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Abstract. We present an algorithm for the stochastic simulation of gene expression
and heterogeneous population dynamics. The algorithm combines an exact method
to simulate molecular-level fluctuations in single cells and a constant-number Monte
Carlo method to simulate time-dependent statistical characteristics of growing cell
populations. To benchmark performance, we compare simulation results with steady-
state and time-dependent analytical solutions for several scenarios, including steady-
state and time-dependent gene expression, and the effects on population heterogene-
ity of cell growth, division, and DNA replication. This comparison demonstrates that
the algorithm provides an efficient and accurate approach to simulate how complex
biological features influence gene expression. We also use the algorithm to model
gene expression dynamics within ”bet-hedging” cell populations during their adap-
tion to environmental stress. These simulations indicate that the algorithm provides
a framework suitable for simulating and analyzing realistic models of heterogeneous
population dynamics combining molecular-level stochastic reaction kinetics, relevant
physiological details and phenotypic variability.
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1 Introduction

Stochastic mechanisms play key roles in biological systems since the underlying bio-
chemical reactions are subject to molecular-level fluctuations (see, e.g., [11, 28]). Chem-
ical reactions are discrete events occurring between randomly moving molecules. Con-
sequently, the timing of individual reactions is nondeterministic and the evolution of
the number of molecules is inherently noisy. One example of particular importance is
the stochastic expression of gene products (mRNA and protein) [11, 12, 20, 23, 28]. Here,
molecular-level fluctuations may cause genetically identical cells in the same environ-
ment to display significant variation in phenotypes, loosely defined as any observable
biochemical or physical attribute. While such noise is generally viewed as detrimental
due to reduced precision of signal transduction and coordination, several scenarios exist
where noise in gene expression may provide a fitness advantage (see Fraser and Kærn [6]
for a review). For example, it has been proposed that a cell population may enhance its
ability to reproduce (fitness) by allowing stochastic transitions between phenotypes to
increase the likelihood that some cells are better positioned to endure unexpected envi-
ronmental fluctuations [1].

Due to the importance of noise in many biological systems, models involving stochas-
tic formulations of chemical kinetics are increasingly being used to simulate and ana-
lyze cellular control systems [9]. In many cases, obtaining analytical solutions for these
models is not feasible due to the intractability of the corresponding system of nonlinear
equations. Thus, a Monte Carlo (MC) simulation procedure for numerically calculat-
ing the time evolution of a spatially homogeneous mixture of molecules is commonly
employed [7, 8]. Among these procedures, the Gillespie stochastic simulation algorithm
(SSA) is the de-facto standard for simulating biochemical systems in situations where a
deterministic formulation may be inadequate. The SSA tracks the molecular number of
each species in the system as opposed to the variation in concentrations in the determinis-
tic framework. Hence, high network complexity, large separation of time-scales and high
molecule numbers can result in computationally intensive executions. Another challenge
is the need for simulating cell populations. In many cases, gene expression is measured
for 10-100 thousand individuals sampled from an exponentially growing culture of con-
tinuously dividing cells. While the dynamics of individual cells can be appropriately
simulated by disregarding daughter cells, repeating such simulations for a fixed number
of cells may not capture population variability arising from asymmetric division, for ex-
ample, or age-dependent effects. The alternative, tracking and simulating all cells within
the population, is intractable beyond a few divisions due to an exponential increase in
CPU demands as a function of time [22].

Here, we present a flexible algorithm to enable simulations of heterogeneous cell pop-
ulation dynamics at single-cell resolution. Deterministic and Langevin approaches to ac-
count for changes in intracellular content and the constant-number MC method [18, 31]
were previously been combined to simulate and analyze gene expression across cell pop-
ulations [21, 22]. In these studies, extrinsic heterogeneity associated with stochastic divi-
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sion and partitioning mechanisms, and intrinsic heterogeneity associated with molecu-
lar reaction kinetics were considered. Our algorithm, which combines the exact SSA for
single-cell molecular- level modeling and a constant-number MC method for population-
level modeling, is designed to incorporate user-defined biologically relevant features,
such as gene duplication and cell division, as well as to allow the user to obtain single
cell, lineage and population dynamics at specified sampling intervals. Additionally, the
SSA, which can be replaced by approximate methods if desired, is implemented within
a shared-memory CPU parallelization framework to reduce simulation run-times. The
emphasis of our study is to validate the accuracy of the method by directly comparing
simulated results to the analytical solutions of models describing increasingly realistic bi-
ological features. Our results indicate that combining the SSA and the constant-number
MC provides an efficient and accurate approach to simulate heterogeneous population
dynamics, and a reliable tool for the study of population-based models of gene expres-
sion incorporating physiological detail and phenotypic variability.

This paper is organized as follows: Sections 2 and 3 briefly introduce the SSA and
the constant-number MC method, respectively. The developed algorithm is described
in Section 4. Section 5 provides the results of the benchmarking against analytical re-
sults. Finally, in Section 6, we demonstrate the applicability of the algorithm to more
complex contexts by demonstrating that it can reproduce experimental measurements of
gene expression dynamics within ”bet- hedging” cell populations during their adaption
to environmental stress. The work is summarized in Section 7.

2 Stochastic simulation algorithm

The physical basis of the stochastic formulation of chemical kinetics is a consequence of
the fact that collisions in a system of molecules in thermal equilibrium is essentially a
random process [8]. This stochasticity is correctly accounted for by the Gillespie SSA, a
MC procedure to numerically simulate the time evolution of chemical and biochemical
reaction systems. While based on an assumption of intracellular homogeneity and mass-
action kinetics, it is the de-facto standard for simulations of gene expression. In the di-
rect method Gillespie SSA, M chemical reactions R1,··· ,RM with rate constants c1,··· ,cM

among N chemical species X1,··· ,XN , are simulated one reaction event at a time. The next
reaction to occur (index µ) and its timing (τ) are determined by calculating M reaction
propensities a1,··· ,aM, given the current number of molecules of each of the N chemical
species, to obtain an appropriately weighted probability for each reaction [7, 8]. It can be
implemented via the following pseudocode:

1: if t< tend and αM =∑
M
v=1 av 6=0, then

2: for i=1,··· ,M do

3: Calculate ai and αi =∑
i
v=1 av.
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4: end for

5: Generate uniformly distributed random numbers (r1, r2).

6: Determine when (τ = ln(1/r1)/αM) and which (min{µ|αµ ≥ r2αM}) reaction will occur.

7: Set t= t+τ.

8: Update X1,··· ,XN.

9: end if

The SSA can be augmented to incorporate biologically relevant features, such as
changes in the volume of the cell during growth, the partitioning of cell volume and
content at division and DNA replication (see, e.g., [2, 19, 25]). Changes in cell volume
may have significant effects on reaction kinetics. First order reactions have deterministic
rate constants (wM) and stochastic rate constants (cM) that are equal and independent
of volume [14]. However, for higher order reactions, it is necessary to incorporate cell
volume V(t) into the reaction propensities in order to perform an exact simulation. For
example, the stochastic rate constant for a bimolecular second order reaction Rµ at time t
is given by

cµ =
wµ

NAVk(t)
, (2.1)

where NA is Avogadro’s number. Therefore, in the SSA, the rates of higher-order reac-
tions must be scaled appropriately by the current cell volume before calculating propen-
sities. This procedure has previously been demonstrated to provide a satisfying approx-
imation as long as the kinetic time-scale is short compared with the cellular growth
rate [19]. Typically, the volume of each cell k is modeled using an exponential growth
law

Vk(tdiv)=V0exp

[

ln(2)
( tdiv

τ0

)

]

, (2.2)

where V0 is the cell volume at the time of its birth, tdiv is the time and τ0 is the interval
between volume doublings. This functional form allows for the description of dilution as
a first-order decay process within a deterministic model of intracellular concentrations.

Once the SSA incorporates a continuously increasing cell volume, it is necessary also
to specify rules that govern cell division. One option is ”sloppy cell-size control” [34]
where the cell division is treated as a discrete random event that take place with a volume-
dependent probability. Another simpler option is to assume that division occurs once the
cell has exceeded a critical size Vdiv corresponding to one doubling of its initial volume,
Vdiv=2V0. The volume doubling time τ0 then becomes cell division time and tdiv becomes
the time since the last division. When cell division is triggered, i.e., when Vk(tdiv)≥Vdiv,
additional rules must be specified to model the partitioning of cellular content between
mother and daughter cells. For example, asymmetric cell division can be modeled by set-
ting Vdaughter <Vmother. The molecules of the cell can then be partitioned probabilistically
between the two volumes [14, 27, 30, 33].
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The SSA can accommodate additional discrete events. For example, the G2/M cell
cycle checkpoint which ensures proper duplication of the cell’s chromosomes before di-
vision, can be modeled by defining a variable representing the completion of DNA repli-
cation such that cell division is delayed until the DNA content of the cell has doubled.
The replication of individual genes, which doubles the maximum rate of gene transcrip-
tion by doubling the number of corresponding DNA templates, can be modeled as a
discrete event that occurs at a fixed time trep after cell division, i.e., when tdiv ≥ trep, or
as a random event that occurs with some variable probability. In both cases, the DNA-
replication event can be placed in a cell-specific stack of future events that is compared
against tdiv (or t in the above pseudocode) following each SSA step. Events in the stack
scheduled to occur before this time are then executed and removed from the stack. This
can be incorporate into the above pseudocode by inserting the following two lines:

• 8(a): if length(tevent)≥0 then (there are scheduled events),

• 8(b): if t> tevent(i) then execute event(i) and delete tevent(i) from stack.

This approach also provides a convenient basis for simulating the effects of time-
delays [25, 26].

We note that the exact SSA can be extremely computationally intensive since the step
size τ becomes very small when the total number of molecules is high or the fastest reac-
tion occurs on a time-scale that is much shorter than the time-scale of interest. It there-
fore useful to develop techniques that can be used to speed up the simulation. This can
be done, for example, using approximate methods such as the tau-leaping procedure in
which each time step τ advances the system through possibly many reaction events [10].
Additionally, since many independent runs are required to compute population statistics,
parallel computing can be used to further optimize simulation run-times.

3 Constant-number Monte Carlo

Implementations of the modified SSA that track only one of the two cells formed during
cell division may introduce artifacts in the calculation of population characteristics in the
presence of significant phenotypic variability among cells. For example, gene expression
capacity and division time may depend on chronological age; old cells may express genes
at a reduced rate, and daughter cells may need to mature before they can reproduce. In
addition, reproductive rates may be influenced by the accumulation of genetic mutations
within a specific cell lineage or by the current levels of gene expression within individual
cells. To simulate stochastic models of gene expression incorporating such features, it is
necessary to couple the SSA with simulation techniques used in studies of population
dynamics.
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The population balance equation (PBE) is a mathematical statement of continuity that
accounts for all the processes that generate and remove particles from a system of in-
terest [24], including individual members of a population [31]. In a general molecular-
dynamics framework, the PBE contains terms due to nucleation, coagulation and frag-
mentation, and so forth, and is mathematically represented by an integro-differential
equation that typically must be solved numerically to obtain particle size distribution and
densities as a function of time [31]. Due to the integro-differential nature of the problem,
discretization of the size distribution is required. This is problematic because features of
the distribution are not known ahead of time and may change during growth [15, 31].
To resolve discretization problems that hinder the direct integration of the PBE, one can
use MC methods to sample a finite subset of a system in order to infer its properties
and study finite-size effects, spatial correlations, and local fluctuations not captured by a
mean field approximation [10,18,24,31]. Furthermore, a MC method is appropriate as its
discrete nature adapts itself naturally to growth processes involving discrete events, and
can simulate growth over arbitrary long times with finite numbers of simulation particles
while maintaining constant statistical accuracy [18].

In order to construct a reliable and efficient algorithm to simulate biological cell pop-
ulations, a constant-number MC method is adopted to simulate the birth-death processes
that take place within such populations [18,21,22,31]. This approach permits modeling of
growing populations using a fixed number of cells while avoiding the alternative (i.e., an
infinitely growing population) by sampling N particles representing the population as a
whole. It essentially amounts to contracting the physical volume represented by the sim-
ulation to continuously maintain a constant number of cells [18]. The constant-number
MC approach has been successfully applied to a variety of non-biological particulate pro-
cesses [16, 18, 31] as well as cell population dynamics [21, 22].

In our implementation of the constant-number MC, we keep track of individual
mother and daughter cells in two separate arrays. Each time a cell divides, the daughter
cell is placed in the daughter array and the time of birth recorded. Then, at specified in-
tervals, cells within the mother array are replaced one at a time, with the oldest daughter
cells being inserted first. Because every mother cell is equally likely to be replaced during
the sample update, the size distribution of the population remains intact for sufficiently
large populations [31]. In our case, the size distribution corresponds to the distribution
of cell ages (or volumes) across the population.

The constant-number MC method can be represented by the following pseudocode:

1: if t> trestore and NCdaughter≥1 then

2: for all NCdaughter do

3: Randomly select mother cell.
4: Replace mother cell with oldest available daughter cell.
5: end for

6: end if
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Here, trestore is the interval between population updates and NCdaughter the number of
daughter cells born since the last update. To avoid simulating the daughters of daughter
cells, trestore is chosen such that mother cells divide at most once, and daughter cells not
at all, during a particular trestore interval.

4 Algorithm

Simulations are carried out using an initial population distribution, where gene expres-
sion in each cell is described by a user defined set of equations, and population statis-
tics are obtained at a specified sampling interval. Here, stochastic simulation is carried
out using the Gillespie direct method [7, 8], however any stochastic simulation method
can be implemented. Parallelism is implemented across the simulation (see Fig. 1 and
pseudocode in this section), as a large number of independent simulations need to be
performed when simulating the dynamics of a cell population, in a shared memory mul-
tiprocessor environment.

The algorithm can be expressed by the flow diagram (Fig. 1) and the following pseu-
docode:

1: while t< tend do

2: begin parallel region

3: for all NCpopulation such that t< tsample do

4: Gillespie SSA (see pseudocode in Section 2).
5: Update Vk.
6: Execute events in stack with tevent < tdiv.
7: if Vk(tdiv)≥Vdiv then

8: Execute cell division.
9: Increment NCdaughter.

10: end if

11: end for

12: Update tsample.
13: end parallel region

14: Execute constant-number MC (see pseudocode in Section 3).
15: Compute statistics.
16: end while

Here, NCpopulation is the total number of cells in the population, Vk the volume of cell
k, and tsample the user defined population sampling interval.

The algorithm can execute simulations of considerable size in reasonable times. For
example, an IBM with 2 quad-core processors (1.86GHz cores) and 2.0GB of RAM com-
pleted a 105s simulation of the network presented in Section 5.1 for 8000 cells in 81s when
v0 =0.3s−1, v1 =0.05s−1, d0 =0.05s−1, d1 =5×10−5s−1, tdiv =3600s, trestore =3300s.
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Figure 1: Flow diagram of the present algorithm for the parallel stochastic simulation of gene expression and
heterogeneous population dynamics.

5 Numerical results

In order to evaluate the accuracy of the present algorithm, we compare simulation re-
sults to steady-state and time-dependent analytical solutions of constitutive gene expres-
sion models. In this section, models describing increasingly realistic biological features
are considered and presented along with the derivations of the corresponding analytical
solutions. We have included these details to emphasize the significant complexity as-
sociated with the derivation of even simple kinetic models. Part of our motivation for
developing the algorithm is the anticipation that finding analytical solutions to models
incorporating complex biochemical reaction network and cellular physiology will be in-
tractable. We begin in Subsection 5.1 by considering time-dependent gene expression,
i.e., the transcription of RNA and translation of RNA into protein, and benchmark this
scenario against the corresponding time-dependent analytical distributions. In Subsec-
tion 5.2 we consider both time-dependent and time-independent gene expression using
a model that incorporates the effects of gene duplication and cell division on gene ex-
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pression dynamics in individual cells using the constant-number MC method. All simu-
lations statistics were obtained from populations consisting of 8000 cells.

5.1 Time-dependent population distributions

Population-based simulation algorithms have the advantage of yielding time-dependent
population-distributions as the output. To evaluate the accuracy of our approach in this
respect, validation against a time-dependent distribution is of interest. For this purpose,
we simulate a two-stage gene expression model consisting of the following biochemical
reactions:

T
v0−→T+mRNA, (5.1a)

mRNA
d0−→⊘, (5.1b)

mRNA
v1−→mRNA+P, (5.1c)

P
d1−→⊘, (5.1d)

where Eq. (5.1a) describes transcription at a rate v0, Eq. (5.1b) the degradation of the
mRNA at a rate d0, Eq. (5.1c) translation at a rate v1, and Eq. (5.1d) the protein degrada-
tion at a rate d1. Here, all rates are given in probability per unit time and it is assumed
that the promoter T is always active and thus the model has two stochastic variables, the
number of mRNAs and the number of proteins P.

Shahrezaei and Swain [30] studied the system described by Eqs. (5.1a)-(5.1d) and de-
rived an approximative protein distribution as a function of time. The approximation is
based on the assumption that the degradation of mRNA is fast compared to the degrada-
tion of proteins (i.e., d0/d1 ≫1). Consequently, the dynamics of mRNA is at the steady-
state for the most of a protein’s lifetime. The essential steps of the derivation are as
follows (see supplementary materials in [30] for the complete derivation).

The chemical master equation (CME) describing the probability of having m mRNAs
and n proteins for the system in Eqs. (5.1a)-(5.1d) at time t is given by

∂Pm,n

∂t
=v0(Pm−1,n−Pm,n)+v1m(Pm,n−1−Pm,n)

+d0[(m+1)Pm+1,n−mPm,n]+d1[(n+1)Pm,n+1−nPm,n].

If we let u = z′−1 and v = z−1, the corresponding generating function F(z′,z), defined
in [30] as ∑m,n(z′)mznPm,n, is given by

1

v

∂F

∂τ
+

∂F

∂v
−γ

[

b(1+u)−
u

v

]∂F

∂u
= a

u

v
F, (5.2)

where a = v0/d1, b = v1/d0, γ = d0/d1, and τ = d1t. If r measures the distance along a
characteristic, which starts at τ = 0 with u = u0 and v = v0 for some constants u0 and v0,
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then from Eq. (5.2) it is found that

du

dr
=−γ

[

b(1+u)−
u

v

]

, (5.3)

using the method of characteristics. Consequently direct integration implies that v = r
and Eq. (5.3) has the solution

u(v)= e−γbvvγ
[

C−bγ
∫ v

dv′
eγbv′

v′γ

]

, (5.4)

for a constant C. By Taylor expansion of eγbv, such that

eγbv =∑
n

(γbv)n

n!
,

the integral in Eq. (5.4) can be evaluated, and, if Stirling’s approximation is subsequently
applied, u(v) is found for γ≫1 to obey

u(v)∼=
(

u0−
bv0

1−bv0

)

e−γb(v−v0)
( v

v0

)γ
+

bv

1−bv
, (5.5a)

or

u(v)∼=
bv

1−bv
, (5.5b)

as v = v0eτ
> v0, for τ > 0. When γ≫ 1, u tends rapidly to a fixed function of v and the

generating function describing the distribution of proteins can be obtained from Eq. (5.2)

dF

dv
∼=

ab

1−bv
F. (5.6)

Integrating Eq. (5.6) yields the probability distribution for protein number as a function
of time

F(z,τ)=
[1−b(z−1)e−τ

1+b−bz

]a
. (5.7)

By definition of a generating function, expanding F(z) in z yields

Pn(τ)=
Γ(a+n)

Γ(n+1)Γ(a)

[ b

1+b

]n[1+be−τ

1+b

]a
×2 F1

[

−n,−a,1−a−n;
1+b

eτ +b

]

, (5.8)

where 2F1 and Γ are the hypergeometric and the gamma function, respectively. The initial
number of proteins n is set to zero. In this case, the mean, variance, and protein noise of
the process are described respectively by

µP(τ)= ab(1−e−τ), (5.9a)

σ2
P(τ)=µP(1+b+be−τ), (5.9b)

ηP(τ)=
σP

µP
=

[1+b+be−τ

ab(1−e−τ)

]
1
2
. (5.9c)
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Figure 2: Simulation results and time-dependent analytical solutions of a two-stage model of gene expres-
sion [30]. The distribution of protein numbers for a population of cells at two different dimensionless times,
τ =0.2 and τ =10, is shown.

Figure 3: Simulation results and time-dependent analytical solutions of a two-stage model of gene expres-
sion [30]. Mean protein µP (top) and noise ηP (bottom) are plotted as a function of dimensionless time τ. Red
dots indicate simulation results and black curves analytical solutions [30].

To benchmark the ability of the algorithm to accurately generate time-dependent popu-
lation distributions, we simulated Eqs. (5.1a)-(5.1d) under conditions where the assump-
tions of Eq. (5.8) are satisfied, and compared the resulting distributions with correspond-
ing time-dependent analytical distributions. Fig. 2 shows the simulated and analytical
distributions at two different values of dimensionless time τ. The population statistics,
specifically µP and ηP, as a function of τ are shown in Fig. 3. In both cases, the simulated
protein distributions and statistics are in excellent agreement with the analytical results
(Eqs. (5.8)-(5.9)).
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5.2 Gene duplication, cell division and time-dependent validation

To explore the accuracy of the algorithm when simulating models incorporating cell
growth, division, and DNA replication, we implemented the simplified reaction network
presented in Swain et al. [33]. The reduced reaction network was obtained from a model
of gene expression consisting of 8 molecular species and 11 chemical reactions. For this
simplified network, it is possible to derive time-dependent analytical results for the mean
protein number and coefficient of variation in protein number. Importantly, by making
the appropriate approximations, the effects of gene replication and cell division can be
included in the analytical solutions. The reduced model have two components, one de-
scribed by the reactions in Eqs. (5.1a)-(5.1d) (note that the reaction rates v1 and d0 can
be directly related to v′1 and d′0 in the original model [33]), and another describing pre-
transcription kinetics. This component captures the reversible binding of RNAP to the
promoter (rate constants b0 and f0), and the formation of an open promoter complex (rate
constant k0). These steps are described by the reactions

D
f0

⇋

b0

C, (5.10a)

C
k0−→D+T, (5.10b)

where D, C and T represent the promoter with polymerase unbound, the promoter with
polymerase bound and the open promoter complex, respectively. Since the total number
n of DNA molecules is conserved before and after replication, D and C can be constrained
by

n0+n1 =n, (5.11)

where n0 and n1 are the number of promoter copies in states D and C respectively.
To derive an analytical solution, the authors invoked the assumption that the distribu-

tions of C,T, and mRNA can be approximated by their steady state distributions. While
this assumption thus ignores the transient dynamics of these species, it is expected to in-
troduce a minimal error since the protein degradation rate d1 is much smaller compared
to the other reaction rates. As a consequence, the mean and coefficient of variation pro-
tein P are time-dependent while the moments of the distributions of the other species are
constant. Even with this approximation, the derivation of the analytical solutions for the
mean and coefficient of variation is rather arduous. In the following, we highlight only
the main points (the complete derivation can be found in the supplementary material of
Swain et al. [33]). It consists of three separate stages-the derivation of time-dependent
expression for the population mean and noise, the incorporation of gene replication and
the addition of cell division.

The first stage is analogous to the derivation of time-dependent moments in Sec-
tion 5.1, that is, cell cycle effects are neglected and the probability distributions for
the species C,T,mRNA, and P is described using the CME. In this case, the variables
n1,n2,n3 and n4 are used to describe the numbers of C,T,mRNA, and P, respectively,
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and p(n1,n2,n3,n4,t) denotes the probability density function of the time-dependent state.
The CME can be correspondingly be written in the form

∂p(n1,n2,n3,n4,t)

∂t
= f0[(n−n1+1)p(n1−1,n2,n3,n4,t)

−(n−n1)p(n1,n2,n3,n4,t)]+··· , (5.12)

where dots denote similar terms, one for each rate constant. The CME is then used
to derive an expression for the time-dependent probability-generating function. The
probability-generating function is defined by

F(z1,z2,z3,z4,t)= ∑
n1,n2,n3,n4

zn1
1 zn2

2 zn3
3 zn4

4 p(n1,n2,n3,n4,t). (5.13)

It can easily be seen that differentiating F with respect to zi and setting all zi to unity,
gives µni

and similarly the second derivative gives µni(ni−1). Applying the transformation
given by Eq. (5.13) to the CME (Eq. (5.12)), an expression for the probability-generating
function can be obtained. This expression has the form of the partial differential equation

∂F

∂t
= f0nwF−

[

f0w(1+w)+b0w−k0(x−w)
] ∂F

∂w
+v0(y−x)

∂F

∂x

+
[

v′1z(1+y)−d′0y
]∂F

∂y
−d1z

∂F

∂z
, (5.14)

where w = z1−1, x = z2−1, y = z3−1 and z = z4−1. This equation, just like the CME, is
practically impossible to solve. However, the equation can be combined with a second
order Taylor expansion of Eq. (5.13), which can be written in the form

F(w,x,y,z,t)≃1+wX1+xX2+yX3+zX4(t)+
1

2

[

X11w2+X22x2

+X33y2+X44(t)z2+2X12wx+2X13wy+2X23xy

+2X14(t)wz+2X24(t)+2X34(t)yz
]

, (5.15)

where the expansion is taken around w=0, x=0, y=0, z=0, so that the following holds:
Xi = µni

, Xii = µn2
i
−µni

and Xij = µninj
, i 6= j. Here it is important to note that only the

processes involving protein molecules are time-dependent according to the previous as-
sumptions. The Eq. (5.15) is then substituted to Eq. (5.14), the coefficients are compared
and solvable expressions for the expected values, variances, and covariances of the con-
sidered process are obtained. This gives equations governing the variables X4 = µP and
X44 =µP(P−1)

dX4(t)

dt
=v′1X3−d1X4(t), (5.16a)

dX44(t)

dt
=2v′1X34(t)−2d1X44(t). (5.16b)
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Assuming that µP(0)=m, Eqs. (5.16a) and (5.16b) can be solved using expressions for the
other Xij variables. The expressions are rather complex and the interested reader should
refer to [33]. Solving Eqs. (5.16a) and (5.16b) yields the following expressions for the
protein mean and variance

µP(t)=
v1X3

d1

(

1−e−d1t
)

+me−d1t, (5.17a)

σ2
P(t)=

(

1−e−d1t
)

{

me−d1t+λ
[

1+λΩ(1+e−d1t)
]}

, (5.17b)

where

λ=
v′1 f0k0n

d′0d1l
, (5.18a)

Ω=
d1

d′0+d1

[

η2
33+

d′0
d1+v0

(

η2
23+

v0

d1+l
η2

13

)]

. (5.18b)

Note that Ω is a measure of the mRNA fluctuations, l = f0+b0+k0, and that η2
ij is given

by

η2
ij =

µninj
−µni

µnj

µni
µnj

. (5.19)

The effects of gene replication are incorporated in the second stage of the derivation.
The number of proteins at the beginning of each cell cycle is determined by the time
evolution of the system during the cycle of a parent cell. To assess the time evolution of
protein molecules during the cell cycle, the probability qn|m(t) of having n proteins at time
t, given that there were m proteins at time t=0 is defined and the probability-generating
function Qm(z,t) for this distribution is constructed. By definition, the generating func-
tion has the form

Qm(z,t)=∑
n

qn|m(t)zn. (5.20)

The equation can be expanded around z=1, which yields

Qm(z,t)∼=1+(z−1)µP +
1

2
(z−1)2[µP2 −µP]+··· . (5.21)

This function can be determined up to the necessary level by means of equations µP(t)
and σ2

P(t). Using Eq. (5.21), it is obtained that

Qm(z,t)=Q0(z,t)
[

1−e−d1t+ze−d1t
]m

. (5.22)

Because the gene replication occurs at time t= td, two different forms of Qm(z,t) have to

be considered: Q
(1)
m (z,t) which is valid when the gene number is n, and Q

(2)
m (z,t) which

is valid when the gene number is 2n. Thus

Q
(i)
m (z,t)=Q

(i)
0 (z,t)[Y+z(1−Y)]m , (5.23)
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where Y = 1−e−d1t. Now it is possible to proceed to the third stage of the derivation
where cell division is included.

The third stage incorporates cell division. Cell division is in the model assumed to
occur at fixed intervals given by the division time Td. When t = Td it is assumed that
each protein has a 50% probability of being kept in this cell (symmetric division) and the
probability of having n proteins immediately after the division is the binomial

(

m

n

)

2−m (5.24)

given that there are m proteins just before cell division. The transfer probability from one
cell cycle to another can be constructed by combining the binomial distribution with the
protein distribution derived earlier (Eq. (5.15)). After many divisions, the protein number
tends to a limit cycle and expressions for the mRNA and protein mean and coefficient of
variation can be obtained in the limit d1/d′0≪1. Through a fairly complicated set of steps,
it can be shown [33] that the mean mRNA number before gene duplication (t < td), and
the mRNA coefficient of variation are given by

µmRNA =
f0k0n

d′0l
, (5.25a)

η2
mRNA =

1

µmRNA
−

d′0v0(d′0+l+v0)

n(d′0+l)(l+v0)(d′0+v0)
. (5.25b)

The mean protein number and coefficient of variation in protein number as functions of
time can be derived as

µP(t)=
v′1
d1

µmRNAφ0(t), (5.26a)

η2
P(t)=

1

µP(t)
+

1

µmRNA

[

1−
f0k0

l2

]d1

d′0
φ1(t), (5.26b)

where

φ0(t)=







1− e−d1(T−td+t)

2−e−d1T , for 0≤ t≤ td,

2
[

1− e−d1(t−td)

2−e−d1T

]

, for td ≤ t≤T,
(5.27a)

φ1(t)=
2−e−d1T

2+e−d1T
×















4−e−2d1T−2e−2d1t−e−2d1(T+t−td)

(

2−e−d1T−e−d1(T+t−td)
)2 , for 0≤ t≤ td,

4−e−2d1T−e−2d1t−2e−2d1(t−td)

2
(

2−e−d1T−e−d1(t−td)
)2 , for td ≤ t≤T.

(5.27b)

In Eqs. (5.27a) and (5.27b), td and T denote the gene replication time and the cell division
time, respectively.
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Figure 4: Time series of a single cell within a growing and dividing population. Protein number (top) and
concentration (middle), and mRNA number (bottom), were obtained and found to be in agreement with a
model of translation provided in [33]. Gene duplication occurs every td = 0.4T into the cell cycle and results
in an increased rate of protein production until the next cell division event where the number of genes prior to
duplication is restored.

It is noted that Eqs. (5.25a) and (5.25b) are time independent and that the value of the
mean is twice this result after gene replication occurs (i.e., when t>td). The time indepen-
dence follows from the assumption that the RNA is in a quasi-steady state proportional
to the gene copy number n, and that all other time dependencies are absorbed into the
protein distribution.

Our simulation results are compared to the corresponding steady-state and time-
dependent analytical solutions (Figs. 4-6). In these simulations, we use the same as-
sumptions as in [33]; the cell volume increases linearly up to time of cell division T, gene
replication occurs at trep =0.4T and cell division is symmetric with binomial partitioning
of molecules. Simulated protein number and concentration, as well as mRNA number
dynamics, for single cells (Fig. 4) are comparable with the simulation results obtained
by Swain et al. [33]. Figs. 5 and 6 further compare population characteristics estimated
from simulations to those predicted by the corresponding steady-state analytical solu-
tions. Both RNA (µmRNA(n) and η2

mRNA(n), Fig. 5) and protein (µP(t) and η2
P, Fig. 6)

characteristics are in good agreement with the analytical results (Eqs. (5.25a)-(5.27b)).

6 Simulating complex population dynamics

6.1 Asymmetric cell division

To investigate sources of external variability in eukaryotic gene expression, Volfson et
al. [35] combined computational modelling with fluorescence data. As part of this study,
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Figure 5: Comparison of simulation results and analytic solutions. Mean mRNA values are plotted as a function
of gene copy number n (top). The noise in mRNA number is also plotted as a function of n (bottom). Note
that mean mRNA values increase and the noise decreases after gene duplication as expected. Black curves
indicate analytical values [33] and red dots simulation results.

Figure 6: Comparison of simulation results and analytic solutions. Mean protein number (top) and noise
(bottom) as a function of time t for two different values of the protein degradation parameter d1. Note the
increase in protein production rate and decrease in noise levels that occurs after gene duplication at t=0.4. Red
dots indicate simulation results and black curves analytical values [33].

the authors simulated the distribution of cell sizes within a population of Saccharomyces
cerevisiae (budding yeast). In these simulations, cells grew exponentially until they
reached a critical volume Vc where they divided. The volume at division was drawn
from a normal distribution with a mean specified as a function of genealogical age and
coefficient of variation 0.15. Following division, the mother cell retained 70% of the vol-
ume (V0 =0.7Vc) while daughter cells were correspondingly smaller (V0 =0.3Vc). The re-
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sulting distribution of cell sizes obtained from an initial population of 1000 cells allowed
to grow to 100000 cells was found to be in agreement with experimental and analytical
results [35].

The model by Volfson et al. [35] is ideally suited for benchmarking the constant-
number MC method. As in Volfson et al. [35], we first simulated the growth of a pop-
ulation initially consisting of 1000 cells and obtained the steady-state size distribution
once the population grew to 100000 cells (Fig. 7(a)). Next, we repeated the simulations
using the constant-number MC method to estimate the size distribution from a represen-
tative sample (8000 cells) of this cell population (Fig. 7(b)). A plot of the probabilities
for the sample population against the probabilities of the ”true” population shows that
the difference between these variables is minimal (Fig. 7(c)). These results compliment
previous studies [16, 18, 21, 22, 31] demonstrating the ability of the constant-number MC
method to capture complex population dynamics.

6.2 Bet-hedging cell populations

One of the most interesting potential applications of the simulation algorithm described
in Section 4 is investigations of interactions between environmental changes, popula-
tion dynamics and gene expression in individual cells. For example, it can be used to
study the optimization of fitness in fluctuating environments, which is a classic prob-
lem in evolutionary and population biology [4, 17, 29, 32]. Acar et al. [1] experimentally
investigated how stochastic switching between phenotypes in changing environments
affected growth rates in fast and slow-switching populations by using the galactose uti-
lization network in Saccharomyces cerevisiae. Specifically, a strain was engineered to ran-
domly transition between two phenotypes (ON and OFF) characterized by high or low
expression of a gene encoding the Ura3 enzyme necessary for uracil biosynthesis. Each
phenotype was designed to have a growth advantage over the other in one of two en-
vironments. In the first environment (E1) which lacks uracil, cells in the ON phenotype
have an advantage. In the second environment (E2), cells in the OFF phenotype have an
advantage due to the presence of a drug (5-FOA) which is converted into a toxin by the
Ura3 enzyme. In this environment, which also contains uracil, cells expressing Ura3 will
have low viability while cells not expression Ura3 will grow normally.

Models of gene expression often describe the promoter T as being in one of two states:
a repressed state TR (basal level of gene expression) or an active state TA (upregulated
level of gene expression) corresponding respectively to OFF and ON phenotypes. This
can be described by the following biochemical reaction scheme [11]:

TA

k1
⇋

k2

TR, (6.1a)

TA
v0,A
−→TA +mRNA, (6.1b)

TR
v0,R
−→TR+mRNA, (6.1c)
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Figure 7: Simulation of a stochastic population dynamics model [35] of a Saccharomyces cerevisiae population
undergoing stochastic (size at division) and asymmetric (partitioning of cell volume) division. (a) Steady-state
distribution of cell sizes for a population of 100000 cells. (b) Steady-state size distribution of a representative
sample (8000 cells) obtained using the constant-number Monte Carlo method [18,31] of the ”true” population
shown in (a). (c) Plot of the probabilities population shown in (b) against the probabilities of the population
shown in (a) along with linear regression.

Figure 8: Simulations of populations of slow and fast-switching cells. (a) Growth rates of cells transferred from
an environment containing uracil and 5-FOA (E2) to one containing no uracil (E1) at t=0. (b) Growth rates of
cells transferred from E1 to E2 at t=0. Note that the transient before the steady-state region is shorter in (a)
than in (b), and that fast-switching cells recover faster from the environment change but slow-switching cells
have a higher steady-state growth, in agreement with experimental results found in [1].
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mRNA
d0−→⊘, (6.1d)

mRNA
v1−→mRNA+P, (6.1e)

P
d1−→⊘, (6.1f)

where Eq. (6.1a) describes the transitions to the TA and TR promoter states at rates k1 and
k2 respectively, Eqs. (6.1b) and (6.1c) the mRNA production from the TA (at a rate v0,A)
and TR (at a rate v0,R) states respectively, Eq. (6.1e) the protein production from mRNA at
a rate v1, and Eqs. (6.1d) and (6.1f) respectively the mRNA (at a rate d0) and protein (at a
rate d1) degradation.

We first follow the approach that was used in Acar et al. [1] to describe the dynamics
of phenotype switching, where cells are in either the ON or the OFF state

ON
k1
⇋

k2

OFF. (6.2)

In this scenario, cells randomly switch between the high and low expressing states at
rates k1 and k2 (see [1] for parameter values corresponding to slow and fast-switching
cells). The growth rate (Eq. (2.2)) of fit cells was set higher than the corresponding growth
rate for unfit cells in the same environment. In order to avoid synchronization in the
population level dynamics, we set Vdiv = 2V0+ξ, where ξ is a small random number
drawn from a normal distribution with zero mean and 0.2 variance.

Fig. 8 shows the growth rates obtained from simulations of slow and fast-switching
cell populations, where cells were transferred from E2 to E1, and vice versa, at t = 0.
Growth rates show a transition period and a steady-state region. In agreement with ex-
periments (see Acar et al. [1]), fast-switching cells were found to recover from the effect
of environment change faster than slow-switching cells but have a lower steady-state
growth rate.

Next we implemented the full model of gene expression described by Eqs. (6.1a)-
(6.1f). The fitness wk of each cell k, which is here defined as a function of the environment
and cellular protein concentration [P], was described by a Hill function

wk(E,P)=







[P]n

[P]n+Kn , if E=E1,

Kn

Kn+[P]n
, if E=E2.

(6.3)

This equation describes partitioning of cells into fit (wk(E,P)>0.5) and unfit (wk(E,P)<

0.5) phenotypes corresponding to whether or not their [P] in a particular environment is
above or below a particular value given by the Hill coefficient K. The volume of each cell
was described by Eq. (2.2), except here τ0 = τφ/w, where τφ is the cell division time in
absence of selection. To incorporate the effect of fitness on gene expression, the value of
transcription rate parameter v0 depended on whether or not a cell was fit in either E1 or
E2 (see Fig. 9 for parameters).
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Figure 9: Simulations of environmental effects on phenotypic distribution. (a) Steady-state (top and bottom
figures) and time-dependent (middle figures) protein distributions of cells resulting from an environment change
from E1 to E2. (b) Steady-state (top and bottom figures) and time-dependent (middle figures) protein dis-
tributions of cells resulting from an environment change from E2 to E1. Note that when a sufficient amount
of time has elapsed after the environmental transition from either E1 to E2 or vice versa, cells with either
the OFF or ON phenotype proliferate, respectively, in agreement with experimental results found in [1]. The
following parameters were used: d0 = 0.005, v1 = 0.1, d1 = 0.008, K = 200, n = 10. In E1 v0,A = 0.2 for fit cells
and v0,R = 0.05 for unfit cells-vice versa in E2. Additionally τφ was set to the mean doubling time (MDT) of
1.5 hours for Saccharomyces cerevisiae [3].

The population distributions obtained for this model are shown in Fig. 9. Specifically,
we first obtained the steady-state protein concentration distributions for cells in E1 and
E2 (Fig. 9(a) and 9(b) respectively). Here, the majority of cells either fell within a distri-
bution centered at higher value characterizing the ON cells, or a distribution centered
at a lower value of P characterizing the OFF cells, in E1 or E2 respectively. The rest of
the cells fell within the distribution capturing the unfit subpopulation in both environ-
ments. These results were found experimentally in [1] and are expected, as higher levels
of the uracil enzyme are either favorable or unfavorable with respect to the fitness of the
cells depending on the environment. Next, the time-dependent population distributions
after the transition to E1 from E2, and vice versa, were obtained (Fig. 9(a) and 9(b) re-
spectively). Here, the dynamics of the two distinct subpopulations of cells in transition
between the steady-states are visible. As time progresses after the environmental transi-
tion, less and less of the cells are in the unfit state (ON in Fig. 9(a) and OFF in Fig. 9(b)),
as the cells in the more fit state (OFF in Fig. 9(a) and ON in Fig. 9(b)) grow and divide at a
faster rate and therefore come to dominate the population in terms of absolute numbers.



110 D. A. Charlebois et al. / Commun. Comput. Phys., 9 (2011), pp. 89-112

7 Conclusions

We have presented a framework for the stochastic simulation of heterogeneous popula-
tion dynamics. The accuracy of the method was verified by comparing simulation results
of stochastic gene expression and population dynamics with corresponding steady-state
and time-dependent analytical solutions and experimental results. Parallel execution of
the algorithm was found to significantly decrease run-times in comparison to simulations
run on a single processor, and did not introduce errors in numerical results.

The algorithm was also shown to be capable of simulating and capturing the dy-
namics of a cell population in a fluctuating environment, where phenotypic variabil-
ity strongly influences gene expression dynamics. Agreement between this framework
and the experimental and theoretical results obtained using a deterministic reaction-rate
method in Acar et al. [1], serves as a further benchmark for the proposed method. Fur-
thermore, the algorithm’s ability to capture the steady-state and time-independent phe-
notypic distributions in this system exemplifies the utility of this approach, as these dis-
tributions cannot be obtained using a deterministic framework.

Current cellular population simulation methods, including the present algorithm,
treat the extracellular environment as homogeneous (e.g., the spatial-temporal concen-
tration profile of a nutrient required for growth is held constant). This prohibits, for
example, the inclusion of competition for a limiting resource in the present implementa-
tion. However, it is possible to model feedback between cells and their environment. The
simplest approach would be to assume that the environment is constant over short time
intervals. The change in total population cell volume at the end of each interval could
then be used to calculate how much nutrients have been consumed and the parameters
describing the environment adjusted accordingly. Since the time intervals would have to
be sufficiently short so that the change in concentration of the nutrient during any partic-
ular interval is negligible, the computational workload would increase substantially. The
focus of future work will be on developing and benchmarking accurate and efficient aug-
mentations that permit population simulators to handle these and other more complex
scenarios.
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