomial, do not appear to be well-
known in this explicit form. For a fascinating account of the convergence properties of
Clenshaw-Curtis quadrature and Gaussian quadrature, see [13].

Recall that the Chebyshev polynomial of the first kind of degree d≥ 0 is denoted Td

and satisfies
Td(cosθ)=cosdθ.

Within the interval [−1,1], the extrema of Td occur at the points

xd,k =cos
(kπ

d

)

, k=0,··· ,d,

where d > 0. By convention, let x0,0 = 0. For sparse grid cubature as in the next section,
we use Lagrange interpolation on these extrema of Td. Let Ld,i(x) denote the degree d
polynomial, which satisfies Ld,i(xd,k)= δi,k for k = 0,··· ,d. Here and below, δi,j = 1 if i = j
and 0 otherwise. Given a function f on [−1,1], the degree d polynomial interpolating f
on the points xd,k is then

Jd f (x)=
d

∑
j=0

f (xd,j)Ld,j(x). (4.1)

This can be rewritten in terms of Tj and applied to f (x)=Ld,i(x) (see [5], pp. 189) to obtain

Ld,i(x)=
2

d(1+δi,0+δi,d)

d

∑
′′

j=0

Ti(xd,j)Tj(x). (4.2)

To approximate

I(f)=
∫ 1

−1
f (x)dx,

first, let

Ud(f)=
∫ 1

−1
Jd f (x)dx.

By integrating (4.1), we obtain

Ud(f)=
d

∑
j=0

wd,j f (xd,j), (4.3)

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 551

where

wd,j =
∫ 1

−1
Ld,j(x)dx.

The formula (4.3) gives I(f) exactly for polynomials of degree at most d. For d even,
which we apply later in calculating weights for the sensitivity analysis, there is a fairly
simple and well-known formula (see, e.g., [5]). Here, the notation ∑

′′ means that the first
and last terms in the series are divided by 2 before being added to the sum

∫ 1

−1
L2d,j(x)dx=

2

d

d

∑
′′

k=0

1

1−4k2
cos

(jkπ

d

)

. (4.4)

In order to approximate the variances of the previous section, we need to integrate a
product of interpolated functions, hence we need to integrate products of the Lagrange
interpolants Ld,j. First some preliminary lemmas on sums of products of Tj. The first is a
standard result on a kind of discrete orthogonality.

Lemma 4.1. (see, e.g., [5, (4.45)]) Let d be a positive integer and 0≤ i, j≤d. Then

d

∑
′′

k=0

Ti(xd,k)Tj(xd,k)=d
δi,j(1+δ0,i+δi,d)

2
.

Next, we need a similar result in which the point of evaluation is different for Tj and
Tk. As pointed out by one of the referees, the formula in this proposition is a consequence
of the Christoffel-Darboux identity for orthogonal polynomials [14]. However, the ex-
plicit form given here for Chebyshev polynomials does not appear to be widely known
and is not immediately apparent from [14]. We give an elementary, self-contained proof
below.

Proposition 4.1. Let d1,d2, j1, j2 be integers, with 0≤ j1≤d1 <d2 and 0≤ j2≤d2. Let x1 =xd1,j1 ,
x2 = xd2,j2 and suppose x1 6= x2. Then

d1

∑
′′

k=0

Tj1 (xd1,k)Tj2(xd2,k)=
(−1)j1

√

1−x2
2 sin

(

j2d1π/d2

)

2(x1−x2)
.

Note that Lemma 4.1 fills in the gap left here by the assumption that x1 6= x2. That is,
if x1 = x2, then we may replace j2 with j1 and d2 with d1 without changing the sum, in
which case we may apply Lemma 4.1.

The following immediate corollary gives a method to evaluate the Lagrange basis
interpolating polynomial, Ld,j at any point x ∈ [−1,1] in constant time (independent of
the degree) without calculating the polynomial itself or applying (4.2). This formula may
also be derived from Lemma 6.4 of [5] using the fact that the extrema of Td are the zeros of
the polynomial (1−x2)Ud−1(x), where Ud−1 is the Chebyshev polynomial of the second
kind.

552 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

Corollary 4.1. Let d, j be integers with d>0 and 0≤ j≤d, let x0 =cos(jπ/d), let

Cd,j =
(−1)j+1

d(1+δ0,j+δd,j)
,

and let x∈ [−1,1]. Then

Ld,j(x)=Cd,j

√
1−x2sin

(

dcos−1(x)
)

x−x0
, x 6= x0, (4.5)

and Ld,j(x0)=1.

Note that by replacing x with cosθ, we obtain an expression analogous to Td(cosθ)=
cos(dθ):

Ld,j(cosθ)=Cd,j
sinθsindθ

cosθ−cos
(

jπ/d
) , θ 6= jπ

d
.

Note also that the appearance of sin, cos−1, and square root in the formula for Ld,j means
that (4.5) is a less efficient way to calculate Ld,j(x) for small d (by a factor of five or so
in some brief tests using Matlab) than using the explicit polynomial representation of
Ld,j obtained by expanding (4.2) and collecting coefficients. However, this advantage is
erased in our tests if Ld,j(x) is evaluated directly as in (4.2). Moreover, (4.5) is very easy
to implement in the general case, and since the calculation of the values of Ld,j(x) takes a
relatively small proportion of the total computational time, we use (4.5) for d≥2.

Proof of Corollary 4.1. Apply (4.2) to the result of Proposition 4.1 to get a formula for
Ld,j(xd2 ,j2). Then note that

sin
(j2dπ

d2

)

=sin
(

dcos−1(xd2,j2)
)

to obtain the formula in this corollary with x = xd2,j2 . Finally, note that the points xd2,j2

over all d2 >d and 0≤ j2≤d2 are dense in [−1,1], so that the left and right hand functions
must be equal on all of [−1,1] by continuity. The continuity of the right hand side at x=x0

follows from the fact that

sin
(

dcos−1(x0)
)

=sin
(djπ

d

)

=0,

which implies that the right hand side has a removable singularity at x0.

Note that (4.3) together with this corollary gives an efficient method for evaluating
the L2 inner product of two Lagrange interpolating functions. That is,

∫ 1

−1
Ld1,j1(x)Ld2,j2(x)dx=

2d2

∑
j=0

w2d2,jLd1,j1(x2d2 ,j)Ld2,j2(x2d2 ,j), (4.6)

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 553

which may be evaluated using Corollary 4.1 with a number of operations which is linear
in the maximum degree. For this application, we may avoid the use of cos−1 since

cos−1(x2d2,j)=
jπ

2d2
.

To prove the proposition, we use a function Sa so that

Sa(x+1)−Sa(x)=cosax

in order to convert the sum to a telescoping sum.

Definition 4.1. For a∈R with sin(a/2) 6=0, let

Sa(x)=
sin

(

ax−a/2
)

2sin
(

a/2
) .

Lemma 4.2. For a∈R with sin(a/2) 6=0,

d

∑
k=0

cos(ak)=Sa(d+1)+
1

2
.

Proof. Using the formula for the difference of two sines, we have

sin
(

a(x+1)− a

2

)

−sin
(

ax− a

2

)

=2sin
(a

2

)

cos(ax),

so

Sa(k+1)−Sa(k)=cosak.

Using this in place of cos(ak) in the sum, canceling adjacent terms, and using Sa(0) =
−1/2 gives the result.

Proof of Proposition 4.1. Let

a±=π
(j1

d1
± j2

d2

)

.

Since j1/d1 and j2/d2 are both in [0,1], the only way that sin(a±/2) could be 0 is if x1=x2,
which is excluded by assumption. Hence

sin
(a±

2

)

6=0.

Using the formula for the product of cosines, we have

Tj1 (xd1,k)Tj2(xd2,k)=
cos(a+k)+cos(a−k)

2
.

554 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

Applying the previous lemma and adjusting for the factors of 1/2 for k = 0 and k = d1

gives

d1

∑
′′

k=0

Tj1(xd1,k)Tj2(xd2 ,k)=
(Sa+(d1+1)+Sa−(d1+1)

2

)

− (−1)j1

2
cos

(j2d1π

d2

)

. (4.7)

Let S denote the numerator of the first term. We expand using the definition of Sa, com-
bine fractions, and use 2sinasinb=cos(a−b)−cos(a+b). Writing

a±k = a±d1+
jkπ

dk

we have

S=
cos(a+

2)−cos(a+
1)+cos

(

a−d1− j2π/d2

)

−cos(a−1)

cos
(

j2π/d2

)

−cos
(

j1π/d1

) .

Rewriting the denominator as x2−x1 and combining the first and third terms of the nu-
merator and likewise the second and fourth terms, we get

S=
cos(j1π)cos

(

j2d1π/d2+ j2π/d2

)

−cos
(

j1π+ j1π/d1

)

cos
(

j2d1π/d2

)

x2−x1
.

Applying the usual angle addition formula for cos, then rewriting in terms of x1 and x2

gives

S=(−1)j1
[

Td1
(x2)−

(
√

1−x2
2 sin

(

j2d1π/d2

)

)

(x2−x1)
−1

]

.

Dividing by 2 and subtracting the second term in (4.7) cancels Td1
(x2) and leaves the

expression in the statement of the proposition.

Remark 4.1. Note that if d1 = d2 but sin(a±/2) is not 0, then the expression in Proposi-
tion 4.1 is 0, which agrees with the result in Lemma 4.1.

5 Sparse grid interpolation and cubature

As seen in Section 3, the primary step in computing the sensitivity values of Sobol’ is
estimating an integral of the form

G=
∫

A

(

∫

B
f (x,y)dµB(y)

)2
dµA(x), (5.1)

where
A=Km, B=Kn−m, f : A×B→R.

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 555

Here we assume f to be smooth.
In this section, we recall the basic ideas for approximating f on [−1,1]n using the

sparse grid techniques of Smolyak, then apply this approximation to estimate G. See [1]
for discussion of and references for sparse grid interpolation and cubature. As in [1], we
use the extrema of the Chebyshev polynomials as nodes, with the coarsest level contain-
ing a single node and the remaining levels nested. For consistency with the literature, we
largely adopt the indexing in [1] as well.

Let M1 =1, Mi =2i−1+1 for i>1. Let x1
1 =0, and for i>1 and 1≤ j≤Mi, let

xi
j =cos

((j−1)π

(Mi−1)

)

.

Also, with notation as in the previous section, let

Li
j = LMi−1,j−1 and wi

j =wMi−1,j−1.

To describe the range of multi-indices corresponding to a given multi-index α with all
entries positive, let

M(α)=(Mα1
,··· ,Mαn).

For 1≤β≤M(α), define

x⊗α
β =(xα1

β1
,··· ,xαn

βn
), wα

β =wα1
β1
···wαn

βn
, Lα

β = Lα1
β1
···Lαn

βn
.

Note that

wα
β =

∫

Kn
Lα

βdµ.

For n>1, define
A⊗α(f)= ∑

0≤β≤M(α)

f (x⊗α
β)Lα

β.

For an integer q≥n, the Smolyak interpolation formula is then

A(q,n)(f)= ∑
q−n+1≤|α|≤q

(−1)q−|α|
(

n−1
q−|α|

)

A⊗α(f). (5.2)

Here k = q−n describes the maximum degree of the interpolating polynomial used in
a single variable; when α has all components but αj equal to 1 and αj = k+1, then Lα

β

has degree Mk+1−1 in xj and is independent of the remaining variables. Moreover, it is
known (see, e.g., [1]) that A(n+k,n)(p) reproduces p exactly whenever p is a polynomial
of degree k or less. By integrating this formula as was done to obtain (4.3), we obtain the
standard Smolyak cubature formula to approximate the integral of f over Kn.

To describe the accuracy of this interpolation more generally, let Θ(q,n) be the set of
all points of evaluation in (5.2), and let N denote the number of points in Θ(q,n). From [1],
if k is fixed, n is large, and q=n+k, then

N≈ 2knk

k!
.

556 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

Moreover, assuming that Dα f is continuous for all |α|≤ ℓ, we may define

‖ f‖=max
{

‖Dα f‖∞ : α∈N
n
0 , αi≤ ℓ

}

.

Then [1, Theorem 8] gives the error bound

‖A(q,n)(f)− f‖0 ≤Cn,ℓN−ℓ(logN)(n−1)(ℓ+2)+1‖ f‖. (5.3)

By integrating, this bound also gives an estimate for the error in approximating the inte-
gral of f .

6 Cubature for sensitivity values

There are several possible approaches to approximating the integral in (5.1). Here we
describe two methods, each of which requires evaluation of f only on the set Θ, indepen-
dent of the subsets of coordinates used to determine A and B. The first method applies
the ideas used to develop integral approximations as in the previous two sections. That
is, first replace the function, f , by an approximation using Lagrange interpolating poly-
nomials, then integrate. This method is used to calculate the main effect coefficients, Sj.
The second method is to use sparse-grid cubature directly on a higher dimensional space,
but use projection and the symmetry of the support nodes to require evaluation of f on
the original set Θ only. This method is used to calculate the total effect coefficients, STj

.
For clarity of notation, in this section, we drop dµA(x) in favor of dx, etc., with the

assumption that the normalizing factors remain implicit.

Main effect values

For the main effect coefficients, Sj, we need to approximate (5.1) in the case when A is
1-dimensional. To do this, we first approximate f via A(q,n) on a Smolyak cubature set,
Θ, to get an approximating function f̂ . Suppressing the precise bounds on α and β, we
obtain

f̂ (x,y)=∑
α,β

Cα f (x⊗α
β)Lα

β(x,y),

where x ∈ A, y ∈ B as in (5.1) and Cα is the coefficient in (5.2). Note that a given point
in Θ generally appears more than once in this sum due to the nonuniqueness of the
representation x⊗α

β . In practice, we collect terms associated with the same point, but for

exposition we keep the form above. Replacing f by f̂ and expanding the square in G, we
get the approximation

Ĝ=
∫

A

∫

B

∫

B
f̂ (x,y) f̂ (x,z)dydzdx

=∑
α,β

∑
α′,β′

CαCα′ f (x⊗α
β) f (x⊗α′

β′)
∫

A×B×B
Lα

β(x,y)Lα′
β′(x,z)dydzdx.

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 557

To compute the final integral, note that the product form of Lα
β means that this integral is

actually a product of one dimensional integrals. For the integral over each coordinate in
A, we obtain an integral of a product of two interpolating polynomials as in (4.6), which
may be evaluated as in Corollary 4.1. For the integral over each coordinate in B, we obtain
an integral of a single interpolating polynomial, which may be evaluated as in (4.4). In
each case, this evaluation is linear in the degree of the polynomials. Moreover, each of
these one dimensional integrals may be precomputed and then multiplied as needed to
compute each multidimensional integral in the expression above.

To make this more explicit, let α(A) be the projection of α to the coordinates in A, and
likewise for α(B). Also, let

(Lα
β,Lα′

β′)A =
∫

A
L

α(A)
β(A)

(x)L
α′(A)
β′(A)

(x)dx,

and note that

w
α(B)
β(B)

=
∫

B
L

α(B)
β(B)

(y)dy.

Then

Ĝ=∑
α,β

∑
α′,β′

CαCα′ f (x⊗α
β) f (x⊗α′

β′)w
α(B)
β(B)

w
α′(B)
β′(B)

(Lα
β,Lα′

β′)A.

As noted above, A is one-dimensional when computing Sj; without loss, we may assume
that A is the first coordinate direction. In this case, the expression above, which is a
quadratic form, is nearly a diagonal quadratic form, except for the appearance of the in-
ner product. In practice, for moderately large dimension, most entries in a multi-index α
are trivial. Hence for computational efficiency, we may represent a point in Θ as the non-
trivial entries in α and β together with a choice of coordinate direction for each nontrivial
entry. With this representation, the coefficients in the expression above depend only on
the nontrivial entries in α, α′, β, and β′ plus whether or not the first coordinate in α and
α′ is trivial or not. Keeping track of this accounting and summing up over all equivalent
representations of points in Θ, we obtain a block representation of this quadratic form.
That is, collecting terms corresponding to identical points in Θ produces

Ĝ=vTWv,

where v is a column vector obtained by evaluating f at the points of Θ. However, by
using the combinatorial representation of points in Θ, we identify sets of pairs of points
with a common value for the corresponding coefficient in the quadratic form. Reordering
the rows and columns, we identify a block structure in W. Replacing W by the matrix Ŵ
formed from the coefficients in this block and replacing v by v̂ formed by summing the
elements of v in each block, we obtain

Ĝ= v̂TŴv̂.

558 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

Computational efficiency

Note that, for fixed n = dim(A×B), the algorithm requires that we evaluate f only on
the points in Θ regardless of m = dim(A). Assuming an upper bound on the time for a
single evaluation of f , the total time required for functional evaluation is bounded by a
constant times the number of points in Θ. As mentioned near the end of Section 5, the
number of points in Θ is N≈2knk/k!, for fixed k=q−n and large dimension n. Hence the
time required for functional evaluation is

O(N)=O
(2knk

k!

)

.

In practice, f may be expensive to compute, so this represents the bulk of the computa-
tional time. For completeness, we analyze the time required to compute all the Sj. Note
that the weights wα

β and integrals of interpolating functions may be precomputed in time

O(d2), where d=2k is the maximum degree of the interpolating polynomials Li
j.

After collecting terms corresponding to multiple occurrences of a given point in Θ,
the double sum for Ĝ may then be computed at first glance in time O(N2). However, we
may reduce this estimate using the block structure described above. For a given pair, α
and β, define the corresponding minimal representative to be the nontrivial entries of α,
with order preserved, and the corresponding entries in β. For a given norm n < |α|, we
need to determine the nontrivial entries in α. This can be done by distributing t= |α|−n
balls into some number, s, of nonempty slots, where 1 ≤ s ≤ n, which can be done in
(t−1

s−1) ways. For a given such choice, the number in a given slot, tj, gives Mtj+1 = 2tj +1
corresponding points in that coordinate in the sparse grid. One of these points is 0, which
may be ignored since it will have been counted for smaller values of tj. This gives 2tj

points, for each slot independently, for a total of 2t points corresponding to this choice of
α. This estimate is quite crude since it double counts many points, but it will suffice here.
Let R be the total number of representatives. Summing over t and s gives

R≤
k

∑
t=1

2t
t

∑
s=1

(

t−1

s−1

)

.

Recognizing the inner sum as 2t−1 (the total number of subsets of t−1 elements) and
using the partial geometric sum in the outer sum gives

R≤2(4k−1)/3.

Since the sum for Ĝ is different for multi-indices which are trivial in the first slot versus
those that are nontrivial in the first slot, we see that 2R gives an upper bound for the
number of rows in Ŵ. Since we can compute v̂ from the values of f on Θ in time O(N),
we see that after precomputation of the weights and the function evaluations, we may
compute Ĝ in time O(R2) =O(8k), which is O(N) for fixed k and large n. Finally, the

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 559

mean, f0, and the variance, D, may be computed using the standard sparse grid cubature
rule, which gives time O(N). Hence the total time for a single value S1 is O(N). To obtain
all the Sj, we create a cyclic permutation of the points in Θ by cyclically permuting the
coordinate directions:

σ(x1,··· ,xn)=(x2,··· ,xn,x1).

By the symmetry of the sparse grid, we have

σ(Θ)=Θ.

Computing Ĝ for f σ allows us to compute S2, and iterating gives S1,··· ,Sn. Hence we
obtain

Theorem 6.1. For a fixed degree of approximation k and large dimension n, the main effect
sensitivity coefficients Sj, j=1,··· ,n, for f may be computed in time

O(nN)=O
(2knk+1

k!

)

.

The function f need be evaluated only on points in the sparse grid Θ.

Total effect values

For STj
, the total effect values, the set A in (5.1) is (n−1)-dimensional, and the accounting

as described above for Ĝ is much more involved since now the inner product (Lα
β,Lα′

β′)A

depends on the overlap pattern of the nontrivial entries in the multi-indices. In contrast,
B is only 1-dimensional in this case, so the integral

∫

A

∫

B

∫

B
f (x,y) f (x,z)dydzdx (6.1)

is only (n+1)-dimensional. Moreover, the symmetry of the nested sparse grid implies
that if (x,y,z)∈Kn−1×K×K is a point in the sparse grid of dimension n+1 and maximum
norm q+1, then (x,y) and (x,z) are both points in the sparse grid of dimension n and
maximum norm q; that is, they are both points in Θ(q,n). Hence we may approximate the
integral (6.1) by first evaluating f on the points in Θ, then using appropriate projections
from Θ(q+1,n+1) to Θ(q,n) to define g(x,y,z)= f (x,y) f (x,z) evaluated on Θ(q+1,n+1).
Given g, we may then approximate (6.1) using the standard sparse grid cubature weights.
As before, f0, D, and the evaluations of f may be done in time O(N). Also as before, for
fixed k=q−n and large n, the construction of g and the subsequent cubature may be done
in time

O
(2k(n+1)k

k!

)

=O(N).

Using cyclic permutations as before, we have the corresponding theorem for STj
.

560 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

Theorem 6.2. For a fixed degree of approximation k and large dimension n, the total effect sensi-
tivity coefficients STj

, j=1,··· ,n, for f may be computed in time

O(nN)=O
(2knk+1

k!

)

.

The function f need be evaluated only on points in the sparse grid Θ.

Convergence

Note that (5.3) guarantees convergence of the computed values of (5.1) to the true values
as q→∞ (hence N→∞) under the assumption that f is Cℓ smooth, ℓ≥1. For the method
used to compute STj

, this follows directly by replacing f (x,y) by g(x,y,z)= f (x,y) f (x,z)
in (5.3). For the method used to compute Sj, we need to show the convergence of

‖A(q+1,n+1)(f1)A(q+1,n+1)(f2)− f1 f2‖→0 as q→∞,

where

f1(x,y,z)= f (x,y), f2(x,y,z)= f (x,z).

But this follows immediately by adding and subtracting A(q+1,n+1)(f1) f2, using the
triangle inequality, then using (5.3) together with the sup norm bound on f .

Since the calculation of Sj and STj
requires dividing (5.1) by D, the error in these val-

ues may be sensitive to the details of the function, particularly for functions with small
variance. As implemented below, D is calculated by using the values of f on Θ(q,n) to
determine the values of f −E[f], then squaring these values and using the cubature rule
for Θ to approximate the integral. An alternative method, which is generally more accu-
rate, is to use the values of f on Θ(q,n) to determine the interpolating polynomial, then
use the values of this polynomial on Θ(q+1,n) to determine D. This method requires
some extra computational effort, but does not require additional function evaluations.

However, in practice, only the magnitude of one sensitivity in comparison to the oth-
ers is used to guide exploration of parameter space. Since all the values Sj and STj

include
the same factor 1/D, we may directly compare the integrals used to determine the sensi-
tivity values, in which case the convergence is given by (5.3).

7 Numerical results

In order to evaluate this method, we computed Sj and STj
for a variety of standard test

functions. As noted above and in [1], the convergence for sparse grid cubature using
Clenshaw-Curtis nodes depends strongly on the differentiability of the function being
integrated. For discontinuous functions or functions whose first derivatives are discon-
tinuous, the estimates from sparse grid cubature are poor to nearly useless. At the oppo-
site extreme, for low degree polynomials, sparse grid cubature will give answers which

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 561

are correct to round-off error for correspondingly low values of q. Since the output of
many models of interest for sensitivity analysis lies between these two extremes, we have
chosen a set of test functions that lie between these extremes. The test functions are the
functions 1 through 4 of [1]:

1. OSCILLATORY: f1(x)=cos
(

2πw1+
n

∑
i=1

cixi

)

,

2. PRODUCT PEAK: f2(x)=
n

∏
i=1

(

c−2
i +(xi−wi)

2
)−1

,

3. CORNER PEAK: f3(x)=
(

1+
n

∑
i=1

cixi

)−(n+1)
,

4. GAUSSIAN: f4(x)=exp
(

−
n

∑
i=1

c2
i (xi−wi)

2
)

.

We used n=10 and chose values for ci and wi at random as indicated in [1].
We compared our method to the Extended FAST method of [6] as implemented in

the software package Simlab 3.2.6 [9] and to the quasi-Monte Carlo integration method
labeled the ”Richtmyer sequence” in [12]. To apply quasi-Monte Carlo, we expanded the
integral as in Eq. (6.1) and partitioned the points so that the total number of points used
to calculate all of the main effect values was roughly the same as the number of points
used to calculate all of these values using the sparse grid method, and likewise for the
total effect values; some version of this method is often called ”Sobol’s method” [10].
We show a representative sample of the computed values plotted as functions of the
number of points evaluated in Figs. 1 (main effect value) and 3 (total effect values). Each
line corresponds to the estimated sensitivity value for one coordinate direction plotted
against the number of function evaluations. The coordinate direction for a particular line
is indicated in the legend in the first box of Figs. 1 and 3. All plots in these figures use the
same coordinate directions as indicated in the legend. All computations were performed
on a 3.2 GHz Pentium 4 with 2 GB of RAM.

Note that the sparse grid method and to a lesser extent the Extended FAST method
provide relatively consistent size and order relationships among the various factors, even
for small numbers of model evaluations (this is true even when the additional coordinate
directions are added). That is, a common application for sensitivity analysis is to deter-
mine which parameters are the most sensitive. These results show that sparse grid and
Extended FAST generally provide reasonable answers even when the number of model
evaluations is relatively low. However, the implementation of Extended FAST in [9] puts
a lower bound (depending on the dimension) on the number of points that must be eval-
uated. This is the reason for the gaps in the graphs for Extended FAST.

Where possible, we also computed main effect and total effect sensitivity values an-
alytically (using the Integrate function of Mathematica with numerical evaluation). For
these cases, we show the average differences (taken over each of the 10 coordinate direc-
tions) between the approximated and exact values for both main and total effect values,

562 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

10
1

10
3

10
5

−0.2

−0.1

0

0.1

0.2

0.3

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Sparse grid: OSCILLATORY

10
1

10
3

10
5

−0.2

−0.1

0

0.1

0.2

0.3

Number of points evaluated
C

om
pu

te
d

se
ns

iti
vi

ty
 v

al
ue

s Quasi MC: OSCILLATORY

10
1

10
3

10
5

−0.2

−0.1

0

0.1

0.2

0.3

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Ext FAST: OSCILLATORY

Coordinate 3
Coordinate 4
Coordinate 5
Coordinate 7
Coordinate 8

10
1

10
3

10
5

0

0.2

0.4

0.6

0.8

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Sparse grid: PRODUCT PEAK

10
1

10
3

10
5

0

0.2

0.4

0.6

0.8

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Quasi MC: PRODUCT PEAK

10
1

10
3

10
5

0

0.2

0.4

0.6

0.8

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Ext FAST: PRODUCT PEAK

10
1

10
3

10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Sparse grid: CORNER PEAK

10
1

10
3

10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Quasi MC: CORNER PEAK

10
1

10
3

10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Ext FAST: CORNER PEAK

10
1

10
3

10
5

−0.2

0

0.2

0.4

0.6

0.8

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Sparse grid: GAUSSIAN

10
1

10
3

10
5

−0.2

0

0.2

0.4

0.6

0.8

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Quasi MC: GAUSSIAN

10
1

10
3

10
5

−0.2

0

0.2

0.4

0.6

0.8

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s Ext FAST: GAUSSIAN

Figure 1: Computed main effect values plotted against number of points evaluated. Left: Sparse grid method.
Middle: Quasi-Monte Carlo method. Right: Extended FAST method. The sparse grid method generally shows
the correct ordering of the sensitivity values, even for a small number of evaluations.

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 563

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Number of points evaluated

M
ea

n
er

ro
r

(o
ve

r
10

 d
im

s)

Main effect absolute error for OSCILLATORY

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−5

10
−3

10
0

10
3

10
5

Number of points evaluated

M
ea

n
re

la
tiv

e
er

ro
r

Main effect relative error for OSCILLATORY

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Number of points evaluated

M
ea

n
er

ro
r

(o
ve

r
10

 d
im

s)

Main effect absolute error for PRODUCT PEAK

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−5

10
−3

10
0

10
3

10
5

Number of points evaluated

M
ea

n
re

la
tiv

e
er

ro
r

Main effect relative error for PRODUCT PEAK

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Number of points evaluated

M
ea

n
er

ro
r

(o
ve

r
10

 d
im

s)

Main effect absolute error for GAUSSIAN

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−5

10
−3

10
0

10
3

10
5

Number of points evaluated

M
ea

n
re

la
tiv

e
er

ro
r

Main effect relative error for GAUSSIAN

Sparse grid
Quasi MC
Ext FAST

Figure 2: Average differences (averaged over all 10 coordinate dimensions) between approximated and true
main effect values. Left: Absolute errors. Right: Relative errors.

plotted as functions of the number of points evaluated. We also show the average relative
errors, |S−Ŝ|/S, where S is the exact sensitivity value and Ŝ is the computed value. These
results are shown in Figs. 2 and 4. Note that for a given value Sj, the plot of the relative
error is simply a rescaled version of the plot of the absolute error. However, in averaging
over all 10 coordinate directions, a small Sj may yield a fairly large relative error even
with a small absolute error, thus resulting in a significantly different contribution to the
average relative error versus the average absolute error. For the function Corner Peak,
we were not able to compute analytic values in a reasonable amount of time, so we show
only the values obtained rather than error values.

564 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

10
1

10
3

10
5

−0.2

0

0.2

0.4

Sparse grid: OSCILLATORY

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Quasi MC: OSCILLATORY

Number of points evaluated
C

om
pu

te
d

se
ns

iti
vi

ty
 v

al
ue

s
10

1
10

3
10

5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Ext FAST: OSCILLATORY

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

Coordinate 3
Coordinate 4
Coordinate 5
Coordinate 7
Coordinate 8

10
1

10
3

10
5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sparse grid: PRODUCT PEAK

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Quasi MC: PRODUCT PEAK

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Ext FAST: PRODUCT PEAK

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

0

0.2

0.4

0.6

0.8
Sparse grid: CORNER PEAK

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

0

0.2

0.4

0.6

0.8
Quasi MC: CORNER PEAK

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

0

0.2

0.4

0.6

0.8
Ext FAST: CORNER PEAK

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

0

0.5

1
Sparse grid: GAUSSIAN

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Quasi MC: GAUSSIAN

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

10
1

10
3

10
5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Ext FAST: GAUSSIAN

Number of points evaluated

C
om

pu
te

d
se

ns
iti

vi
ty

 v
al

ue
s

Figure 3: Computed total effect values plotted against number of points evaluated. Left: Sparse grid method.
Middle: Quasi-Monte Carlo method. Right: Extended FAST method. The sparse grid method generally shows
the correct ordering of the sensitivity values, even for a small number of evaluations.

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 565

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Number of points evaluated

M
ea

n
er

ro
r

(o
ve

r
10

 d
im

s)

Total effect absolute error for OSCILLATORY

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−5

10
−3

10
0

10
3

10
5

Number of points evaluated

M
ax

 a
nd

 m
in

 r
el

at
iv

e
er

ro
rs

Total effect relative error for OSCILLATORY

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Number of points evaluated

M
ea

n
er

ro
r

(o
ve

r
10

 d
im

s)

Total effect absolute error for PRODUCT PEAK

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−5

10
−3

10
0

10
3

10
5

Number of points evaluated

M
ax

 a
nd

 m
in

 r
el

at
iv

e
er

ro
rs

Total effect relative error for PRODUCT PEAK

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Number of points evaluated

M
ea

n
er

ro
r

(o
ve

r
10

 d
im

s)

Total effect absolute error for GAUSSIAN

Sparse grid
Quasi MC
Ext FAST

10
1

10
3

10
5

10
−5

10
−3

10
0

10
3

10
5

Number of points evaluated

M
ax

 a
nd

 m
in

 r
el

at
iv

e
er

ro
rs

Total effect relative error for GAUSSIAN

Sparse grid
Quasi MC
Ext FAST

Figure 4: Average differences (averaged over all 10 coordinate dimensions) between approximated and true total
effect values. Left: Absolute errors. Right: Relative errors.

The error plots show that the sparse grid has good accuracy, even for small numbers
of function evaluations, and good convergence as the number of function evaluations in-
creases. The quasi-Monte Carlo method is generally less accurate but still has reasonably
good convergence. The Extended FAST method is often reasonably accurate but doesn’t
display much improvement with the number of function evaluations. It may be that dif-
ferent choices in the particulars of the Extended FAST algorithm would produce better
convergence; we have not tried to address this question since it represents a completely
different line of inquiry.

For each of the four functions, the sparse grid method shows the best overall accuracy

566 G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567

and convergence rates. This accuracy is especially pronounced for the relative error with
a small number of function evaluations, which is in turn reflected in the plots of the
sensitivity values themselves; the sparse grid values are generally in the correct order
and the relative magnitudes Sj/Smax are close to the true values even for a small number
of function evaluations, where Smax is the largest sensitivity value. We note here that the
first two moments, f0 and D, display similar convergence rates, although the convergence
of D is slower than that of f0 due to the fact that f is more accurately approximated by
polynomials of a fixed degree than is f 2.

8 Conclusions

We have used sparse grid interpolation and cubature to produce a numerically accurate
and efficient method for computing the main and total effect variance-based global sen-
sitivity coefficients. This method displays good accuracy and convergence properties on
functions which are known to be globally differentiable, compares favorably with exist-
ing methods, and allows for the computation of all sensitivity values from the evaluation
of a function on a single set of sparse grids. In practice, this method allows one to conduct
high-order sensitivity analysis as a postprocessing step of a sparse-grid based stochastic
collocation simulation without extensive additional computational efforts. Alternatively,
this method could be used in a preprocessing step since it provides a reasonable estimate
of the relative sensitivity of the output to each coordinate with a small number of func-
tion evaluations. This information could be used to fix the values of relatively insensitive
coordinates and focus more resources on the remaining coordinates.

Acknowledgments

We are grateful to Maia Donahue and Ann Rundell for help in applying the Extended
FAST method to our test functions and to the referees for several helpful suggestions.

References

[1] V. Barthelmann, E. Novak and K. Ritter, High dimensional polynomial interpolation on
sparse grids, Adv. Comp. Math., 12 (2000), 273–288.

[2] T. Crestaux, O. Le Matre and J. M. Martinez, Polynomial chaos expansion for sensitivity
analysis, Reliab. Eng. Syst. Safe., 94 (2009), 1161–1172.

[3] T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Algorithms.,
18 (1998), 209–232.

[4] D. Lewandowski, R. M. Cooke and R. J. D. Tebbens, Sample-based estimation of correlation
ratio with polynomial approximation, ACM Trans. Model. Comp. Simul., 18 (2007), 1–17.

[5] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC, Boca
Raton, 2003.

G. T. Buzzard and D. Xiu / Commun. Comput. Phys., 9 (2011), pp. 542-567 567

[6] A. Saltelli, S. Tarantola and K. P. S. Chan, A quantitative model-independent method for
global sensitivity analysis of model output, Technometrics., 41 (1999), 39–54.

[7] A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Comp.
Phys. Comm., 145 (2002), 280–297.

[8] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S.
Tarantola, Global Sensitivity Analysis, The Primer, John Wiley & Sons, Ltd, 2008.

[9] Simlab 3.2.6, http://simlab.jrc.ec.europa.eu/, accessed 7/21/2009.
[10] I. M. Sobol’, Sensitivity estimates for nonlinear mathematical models, Math. Model. Comp.

Exp., 1 (1993), 407–414, [Translation of Sensitivity estimates for nonlinear mathematical
models, Matematicheskoe Modelirovanie, 2 (1990), 112–118 (in Russian)].

[11] I. M. Sobol’ and E. E. Myshetskaya, Monte Carlo estimators for small sensitivity indices,
Monte. Carlo. Methods. Appl., 13 (2007), 455–465.

[12] G. Takhtamysheva, B. Vandewoestyneb and R. Cools, Quasi-random integration in high
dimensions, Math. Comput. Simulat., 73 (2007), 309–319.

[13] L. N. Trefethen, Is Gauss quadrature better than Clensh-Curtis?, SIAM Rev., 50 (2008), 67–87.
[14] E. W. Weisstein, Christoffel-Darboux Identity, MathWorld–A Wolfram Web Resource,

http://mathworld.wolfram.com/Christoffel-DarbouxIdentity.html.
[15] D. Xiu, Fast numerical methods for stochastic computations: A review, Commun. Comput.

Phys., 5 (2009), 242–272.
[16] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with

random inputs, SIAM J. Sci. Comput., 27 (2005), 1118–1139.

