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Abstract. In this paper, we develop a formulation for solving equations containing
higher spatial derivative terms in a spectral volume (SV) context; more specifically the
emphasis is on handling equations containing third derivative terms. This formulation
is based on the LDG (Local Discontinuous Galerkin) flux discretization method, origi-
nally employed for viscous equations containing second derivatives. A linear Fourier
analysis was performed to study the dispersion and the dissipation properties of the
new formulation. The Fourier analysis was utilized for two purposes: firstly to elimi-
nate all the unstable SV partitions, secondly to obtain the optimal SV partition. Numer-
ical experiments are performed to illustrate the capability of this formulation. Since
this formulation is extremely local, it can be easily parallelized and a h-p adaptation
is relatively straightforward to implement. In general, the numerical results are very
promising and indicate that the approach has a great potential for higher dimension
Korteweg-de Vries (KdV) type problems.
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1 Introduction

The spectral volume (SV) method was originally developed by Wang, Liu et al. and
their collaborators for hyperbolic conservation laws on unstructured grids [20, 29–33].
The spectral volume method is a subset of the Godunov type finite volume method,
which has been evolving for decades and has been a starting block for the development
of a plethora of methods such as the k-exact finite volume [5, 8], MUSCL (Monotone
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Upstream-centered Schemes for Conservation Laws) [27, 28], and the essentially non-
oscillatory (ENO) [1, 11] methods. The spectral volume method can be viewed as an
extension of the Godunov method to higher order by adding more degrees-of-freedom
(DOFs) in the form of subcells in each cell (simplex). The simplex is referred to as a spec-
tral volume (SV) and the subcells are referred to as control volumes (CV). Every simplex
in the SV method consists of a ”structured” arrangement of the above mentioned subcells
(CVs). As in the finite volume method, the unknowns (or DOFs) are the subcell-averaged
solutions. A finite volume procedure is employed to update the DOFs. The spectral vol-
ume method shares many similar properties with the discontinuous Galerkin (DG) [6, 7]
and the spectral difference (SD) [18, 24] methods, such as discontinuous solution space,
sharing multiple degrees of freedom within a single element and compactness. They
mainly differ on how the DOFs are chosen and updated. Since the DG is a derivative
of the finite element method, most implementations use the elemental nodal values as
DOF, though some researchers use the equally valid modal approaches. Although both
of the above approaches are mathematically identical, at least for linear equations, dif-
ferent choices of DOFs are used by various researchers result in different efficiency and
numerical properties. The spectral volume being a derivative of the finite volume has
subcell averages as its DOF while the spectral difference has point wise values as DOF. In
terms of complexity, DG requires both volume and surface integrations. In contrast, SV
requires only surface integrations and the SD requires differentiations.

The SV method was successfully implemented for 2D Euler [32] and 3D Maxwell
equations [20]. The quadrature free formulation was implemented by Harris et al. [9]. A
h-p adaptation was also carried out in 2D [10]. Recently Sun et al. [25] implemented the
SV method for the Navier Stokes equations using the LDG [7] approach to discretize the
viscous fluxes. Kannan and Wang [14, 17] conducted some Fourier analysis for a variety
of viscous flux formulations. Kannan implemented the SV method for the Navier Stokes
equations using the LDG2 (which is an improvised variant of the LDG approach) [15]
and DDG approaches [16]. Even more recently, Kannan extended the SV method to solve
the moment models in semiconductor device simulations [12, 13].

In this paper, we develop a formulation for solving equations containing third spatial
derivative terms in a SV context. This formulation borrows ideas from Yan et al. [34, 35]
for efficiently implementing the LDG method. A linear Fourier analysis is performed
to test the accuracy of this formulation. The Fourier analysis was utilized for two pur-
poses: firstly to eliminate all the unstable SV partitions, secondly to obtain the optimal
SV partition. The maximum allowable non-dimensional time step was determined for
these optimal partitions.

The paper is organized as follows. In the next section, we review the basics of the SV
method. The LDG formulation for high order spatial derivatives is presented in Section
3. A detailed linear analysis is performed for the LDG formulation in Section 4. Section
5 presents with the different test cases conducted in this study. Finally conclusions from
this study are summarized in Section 6.
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(a) (b) (c)

Figure 1: Partitions of a SV in 1D. (a): Linear reconstruction; (b): Quadratic reconstruction; (c): Cubic
reconstruction.

2 Basics of the spectral volume method

2.1 Formulation in 1D

Consider the general conservation equation

∂Q

∂t
+

∂
(

fi(Q)− fv(Q)
)

∂x
=0, (2.1)

in a one dimensional domain Ω with appropriate initial and boundary conditions. In
(2.1), x refers to the Cartesian coordinate and (x)∈Ω, t∈[0,T] denotes time, Q is the vector
of conserved variables, and fi and fv are the inviscid and viscous fluxes respectively.
Domain Ω is discretized into I non overlapping sub cells. In the SV method, the simplex
grid cells are called SVs, denoted Si, which are further partitioned into CVs, denoted
Cij, which depend on the degree of the polynomial reconstruction. Fig. 1 shows linear,
quadratic and cubic partitions in 1D. The partitions were originally determined for a
linear advection equation using a linear Fourier analysis [26]. One of the outcomes of this
paper is to obtain stable and accurate partitions for equations having third derivatives.

We need N unknown control volume solution averages (or DOFs) to construct a de-
gree k polynomial. N is calculated using the below formula (in 1D)

N = k+1, (2.2)

where k is the degrees of the polynomial, constructed using the CV solution averages.
The CV averaged conserved variable for Cij is defined as

Qi,j =
1

Vi,j

∫

Ci,j

QdV, j=1,··· ,N, i=1,··· , I, (2.3)

where Vi,j is the volume of Cij. Given the CV averaged conserved variables, a degree k

polynomial can be constructed such that it is (k+1)th order approximation to Q. In other
words, we can write the polynomial as

pi(x)=
N

∑
j=1

Lj(x)Qi,j, (2.4)

where the shape functions Lj(x,y) satisfy

1

Vi,j

∫

Ci,j

Ln(x)dV =δj,n. (2.5)
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Eq. (2.1) is integrated over the Cij. This results in the following equation

∂Q

∂t
+

1

Vi,j

K

∑
r=1

∫

Ar
(~F ·~n)dA=0, (2.6)

where F =( fi− fv), Ar represents the rth face of Cij, ~n is the outward unit normal vector
of Ar and K is the number of faces in Cij (two in 1D). The fluxes are discontinuous across
the SV interfaces. The inviscid fluxes can be handled using a numerical Riemann flux,
such as upwinding, the Rusanov flux [22], the Roe flux [21] or AUSM flux [19]. In this
manuscript, upwinding is employed to handle the inviscid fluxes. The handling of the
viscous fluxes is discussed below.

2.2 Spectral volume formulation for the diffusion equation

The following diffusion equation is considered first in domain Ω with appropriate initial
and boundary conditions

∂u

∂t
−∇·(µ∇u)=0, (2.7)

where µ is a positive diffusion coefficient. We define an auxiliary variable

~q=∇u. (2.8)

Eq. (2.7) then becomes

∂u

∂t
−∇·(µ~q)=0. (2.9)

Using the Gauss-divergence theorem, we obtain

~qijVij =
K

∑
r=1

∫

Ar
u·~ndA, (2.10a)

duij

dt
Vij−

K

∑
r=1

∫

Ar
µ~q ·~ndA=0, (2.10b)

where ~qij and uij are the CV averaged gradient and solution in Cij. As the solution u is

cell-wise continuous, u and ~q at SV boundaries are replaced by numerical fluxes~q and u.
The above equations thus become

~qijVij =
K

∑
r=1

∫

Ar
u·~ndA, (2.11a)

duij

dt
Vij−

K

∑
r=1

∫

Ar
µ~q ·~ndA=0. (2.11b)
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The commonly used approach for obtaining the numerical fluxes is the LDG approach.
In this approach, the numerical fluxes are defined by alternating the direction in the fol-
lowing manner [25]

u=uL, (2.12a)

~q=~qR, (2.12b)

where uR and uL are the left and right state solutions of the CV face in consideration
and ~qL and ~qR are the left and right state solution gradients of the face (of the CV) in
consideration. Thus if the CV face lies on the SV boundary, uL 6=uR and~qL 6=~qR (assuming
that the function is not smooth).

3 SV for higher spatial derivatives

We will explain the procedure using a linear equation; consider the following simple
linear equation with the appropriate initial and boundary conditions

ut+uxxx =0. (3.1)

Rewriting the above into a first order system yields:

ut+px =0, p=qx, q=ux. (3.2)

Integrating Eq. (3.2) over the CV and application of Gauss-divergence theorem yields:

duij

dt
Vij+

K

∑
r=1

∫

Ar
~p·~ndA=0, (3.3a)

~pijVij =
K

∑
r=1

∫

Ar
q·~ndA, (3.3b)

~qijVij =
K

∑
r=1

∫

Ar
u·~ndA. (3.3c)

u, p and q at SV boundaries are replaced by numerical fluxes u, ~p and~q. Eqs. (3.3a), (3.3b)
and (3.3c) can be solved by extending the LDG method discussed in [14, 15, 25] to higher
derivatives (shown in the below subsection).

3.1 The LDG formulation

In this approach, the numerical fluxes are defined by alternating the direction of the nu-
merical fluxes. There are two choices:

• Choice a: u=uL, ~q=~qR, ~p=~pR; (3.4)

• Choice b: u=uR, ~q=~qR, ~p=~pL. (3.5)
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Though there are a total of eight choices (two for each variable), six of them are uncon-
ditionally unstable. More details can be found in [34, 35]. The size of the stencil is 5
(optimal).

4 Fourier analysis for the new formulation

In this analysis, we follow a technique described by Zhang and Shu [36] and focus on
linear, quadratic and cubic reconstructions. The SV is partitioned into two equal CVs for
the second order simulations. The CVs for the third and the fourth order are clustered
toward the SV boundaries. The locations of the CV faces (i.e., nodes in 1D) were based
on the Gauss quadrature points. For the sake of simplicity, let us first consider a linear
partition shown in Fig. 2. In this case, all the formulations can be cast in the following
form:

d

dt

[

uj,1

uj,2

]

= A

[

uj−2,1

uj−2,2

]

+B

[

uj−1,1

uj−1,2

]

+C

[

uj,1

uj,2

]

+D

[

uj+1,1

uj+1,2

]

+E

[

uj+2,1

uj+2,2

]

, (4.1)

where A, B, C, D and E are constant matrices. We now seek a general solution of the
following form

u(x,t)= ûk(t)eikx, (4.2)

where k is the index of modes (k = 1,2,··· ,) representing the wave number and ûk is the
amplitude of the given wave. Obviously, the analytical solution for Eq. (3.1) is u(x,t)=

ei(kx+k3t). The solution we are looking for can be expressed as

[

uj,1

uj,2

]

=

[

ûk,1

ûk,2

]

e
ikx

j, 3
2 . (4.3)

Substituting Eq. (4.3) into Eq. (4.1), we obtain the advancement equation:

[

û′
k,1

û′
k,2

]

=G(k,h)

[

ûk,1

ûk,2

]

, (4.4)

where the amplification matrix is given by

G= e−2ikh A+e−ikhB+C+eikhD+e2ikhE. (4.5)

The above method can be easily extended to 3rd and 4th orders. In general, all but one of
the eigen values of G is made up of spurious modes and is damped rapidly. This is under
the assumption that the scheme is stable (ensured by making sure that the real part of the
eigen values is non positive). The error associated with the scheme and the convergence
properties can be determined by analyzing the non spurious mode. It must be noted that
both discretization methods (Eq. (3.4) or Eq. (3.5)) will yield identical results during this
analysis procedure.
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Figure 2: Linear spectral volume in 1D.

4.1 Second order spatial analysis

Fig. 3 shows the variation of the real component of the principal eigen value with respect
to the non dimensional frequency ξ = kh for the second order SV. As expected all the val-
ues in Fig. 3 are non-positive. Similarly Fig. 4 shows the deviation between the imaginary
components of the principal (numerical) eigen value and the analytical eigen value (i.e.,
iξ3) as a function of ξ.

Figure 3: Plot of the real component of the
principal eigen value as a function of the non-
dimensional frequency for the second order SV.

Figure 4: Plot of the error associated with the
imaginary component of the principal eigen value
as a function of the non-dimensional frequency for
the second order SV.

4.2 Third order spatial analysis

The third order SV of unit length has its interior CV boundaries given by the following
local coordinates: {0,d,1−d,1}, where d is the length of the first CV in the SV. The stability
and the accuracy of the formulation proposed in this manuscript depend on the value of
d. Fig. 5 shows the L1 and L∞ dissipation and dispersion errors as a function of d. 315
points were chosen to represent the interval between 0 and π. Numerical experiments
were also conducted with 629 points and the results were almost identical w.r.t the errors
as well as stability. This proves that the grid independence is attained.

The dissipation error (for a non dimensional frequency ξ = kh) is the real component
of the principal (numerical) eigen value. The dispersion error (for a non dimensional
frequency ξ = kh) is the deviation between the imaginary components of the principal
(numerical) eigen value and the analytical eigen value (i.e., iξ3). The maximum of the real
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(a) (b)

Figure 5: Stability and accuracy properties for the third order SV. (a): L1 error; (b): L∞ error.

component of the eigen values is also plotted as a function of d in the above mentioned
figure. This value is positive beyond a critical d (dcritical = 0.204). This implies that the
amplitude of the waves will grow exponentially in time for a SV partition, wherein d >

dcritical. This is regardless of the fact that the SV partitions with d>dcritical have smaller L1

dissipation errors than the SV partitions with d<dcritical .

The SV partition, having d = 0.1 has the lowest L1 dispersion error and a reasonable
L1 and L∞ dissipation errors; this will be used in the remainder of the paper.

Fig. 6 shows the variation of the real component of the principal eigen value with
respect to the non dimensional frequency ξ = kh for the third order SV where d=0.1. As
expected all the values in Fig. 6 are non-positive. Similarly Fig. 7 shows the deviation
between the imaginary components of the principal (numerical) eigen value and the an-

Figure 6: Plot of the real component of the
principal eigen value as a function of the non-
dimensional frequency for the third order SV with
d=0.1.

Figure 7: Plot of the error associated with the
imaginary component of the principal eigen value
as a function of the non-dimensional frequency for
the third order SV with d=0.1.
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alytical eigen value (i.e., iξ3) as a function of ξ. Unsurprisingly, the principal eigen value
of the third order scheme shows more fidelity than its second order counterparts.

4.3 Fourth order spatial analysis

The fourth order SV of unit length has its interior CV boundaries given by the follow-
ing local coordinates: {0,d,0.5,1−d,1}, where d is the length of the first CV in the SV.
As mentioned earlier, the stability and the accuracy of the formulation proposed in this
manuscript depend on the value of d. Fig. 8 shows the L1 dissipation and dispersion er-
rors as a function of d. The maximum of the real component of the eigen values is also
plotted as a function of d in the above mentioned figure. This value is positive beyond a
critical d (dcritical =0.112).

(a) (b)
Figure 8: Stability and accuracy properties for the fourth order SV. (a): Properties across the entire range; (b):
Properties at small values of the first CV.

It can be seen (from Fig. 8) that the SV partition, having d= dcritical has the lowest L1

dispersion error and dissipation errors among the stable partitions. However many equa-
tions used in the modeling of real life physics, contain both first derivative and higher
spatial derivative terms. It has been shown by Van Den Abeele et al. [26] that a SV parti-
tion, having d=0.1 results in very low dispersion error and dissipation errors for a linear
advecting wave. Since the errors (dispersion and dissipation) at d=0.1 and d=dcritical are
nearly identical, it would be reasonable to use a SV partition with d = 0.1 for a general
problem; this will be used in the remainder of the paper.

Fig. 9 shows the variation of the real component of the principal eigen value with re-
spect to the non dimensional frequency ξ for the third order SV where d=0.1. As expected
all the values in Fig. 9 are non-positive. Similarly Fig. 10 shows the deviation between the
imaginary components of the principal (numerical) eigen value and the analytical eigen
value (i.e., iξ3) as a function of ξ. Once again, the principal eigen value of the fourth order
scheme shows more fidelity than its second and third order counterparts.
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Figure 9: Plot of the real component of the
principal eigen value as a function of the non-
dimensional frequency for the fourth order SV with
d=0.1.

Figure 10: Plot of the error associated with the
imaginary component of the principal eigen value
as a function of the non-dimensional frequency for
the fourth order SV with d=0.1.

4.4 Second order temporal analysis

In this section, we compute the time step requirements of a third order temporal scheme
in conjunction to the current SV formulation. We employ the standard Taylor expansion

to link ⌊û
′
k

n⌋ (the CV averaged solution vector at the current time step) to ⌊û
′
k

n+1⌋ (the
CV averaged solution vector at the next time step):

⌊û
′
k

n+1⌋=⌊û
′
k

n⌋+∆t
∂[û

′
k

n
]

∂t
+

∆t2

2

∂2[û
′
k

n
]

∂t2
+

∆t3

6

∂3[û
′
k

n
]

∂t3
. (4.6)

Combining Eqs. (4.4) and (4.6), we obtain the following advancement equation:

⌊û
′
k

n+1⌋=[H]⌊û
′
k

n⌋, (4.7)

where [H] is

[H]= [I]+[G]∆t+
[G]2

2
∆t2+

[G]3

6
∆t3, (4.8)

with [I] being the Identity matrix. The eigen values of [H] matrix were computed. The
moduli of each of the above computed eigen values need to be less than unity to ensure
a stable system.

A maximum non-dimensional time step (τ = µ∆t/∆x3) of 0.1109 was required for
obtaining a stable solution. This is the non-dimensional time step, at which the maximum
modulus of the eigen values of [H] starts exceeding unity.
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Table 1: Maximum non-dimensional time step (τ =µ∆t/∆x3) for obtaining stable solutions for the third order
formulation. The regions of locally stability are also listed.

d maximum non-dimensional time step Regions of local stability
0.20 0.08088 –

0.19 0.08065 –

0.18 0.08037 –
0.17 0.08003 –

0.16 0.07963 –
0.15 0.07917 –

0.14 0.07864 –

0.13 0.07804 –
0.12 0.07737 –

0.11 0.07662 –

0.10 0.07578 –
0.09 0.07485 –

0.08 0.07383 –

0.07 0.07271 –
0.06103-0.06110

0.06 0.06101 0.06112-0.06133
0.06135-0.06147

0.03379-0.03488
0.05 0.03377 0.03490-0.03493

0.03495-0.03509

4.5 Third order temporal analysis

Table 1 lists the maximum non-dimensional time step (τ = µ∆t/∆x3) required for ob-
taining a stable solution. The variation of the maximum non-dimensional time step as a
function of d is also shown in Fig. 11. However, stability analysis shows that the formu-
lation is stable for a small range of non-dimensional time steps, which are higher than
the computed stability cut-offs. This is due to the non-linear nature of Eq. (4.8). Some of
these pockets are given in Table 1.

Figure 11: Maximum non-dimensional time step (τ=µ∆t/∆x3) for obtaining stable solutions for the third order
formulation.
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Table 2: Maximum non-dimensional time step (τ=µ∆t/∆x3) for obtaining stable solutions for the fourth order
formulation. The regions of locally stability are also listed.

d maximum non-dimensional time step Regions of local stability

0.11 0.05860 –
0.10 0.05961 –

0.09 0.06057 –

0.05725-0.05790
0.08 0.05723 0.05792-0.05856

0.05890-0.05920

0.04656-0.04668
0.07 0.04537 0.04727-0.04733

0.04745-0.04775

0.03497-0.03740
0.06 0.03495 0.03742-0.03748

0.03750-0.03756
0.02694-0.02707

0.05 0.02692 0.02727-0.02738
0.02783-0.02792

0.01523-0.01538
0.04 0.01521 0.01680-0.01726

0.01744-0.01751

0.00972-0.01001
0.03 0.00971 0.01004-0.01009

0.01011-0.01022

4.6 Fourth order temporal analysis

Table 2 lists the maximum non-dimensional time step (τ=µ∆t/∆x3) required for obtain-
ing a stable solution. This variation of the maximum non-dimensional time step as a
function of d is also shown in Fig. 12. The locally occurring stable regions are also given
in Table 2. It can be seen that the fourth order scheme has more locally stable regions
than the third order scheme. This is due to the fact that the eigen value computation
procedure is more non-linear for the fourth order scheme.

Figure 12: Maximum non-dimensional time step (τ = µ∆t/∆x3) for obtaining stable solutions for the fourth
order formulation.
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4.7 Numerical verification of stable and unstable partitions

Numerical simulations were performed in order to test the above stability related results.
We compute the solution of the below equation:

ux+uxxx =0, (4.9)

with an initial condition u(x,0)=exp(x) over the interval [0,2π]. The following boundary
conditions were applied:

u(0,t)=exp(−t), ux(2π,t)=exp(2π−t), uxx(2π,t)=exp(2π−t), (4.10)

with the analytical solution to Eq. (4.9) being: u(x,t)=exp(x−t).
Table 3 shows the L2 and L∞ errors for various combinations of d for a third order

simulation. A non dimensional time step of 0.01 was employed for the current simula-
tion. This time stepping is slightly smaller than the ones mentioned in Table 1, so as to
take care of non linear and non-periodic effects. The following can be observed: (1) The
d = 0.211 case diverges extremely fast, (2) The case corresponding to d = 0.1 generates
smaller errors than the one corresponding to d=0.15. These results are in accord with the
results of the stability analysis.

Table 4 shows the L2 and L∞ errors for various combinations of d for a fourth order
simulation. A non dimensional time step of 0.005 was employed for the current sim-
ulation. The d = 0.146 case diverges very fast, thus providing credence to the stability
analysis. The d=0.1 case generates smaller errors than the d=0.05 case.

The actual accuracy analysis will be performed in Section 5.

Table 3: ut+uxxx = 0, u(x,0) = exp(x). Boundary conditions given in Eq. (4.10). L2 and L∞ errors using
uniform meshes for the third order simulations.

N d N-steps L2-error L∞-error
1 0.000152 0.00384
2 0.000565 0.0279

100
(

1− 1√
3

)

∗0.5≈0.211 3 0.00475 0.367

4 0.0717 4.97
5 1.09 67.2

1 0.248 3.37

10
(

1− 1√
3

)

∗0.5≈0.211 2 3.40 29.8

3 52.5 372

10 1e5 0.0369 0.0497
0.15 2e5 0.0196 0.0264

100 1e5 0.000155 0.00160
2e5 0.000151 0.00152

10 1e5 0.0182 0.0245
0.10 2e5 0.00968 0.0130

100 1e5 0.000137 0.00156
2e5 0.000134 0.00150
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Table 4: ut+uxxx = 0, u(x,0) = exp(x). Boundary conditions given in Eq. (4.10). L2 and L∞ errors using
uniform meshes for the fourth order simulations.

N d N-steps L2-error L∞-error

1 3.28e-05 0.000443
2 0.00309 0.0404

100
√

2−1
2
√

2
≈0.146 3 0.294 3.83

4 27.9 355
5 2.66e03 3.37e04

1 0.279 2.24

10
√

2−1
2
√

2
≈0.146 2 26.4 191

3 2520 1.73e04

10 1e5 1.67e-03 2.26e-03
0.10 2e5 1.22e-03 1.64e-03

100 1e5 4.97e-06 6.63e-05
2e5 4.91e-06 6.54e-05

10 1e5 1.71e-03 2.96e-03
0.05 2e5 1.57e-03 2.12e-03

100 1e5 5.01e-06 6.67e-05
2e5 4.96e-06 6.62e-05

5 Test results

In this section, we provide numerical examples to illustrate the capability of the LDG
based SV formulation for solving equations containing third spatial derivative terms. A
three stage SSP Runge-Kutta scheme was used for time advancement [23]:

u
(1)
i =un

i −∆tRi(un), (5.1a)

u
(2)
i =

3

4
un

i +
1

4

[

u
(1)
i −∆tRi(u(1))

]

, (5.1b)

un+1
i =

1

3
un

i +
2

3

[

u
(2)
i −∆tRi(u(2))

]

. (5.1c)

5.1 Test case 1

We compute the solution of the linear equation:

ut+uxxx =0, (5.2)

with an initial condition u(x,0) = sinx and periodic boundary conditions (periodicity =
2π) over the interval [0,2π]. This equation has an analytical solution: u(x,t) = sin(x+
t). Both uniform and non-uniform meshes were used in this study. Two types of non-
uniform meshes were used. The first type had a recurring pattern of SVs of lengths 0.9∆

and 1.1∆, where ∆ was the length of the corresponding uniform SV. The second type
had a recurring pattern of SVs of lengths 0.7∆ and 1.3∆. An even number of SVs were
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Table 5: ut+uxxx=0, u(x,0)=sinx. Periodic boundary conditions over interval [0,2π]. L2 and L∞ errors using
uniform meshes at t=1.

k Grid L2-error L2-order L∞-error L∞-order

1 10 1.41e-2 – 4.78e-2 –
20 3.55e-3 1.99 1.27e-2 1.91

40 8.87e-4 2.00 3.22e-3 1.98

80 2.22e-4 2.00 8.06e-4 2.00

2 10 7.31e-4 – 3.31e-3 –

20 9.26e-5 2.98 4.19e-4 2.98
40 1.16e-5 2.99 5.31e-5 2.98

80 1.46e-6 3.00 6.69e-6 2.99

3 10 2.11e-5 – 1.21e-4 –

20 1.32e-6 3.99 7.61e-6 3.99
40 8.30e-8 4.00 4.79e-7 3.99

80 5.19e-9 4.00 2.99e-8 4.00

Table 6: ut+uxxx=0, u(x,0)=sinx. Periodic boundary conditions over interval [0,2π]. L2 and L∞ errors using
non-uniform (repeating pattern of 0.9∆ and 1.1∆x) meshes at t=1.

k Grid L2-error L2-order L∞-error L∞-order

1 10 1.60e-2 – 5.83e-2 –

20 4.08e-3 1.97 1.56e-2 1.90
40 1.03e-3 1.99 3.96e-3 1.98

80 2.57e-4 2.00 9.97e-4 1.99

2 10 8.81e-4 – 4.47e-3 –

20 1.12e-4 2.97 5.74e-4 2.96

40 1.41e-5 2.99 7.28e-5 2.98
80 1.77e-6 3.00 9.16e-6 2.99

3 10 5.11e-5 – 2.41e-4 –

20 3.26e-6 3.97 1.55e-5 3.96

40 2.06e-7 3.98 9.81e-7 3.98
80 1.30e-8 3.99 6.22e-8 3.98

used for all the test cases. The L2 and L∞ errors and orders of accuracies of the numerical
solution at t=1 second are given in Tables 5-7. It can be seen that the formulation with kth

degree polynomial asymptotically attains a (k+1)th order of accuracy. This phenomenon
is observed for both the uniform and the non-uniform meshes.

5.2 Test case 2

We compute the solution of the non-linear KdV equation [34, 35]:

ut−3(u2)x+uxxx =0, (5.3)

with an initial condition u(x,0) =−2sech2(x) over the interval [−10,12]. The following
boundary conditions were applied:

u(−10,t)= g1(t), ux(12,t)= g2(t), uxx(12,t)= g3(t), (5.4)
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Table 7: ut+uxxx=0, u(x,0)=sinx. Periodic boundary conditions over interval [0,2π]. L2 and L∞ errors using
non-uniform (repeating pattern of 0.7∆x and 1.3∆x) meshes at t=1.

k Grid L2-error L2-order L∞-error L∞-order

1 10 2.27e-2 – 7.44e-2 –

20 5.87e-3 1.95 2.00e-2 1.89
40 1.49e-3 1.98 5.12e-3 1.97

80 3.75e-4 1.99 1.29e-3 1.99

2 10 1.27e-3 – 8.51e-3 –

20 1.69e-4 2.91 1.16e-3 2.88
40 2.20e-5 2.94 1.53e-4 2.91

80 2.79e-6 2.98 1.97e-5 2.96

3 10 3.98e-4 – 1.31e-3 –

20 2.62e-5 3.92 8.77e-5 3.90

40 1.70e-6 3.95 5.71e-6 3.94
80 1.08e-7 3.98 3.64e-7 3.97

where gi(t) is obtained from the analytical solution to Eq. (5.3): u(x,t)=−2sech2(x−4t).

The L2 and L∞ errors and orders of accuracies of the numerical solution at t = 0.5
second are given in Tables 8-10. It can be seen that a full (k+1)th order of accuracy is
asymptotically attained for the formulation with kth degree polynomial, in spite of the
problem being heavily non-linear. Once again, this phenomenon is observed for both the
uniform and the non-uniform meshes.

Table 8: ut−3(u2)x+uxxx=0, u(x,0)=−2sech2(x). Domain over the interval [−10,12]. Boundary conditions
given in Eq. (5.4). L2 and L∞ errors using uniform meshes at t=0.5.

k Grid L2-error L2-order L∞-error L∞-order

1 10 2.29e-1 – 1.37e-0 –
20 7.25e-2 1.66 5.45e-1 1.33

40 2.08e-2 1.80 1.92e-1 1.50

80 5.50e-3 1.92 6.05e-2 1.67
160 1.40e-3 1.97 1.73e-2 1.80

320 3.51e-4 2.00 4.51e-3 1.94

2 10 8.39e-2 – 7.70e-1 –

20 1.23e-2 2.77 1.17e-1 2.71
40 1.83e-3 2.75 2.01e-2 2.55

80 2.46e-4 2.89 3.29e-3 2.61

160 3.19e-5 2.95 4.69e-4 2.81
320 3.99e-6 3.00 5.95e-5 2.98

3 10 2.80e-2 – 2.91e-1 –
20 2.99e-3 3.23 3.37e-2 3.11

40 2.81e-4 3.41 3.22e-3 3.39

80 2.00e-5 3.81 2.94e-4 3.45
160 1.31e-6 3.93 2.14e-5 3.78

320 8.27e-8 3.99 1.38e-6 3.96
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Table 9: ut−3(u2)x+uxxx=0, u(x,0)=−2sech2(x). Domain over the interval [−10,12]. Boundary conditions
given in Eq. (5.4). L2 and L∞ errors using non-uniform (repeating pattern of 0.9∆x and 1.1∆x) meshes at
t=0.5.

k Grid L2-error L2-order L∞-error L∞-order

1 10 2.62e-1 – 1.46e-0 –
20 8.53e-2 1.62 6.01e-1 1.28

40 2.50e-2 1.77 2.20e-1 1.45
80 6.71e-3 1.90 7.11e-2 1.63

160 1.72e-3 1.96 2.08e-2 1.77

320 4.31e-4 2.00 5.47e-3 1.93

2 10 1.09e-1 – 1.06e0 –

20 1.66e-2 2.71 1.65e-1 2.68
40 2.51e-3 2.73 2.81e-2 2.56

80 3.43e-4 2.87 4.57e-3 2.62

160 4.41e-5 2.96 6.51e-4 2.81
320 5.51e-6 3.00 8.31e-5 2.97

3 10 4.99e-2 – 4.09e-1 –

20 5.18e-3 3.27 4.83e-2 3.08

40 4.77e-4 3.44 4.81e-3 3.33
80 3.45e-5 3.79 4.34e-4 3.47

160 2.25e-6 3.94 3.20e-5 3.76

320 1.42e-7 3.98 2.04e-6 3.97

Table 10: ut−3(u2)x+uxxx=0, u(x,0)=−2sech2(x). Domain over the interval [−10,12]. Boundary conditions
given in Eq. (5.4). L2 and L∞ errors using non-uniform (repeating pattern of 0.7∆x and 1.3∆x) meshes at t=0.5.

k Grid L2-error L2-order L∞-error L∞-order
1 10 3.21e-1 – 1.82e-0 –

20 1.14e-1 1.50 7.85e-1 1.21
40 3.45e-2 1.72 2.97e-1 1.40
80 9.38e-3 1.88 9.81e-2 1.60

160 2.43e-3 1.95 2.91e-2 1.75
320 6.11e-4 1.99 7.71e-3 1.92

2 10 2.45e-1 – 2.61e0 –
20 3.80e-2 2.69 4.46e-1 2.55
40 5.70e-3 2.74 7.21e-2 2.63
80 8.18e-4 2.80 1.18e-2 2.61

160 1.09e-4 2.90 1.72e-3 2.78
320 1.39e-5 2.98 2.21e-4 2.96

3 10 1.18e-1 – 7.71e-1 –
20 1.21e-2 3.29 9.71e-2 2.99
40 1.17e-3 3.37 1.03e-2 3.23
80 8.73e-5 3.74 9.08e-4 3.51

160 5.77e-6 3.92 6.75e-5 3.75
320 3.65e-7 3.98 4.28e-6 3.98
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5.3 Test case 3

This test case was designed to test the robustness and accuracy of the method for non-
linear problems with small coefficient for the third derivative term [34, 35]. We compute
the soliton solution of the generic KdV equation:

ut+ux+
(u4

4

)

x
+εuxxx =0, (5.5)

with an initial condition
u(x,0)= Asech

2
3 (K(x−x0)),

with A=0.2275, x0 =0.5, ε=2.058e−5 and K =3
(

A3/40ε
)1/2

. The analytical solution is

u(x,t)= Asech
2
3
(

K(x−x0)−ωt
)

, (5.6)

where ω =K(1+A3/10).
The following boundary conditions were applied over the interval [−2,3]:

u(−2,t)= g1(t), ux(3,t)= g2(t), uxx(3,t)= g3(t), (5.7)

Table 11: ut+ux+(u4/4)x +εuxxx=0, u(x,0)= Asech2/3(K(x−x0)), with A=0.2275, x0 =0.5, ε=2.058e−5

and K =3
(

A3/40ε
)1/2

. Domain over the interval [−2,3]. Boundary conditions given in Eq. (5.7). L2 and L∞

errors using uniform meshes at t=1.

k Grid L2-error L2-order L∞-error L∞-order

1 10 4.25e-2 – 3.83e-1 –
20 1.60e-2 1.41 1.56e-1 1.29

40 5.39e-3 1.57 6.06e-2 1.37

80 1.60e-3 1.75 2.15e-2 1.49
160 4.45e-4 1.85 7.07e-3 1.61

320 1.13e-4 1.98 2.00e-3 1.82

640 2.82e-5 2.00 5.11e-4 1.97

2 10 1.99e-2 – 1.67e-1 –

20 3.68e-3 2.44 3.37e-2 2.31
40 7.42e-4 2.31 7.35e-3 2.20

80 1.39e-4 2.41 1.42e-3 2.37
160 2.05e-5 2.77 2.49e-4 2.51

320 2.63e-6 2.96 3.56e-5 2.81

640 3.31e-7 2.99 4.51e-6 2.98

3 10 1.66e-2 – 1.46e-1 –

20 1.93e-3 3.11 2.17e-2 2.77
40 1.69e-4 3.51 2.69e-3 3.01

80 1.22e-5 3.79 2.60e-4 3.37

160 7.90e-7 3.95 1.91e-5 3.77
320 4.98e-8 3.99 1.27e-6 3.91

640 3.11e-9 4.00 7.98e-8 3.99
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Table 12: ut+ux+(u4/4)x +εuxxx=0, u(x,0)= Asech2/3(K(x−x0)), with A=0.2275, x0 =0.5, ε=2.058e−5

and K =3
(

A3/40ε
)1/2

. Domain over the interval [−2,3]. Boundary conditions given in Eq. (5.7). L2 and L∞

errors using non-uniform (repeating pattern of 0.9∆x and 1.1∆x) meshes at t=1.

k Grid L2-error L2-order L∞-error L∞-order

1 10 4.45e-2 – 4.15e-1 –
20 1.74e-2 1.35 1.74e-1 1.25

40 6.17e-3 1.50 6.99e-2 1.32

80 1.90e-3 1.70 2.56e-2 1.45
160 5.38e-4 1.82 8.56e-3 1.58

320 1.38e-4 1.96 2.44e-3 1.81

640 3.46e-5 2.00 6.23e-4 1.97

2 10 2.53e-2 – 2.09e-1 –
20 4.61e-3 2.46 4.32e-2 2.28

40 9.17e-4 2.33 9.27e-3 2.22

80 1.77e-4 2.37 1.84e-3 2.33
160 2.69e-5 2.72 3.32e-4 2.47

320 3.51e-6 2.94 4.77e-5 2.80

640 4.45e-7 2.98 6.10e-6 2.97

3 10 2.09e-2 – 1.85e-1 –

20 2.57e-3 3.03 2.85e-2 2.70
40 2.37e-4 3.44 3.64e-3 2.97

80 1.76e-5 3.75 3.70e-4 3.30
160 1.18e-6 3.90 2.83e-5 3.71

320 7.47e-8 3.98 1.92e-6 3.88

640 4.67e-9 4.00 1.21e-7 3.99

where gi(t) is obtained from the analytical solution.
The L2 and L∞ errors and orders of accuracies of the numerical solution at t=1 second

are given in Tables 11-13. Once again, it can be seen that a full (k+1)th order of accuracy
is asymptotically attained for the formulation with kth degree polynomial for both the
uniform and the non-uniform meshes.

6 Conclusions

In the present study, we implemented a LDG based formulation for solving equations
containing higher spatial derivative terms in a spectral volume context. A linear Fourier
analysis was performed to study the dispersion and the dissipation properties of this new
formulation. The Fourier analysis was used to eliminate all the unstable SV partitions.
The partition resulting in the lowest (spatial) error was selected as the optimal partition.
This is reasonable since the spatial errors are universal, i.e., present in all types of time
integration methods. The maximum non-dimensional time step for obtaining stable so-
lutions was computed. It was observed that the formulation is stable for a small range of
non-dimensional time steps, which are higher than the computed stability cut-offs.

Numerical experiments were conducted to illustrate the accuracy, capability and ro-
bustness of this new formulation. Expected orders of accuracy were attained asymptot-
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Table 13: ut+ux+(u4/4)x +εuxxx=0, u(x,0)= Asech2/3(K(x−x0)), with A=0.2275, x0 =0.5, ε=2.058e−5

and K =3
(

A3/40ε
)1/2

. Domain over the interval [−2,3]. Boundary conditions given in Eq. (5.7). L2 and L∞

errors using non-uniform (repeating pattern of 0.7∆x and 1.3∆x) meshes at t=1.

k Grid L2-error L2-order L∞-error L∞-order

1 10 4.86e-2 – 5.14e-1 –
20 2.08e-2 1.22 2.22e-1 1.21

40 7.97e-3 1.39 9.28e-2 1.26

80 2.58e-3 1.63 3.52e-2 1.40
160 7.55e-4 1.77 1.19e-2 1.56

320 1.98e-4 1.93 3.45e-3 1.79

640 4.99e-5 1.99 8.87e-4 1.96

2 10 3.47e-2 – 3.16e-1 –
20 6.49e-3 2.42 6.42e-2 2.30

40 1.30e-3 2.32 1.31e-2 2.29

80 2.63e-4 2.30 2.76e-3 2.25
160 4.26e-5 2.63 5.16e-4 2.42

320 5.75e-6 2.89 7.56e-5 2.77

640 7.49e-7 2.94 1.02e-5 2.89

3 10 3.18e-2 – 2.94e-1 –

20 4.12e-3 2.95 4.85e-2 2.60
40 4.09e-4 3.33 6.50e-3 2.90

80 3.26e-5 3.65 6.93e-4 3.23
160 2.26e-6 3.85 5.52e-5 3.65

320 1.45e-7 3.96 3.80e-6 3.86

640 9.08e-9 4.00 2.41e-7 3.98

ically for both the linear and the non-linear equations. In addition, the formulation was
able to handle stiff convection dominated cases where the coefficients of the third spatial
derivative terms are small.

Future work will include implicit time discretization procedures, employing other
flux formulations (like extensions of the BR2 and the penalty scheme), performing Fourier
analysis for 2D problems, implementing a p-multigrid algorithm and extending the for-
mulation to equations containing fourth order spatial derivative terms.

The final goal of this research project is to extend this formulation to handle inter-
actions of non linear KDV type waves with multiphase flows [4], explosions [2, 3] and
turbulence models [2, 3].

Appendix

A.1 Matrices used in second order Fourier analysis

A=

[

0 0
0 0

]

, B=

[

7 3
0 0

]

, C=

[

−35 +33
−2 −10

]

, D=

[

−7 −3
28 −20

]

, E=

[

3 −1
6 −2

]

.
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A.2 Matrices used in third order Fourier analysis (d=0.1)

A=





0 0 0
0 0 0
0 0 0



,

B=





7.948325184135814 36.16450093538303 89.03973788368817
0 0 0
0 0 0



,

C =





−1204.618702161519 1677.274816455901 −670.0657197540336
84.22765672321280 −148.4655284315556 71.58994528981473
−16.57893576324851 24.26287605275688 −51.49970467670405



,

D=





35.76764295428119 43.74239590395953 −18.39336011333079
37.71608531683748 −67.14571815374435 24.65144840006793
171.9427405397058 −189.4845831645637 67.03209291593313



,

E=





4.645457091371171 −2.168731107174263 0.6636367273387380
−3.807487439402157 1.777525071826559 −0.5439267770574504
−8.394119789166726 3.918793855168213 −1.199159969880959



.

A.3 Matrices used in fourth order Fourier analysis (d=0.1)

A=









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,

B=









63.79012345681466 −221.6056241427161 698.5054869684837 521.6556927297700
0 0 0 0
0 0 0 0
0 0 0 0









,

C =









−3121.465569273001 3290.440877914971 −1973.603566529508 871.9368998628328
64.86913580247066 −153.0063100137205 179.61591220850572 −43.67626886145311
11.23950617283643 0.7879286694173029 −101.2565157750393 −25.93141289437598
−70.72345679014046 233.3784636488701 −504.3326474622926 −439.7791495198968









,

D=









−116.1912208504799 −24.79574759945215 19.93758573388266 −15.71604938271646
−125.8743484224965 119.3421124828523 −64.92455418381312 29.87654320987638
354.4548696845022 −366.7484224965725 200.9849108367643 −93.97530864197615
1826.710013717431 −1593.468587105628 860.2647462277143 −389.1604938271629









,

E=









10.03456790123468 −4.306172839506221 2.093827160493855 −0.7111111111111191
−8.780246913580134 3.767901234567852 −1.832098765432079 0.6222222222222142
28.84938271604949 −12.38024691358029 6.019753086419790 −2.044444444444452
108.8123456790123 −46.69506172839506 22.70493827160501 −7.711111111111111









.

References

[1] R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and
implementation, J. Comput. Phys., 114 (1994), 45–58.



1278 R. Kannan / Commun. Comput. Phys., 10 (2011), pp. 1257-1279

[2] K. Balakrishnan and S. Menon, On the role of ambient reactive particles in the mixing and
afterburn behind explosive blast waves, Combust. Sci. Technol., 182 (2010), 186–214.

[3] K. Balakrishnan, F. Genin, D. V. Nance and S. Menon, Numerical study of blast characteris-
tics from detonation of homogeneous explosives, Shock Waves, 20(2) (2010), 147–162.

[4] K. Balakrishnan and S. Menon, On turbulent chemical explosions into dilute aluminum par-
ticle clouds, Combust. Theor. Model., 14(4) (2010), 583–617.

[5] T. J. Barth and P. O. Frederickson, High-order solution of the Euler equations on unstruc-
tured grids using quadratic reconstruction, AIAA 90-0013, 1990.

[6] B. Cockburn and C. W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems, J. Sci. Comput., 16(3) (2001), 173–261.

[7] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection diffusion system, SIAM J. Numer. Anal., 35 (1998), 2440–2463.

[8] M. Delanaye and Y. Liu, Quadratic reconstruction finite volume schemes on 3D arbitrary
unstructured polyhedral grids, AIAA 99-3259-CP, 1999.

[9] R. Harris, Z. J. Wang and Y. Liu, Efficient quadrature-free high-order spectral volume
method on unstructured grids: theory and 2D implementation, J. Comput. Phys., 227 (2008),
1620–1642.

[10] R. Harris and Z. J. Wang, High-order adaptive quadrature-free spectral volume method on
unstructured grids, Comput. Fluids, 38 (2009), 2006–2025.

[11] A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order essentially non-
oscillatory schemes III, J. Comput. Phys., 71 (1987), 231–303.

[12] R. Kannan, An implicit LU-SGS spectral volume method for the moment models in device
simulations: formulation in 1D and application to a p-multigrid algorithm, Int. J. Numer.
Methods Biomedical Eng., accepted on 11 Oct. 2009, published online: 1 Feb. 2010.

[13] R. Kannan, An implicit LU-SGS s Volume method for the moment models in device simu-
lations II: accuracy studies and performance enhancements using the penalty and the BR2
formulations, Int. J. Numer. Methods Biomedical Eng., accepted August 2010.

[14] R. Kannan and Z. J. Wang, A study of viscous flux formulations for a p-multigrid spectral
volume Navier stokes solver, J. Sci. Comput., 41(2) (2009), 165–199.

[15] R. Kannan and Z. J. Wang, LDG2: a variant of the LDG flux formulation for the spectral
volume method, J. Sci. Comput., published online 20th June 2010.

[16] R. Kannan and Z. J. Wang, The direct discontinuous Galerkin (DDG) viscous flux
scheme for the high order spectral volume method, Comput. Fluids, article in press
(doi:10.1016/j.compfluid.2010.07.006).

[17] R. Kannan, High Order Spectral Volume and Spectral Difference Methods on Unstructured
Grids, Ph.D Thesis, Iowa State University, 2008.

[18] C. Liang, R. Kannan and Z. J. Wang, A-p-multigrid spectral difference method with explicit
and implicit smoothers on unstructured grids, Comput. Fluids, 38(2) (2009), 254–265.

[19] M.-S.Liou and C. Steffen, A new flux splitting scheme, J. Comput. Phys., 107 (1993), 23–39.
[20] Y. Liu, M. Vinokur and Z. J. Wang, Spectral (finite) volume method for conservation laws on

unstructured grids V: extension to three-dimensional systems, J. Comput. Phys., 212 (2006),
454–472.

[21] P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Com-
put. Phys., 43 (1981), 357–372.

[22] V. V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, J. Com-
put. Math. Phys. USSR 1 (1961), 267–279.

[23] C. W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9



R. Kannan / Commun. Comput. Phys., 10 (2011), pp. 1257-1279 1279

(1988), 1073–1084.
[24] Y. Sun and Z. J. Wang, Efficient implicit non-linear LU-SGS approach for compressible

flow computation using high-order spectral difference method, Commun. Comput. Phys., 5
(2009), 760–778.

[25] Y. Sun, Z. J. Wang and Y. Liu, Spectral (finite) volume method for conservation laws on
unstructured grids VI: extension to viscous flow, J. Comput. Phys., 215 (2006), 41–58.

[26] K. Van den Abeele, T. Broeckhoven and C. Lacor, Dispersion and dissipation properties
of the 1D spectral volume method and application to a p-multigrid algorithm, J. Comput.
Phys., 224(2) (2007), 616–636.

[27] B. Van Leer, Towards the ultimate conservative difference scheme II: monotonicity and con-
servation combined in a second order scheme, J. Comput. Phys., 14 (1974), 361–376.

[28] B. Van Leer, Towards the ultimate conservative difference scheme V: a second order sequel
to Godunov’s method, J. Comput. Phys., 32 (1979), 101–136.

[29] Z. J. Wang, Spectral (finite) volume method for conservation laws on unstructured grids:
basic formulation, J. Comput. Phys., 178 (2002), 210–251.

[30] Z. J. Wang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured
grids II: extension to two-dimensional scalar equation, J. Comput. Phys., 179 (2002), 665–697.

[31] Z. J. Wang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured
grids III: extension to one-dimensional systems, J. Sci. Comput., 20 (2004), 137–157.

[32] Z. J. Wang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured
grids IV: extension to two-dimensional Euler equations, J. Comput. Phys., 194 (2004), 716–
741.

[33] Z. J. Wang and Y. Liu, Extension of the spectral volume method to high-order boundary
representation, J. Comput. Phys., 211 (2006), 154–178.

[34] J. Yan and C. W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM
J. Numer. Anal., 40(2) (2002), 769–791.

[35] J. Yan and H. Liu, A local discontinuous Galerkin method for the Korteweg-de Vries equa-
tion with boundary effect, J. Comput. Phys., 215 (2006), 197–218.

[36] M. Zhang and C. W. Shu, An analysis of three different formulations of the discontinuous
Galerkin method for diffusion equations, Math. Model. Methods Appl. Sci., 13 (2003), 395–
413.


