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Abstract. The present work is concerned with the derivation of numerical methods
to approximate the radiation dose in external beam radiotherapy. To address this is-
sue, we consider a moment approximation of radiative transfer, closed by an entropy
minimization principle. The model under consideration is governed by a system of
hyperbolic equations in conservation form supplemented by source terms. The main
difficulty coming from the numerical approximation of this system is an explicit space
dependence in the flux function. Indeed, this dependence will be seen to be stiff and
specific numerical strategies must be derived in order to obtain the needed accuracy. A
first approach is developed considering the 1D case, where a judicious change of vari-
ables allows to eliminate the space dependence in the flux function. This is not possible
in multi-D. We therefore reinterpret the 1D scheme as a scheme on two meshes, and
generalize this to 2D by alternating transformations between separate meshes. We call
this procedure projection method. Several numerical experiments, coming from med-
ical physics, illustrate the potential applicability of the developed method.
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1 Introduction

This paper is concerned with the numerical approximation of the set of balance laws

∂εΨ
0(x,ε)−∇x ·

( 1

ρ(x)
Ψ

1(x,ε)
)

=0, (1.1a)

∂εΨ
1(x,ε)−∇x

( 1

ρ(x)
De

(
Ψ

1(x,ε)

Ψ0(x,ε)

)
Ψ0(x,ε)

)
=T(x,ε)Ψ

1(x,ε). (1.1b)

As will be explained below, this system describes charged particle transport in tissue,
and can be used as a novel method for dose calculation in radiotherapy. The particu-
lar challenge in the numerical approximation of this system of hyperbolic balance laws
is that the flux function depends explicitly on a density ρ(x). In addition, this density
can vary over several orders of magnitude, from ρ∼ 1 (water) to ρ∼ 10−3 (air). A stan-
dard discretization would therefore require a very small time step, which would make
the computations infeasible. To overcome this problem, we develop a specific technique
to deal with the strongly varying space-dependent flux. Several authors have worked
on analysis and numerical methods for conservation laws for discontinuous flux. An
overview can be found in the recent paper [45]. Our approach is new because it uses the
specific structure of the discontinuous coefficient and introduces a method that is based
on variable transformations.

Radiotherapy is the treatment of cancer and other diseases with a certain type of ion-
izing radiation. This radiation deposits energy that injures or destroys cells in the area
being treated, by damaging their genetic material. Indeed, the incoming particles ionize
atoms and make the cells unstable. Physicians want to determine the best beam setup to
destroy the tumor while minimizing the damage to healthy tissue. To that end, one needs
to predict and visualize the radiation dose in the patient’s body before the treatment. The
data used, which usually comes from a CT (Computer Tomography) scan, consist of 2D
slices describing the density of the tissues.

Up to now many clinical dose calculation algorithms rely on semi-empirical models.
They are based on explicit solutions to radiation problems in a very simplified geom-
etry (e.g., the one-dimensional Fermi-Eyges theory [18]). These explicit solutions are
then combined with experimental data to compute the central-axis dose (e.g., [26]). Al-
though many improvements of Fermi-Eyges theory were performed, e.g., by including
additional correction factors [1, 27, 28, 37], they still produce errors of up to 12% near
inhomogeneities [29].

Currently, statistical Monte-Carlo simulation codes are entering clinical practice [14,
38, 39]. These perform direct simulations of individual particle tracks which result from
a random sequence of free flights and interaction events. In this way random histories
are generated. If their number is large enough macroscopic quantities can be obtained by
averaging over the simulated histories [2]. Monte Carlo tools model physical processes
very precisely and can handle arbitrary geometries without losing accuracy. Although
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they rank among the most accurate methods for predicting absorbed dose distributions,
their high computation times have so far limited their use in clinics.

A different approach in the solution of radiation transport problems are determinis-
tic calculations solving the linear Boltzmann transport equation. In principle, its solu-
tion will give very accurate dose distributions comparable to Monte Carlo simulations.
Börgers [9] argued that under certain accuracy conditions deterministic methods could
compete with Monte Carlo calculations. Recently, 3D dose calculations for real clinical
test cases were performed with Attila [44]. Results with similar accuracy as Monte Carlo
calculations were achieved in promising computation times. A finite-element discretiza-
tion of the transport equation was proposed in [8].

This paper is a continuation of the work presented in [16] and [17]. A simple finite
volume discretization is investigated in [16], where an unsteady version of the system
(1.1) is considered. However, that scheme has a very strong restriction on the time step
(due to the CFL condition) for small densities. Indeed, in real life radiotherapy experi-
ments, the density of the matter can have large fluctuations and/or discontinuities. Air
cavities have a density ρ, which is three orders of magnitude smaller than that of water.
As a consequence, we have to derive suitable finite volume methods able to deal with
large variations or discontinuities of the density. In addition, the proposed scheme will
be cheaper than the finite volume method introduced in [16].

We assume that particle transport is governed by the following moment model:

∂ε

(
SM(x,ε)Ψ0(x,ε)

)
−∇x ·Ψ

1(x,ε)=0, (1.2a)

∂ε

(
SM(x,ε)Ψ

1(x,ε)
)
−∇xΨ

2(x,ε)=Ttot(x,ε)Ψ
1(x,ε), (1.2b)

where Ψ0 is a positive scalar and Ψ
1 belongs to R

d, with d the space dimension. Here,
the variable ε > 0 describes the energy of the particle, while x∈R

d is the space variable.
Concerning Ψ

2, an additional hypothesis will be imposed later-on to close the system.
This model has been introduced in [20] and investigated further in [17].

The positive functions SM(x,ε) and Ttot(x,ε), respectively called stopping power and
transport coefficient, are determined by the type of particles and the type of the medium.
The stopping power represents the energy loss of a particle per unit path length and
the transport coefficient describes angular deviations which are mainly due to elastic
scattering. From now on, let us emphasize a useful rewriting of SM and Ttot as a product
of the density of the matter ρ(x) and a function of the energy:

SM(x,ε)=ρ(x)S(ε) and Ttot(x,ε)=ρ(x)T(ε). (1.3)

Here we have assumed that the tissue can be described as water with varying density.
This is a good first approximation, and in the absence of more information on the CT
scan the only viable assumption. Precise definitions of the functions S(ε) and ρ(x) will
be given later on, according to the performed numerical experiments. However, let us
note from now on, that these positive functions, S(ε) and ρ(x) are bounded from below
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and from above by positive constants. In fact, this boundedness property will be useful
to introduce several integral definitions needed in the sequel.

This model can be derived from an underlying kinetic equation of the form

−∂ε

(
SM(x,ε)Ψ(x,ε,Ω)

)
+Ω·∇Ψ(x,ε,Ω)=

∫

S2

σ(ε,Ω·Ω′)ψ(x,ε,Ω′)dΩ−σtot(ε′)ψ(x,ε,Ω).

The unknown Ψ is the particle density in phase space, measured in units of particles per
time, area, solid angle Ω and energy ε normal to rays. The unknowns Ψ0,Ψ1 in the M1
model are

Ψ0(x,ε)=
∫

S2
Ψ(x,ε,Ω)dΩ and Ψ

1(x,ε)=
∫

S2
ΩΨ(x,ε,Ω)dΩ.

They are the total particle number and the particle flux (measured in units of particles per
time, area, and energy normal to rays. Since they are the first two moments of a positive
distribution function they must belong to the following admissible state space:

Ad =
{t

(Ψ0,Ψ1)∈R
d+1, Ψ0

>0,
‖Ψ

1‖

Ψ0
<1
}

, (1.4)

where the mapping ‖·‖ denotes the usual Euclidean norm. After the work by Grad [24],
devoted to rarefied gases, moment models as (1.2) are relevant alternatives to a kinetic
description of microscopic phenomena.

The variable of interest in radiotherapy, the dose

D(x)=
∫ ∞

0
S(ε)Ψ0(x,ε)dε, (1.5)

describes the energy deposited in the matter.

Since the dose is a macroscopic quantity, and we only need Ψ0 to compute it, we
are interested in a model that describes macroscopic quantities only. This model can be
obtained by multiplying the kinetic equation with 1 and Ω and integrating over Ω. This
gives an underdetermined system. In order to complete the system, we have to give a
closure law for Ψ2. We adopt the entropy minimization strategy [32, 34] from [15] for
radiative transfer (see also [19, 33, 35, 41, 42] for details and extensions).

The closed system, the so-called M1 model, reads:

∂ε(ρSΨ0)−∇·Ψ1 =0, ∂ε(ρSΨ
1)−∇·De

(
Ψ

1

Ψ0

)
Ψ0 =ρTΨ

1, (1.6)

where the Eddington tensor De is defined by:

De( f )=
1−χ( f )

2
Id+

3χ( f )−1

2

f

‖ f‖
⊗

f

‖ f‖
, (1.7)
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and where f = Ψ
1/Ψ0, for all t(Ψ0,Ψ1) in Ad. In (1.7), the function χ( f ) denotes the

Eddington factor given by:

χ( f )=
3+4‖ f‖2

5+2
√

4−3‖ f‖2
. (1.8)

The M1 model is valid in optically thick regimes and for free transport, and interpo-
lates between the two extremes. The case of electron radiotherapy is close to a diffusive
regime.

Let us underline, that the system (1.6) is nothing but a system of conservation laws
supplemented by a source term. Although the variable ε is the physical energy of the
particles, mathematically it can be understood as a time. Indeed, the needed additional
condition is

lim
ε→∞

Ψ0(x,ε)=0, lim
ε→∞

Ψ
1(x,ε)=0, (1.9)

meaning that there are no particles with arbitrary high energy. A practical modification
of the condition at infinity is

Ψ0(x,εmax)=δ>0, Ψ
1(x,εmax)=0, (1.10)

for a relevant choice of εmax, where δ denotes a small energy value, typically 10−10. If we
interpret the energy ε as a mathematical time, this is an initial condition at some ε= εmax

and we have to solve the system from εmax to 0. We will refer to this solution technique
as energy-marching.

As a consequence, the Cauchy problem arising from (1.6) is now given by:

∂ε(ρSΨ0)−∇·Ψ1 =0, ∂ε(ρSΨ
1)−∇·De

(
Ψ

1

Ψ0

)
Ψ0 =ρTΨ

1, (1.11)

where ε∈ (0,εmax) and with the initial data:

Ψ0(x,εmax)=δ, Ψ
1(x,εmax)=0. (1.12)

The system (1.6) with constant ρ and S is hyperbolic for all (Ψ0,Ψ1) in Ad [32]. Moreover,
it is proved in [15], that this system has the correct free-streaming limit, and in [23] that
it reproduces the diffusion limit of the kinetic equation. Finally, we expect this model
to preserve Ψ0 positive. Several numerical strategies have been developed in the litera-
ture [5–7, 11–13, 21–23].

Before introducing the scheme of interest, we note that a first naive discretization of
this system consists in separating the energy derivative as:

∂ε(ρSΨ0)=ρS∂εΨ
0+Ψ0∂ε(ρS),

to rewrite the system (2.1) as:

∂εΨ0 =
1

ρS

(
∂xΨ1−∂ε(ρS)

)
, (1.13a)

∂εΨ
1 =

1

ρS

(
∂x

(
Ψ0χ

(
Ψ

1

Ψ0

))
+Ψ

1
(
ρT−∂ε(ρS)

))
. (1.13b)
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However, the presence of ρ(x) in front of the flux derivative will be seen to introduce
numerical difficulties when ρ has discontinuities. For this reason, we do not adopt this
discretization. Instead, we will introduce several transformations, which will eventually
lead to a 1/ρ inside the x-derivative, i.e., a spatially varying, potentially discontinuous,
flux function.

The paper is organized as follows. In the next section, we propose to consider the one
dimensional model and show a transformation to deal with the stopping power. Indeed,
we remark that the density ρ(x) and the function S(ε) introduce a distortion of the phase
space (x,ε) which makes the numerical approximation difficult. To circumvent this prob-
lem, we suggest judicious changes of variables to straighten up the phase space. The
resulting numerical scheme will be very accurate and costless, but it does not admit a
direct 2D extension. As a consequence, in Section 3, we reformulate this 1D method in
order to admit a direct 2D extension. Several numerical experiments (comparisons and
convergence tests) will show the relevance of the 1D method and justify the 2D deriva-
tion. Section 4 is devoted to the details of the 2D numerical procedure. To illustrate the
proposed scheme, several dose calculations with CT data are performed in Section 5.

2 Change of variables in 1D

In the present section, we consider the following system for numerical approximation:

∂ε(ρSΨ0)−∂xΨ1 =0, ∂ε(ρSΨ1)−∂x

(
Ψ0χ

(Ψ1

Ψ0

))
=ρTΨ1, (2.1)

where the solution (Ψ0,Ψ1) belongs to the admissible set A1.
We first consider the homogeneous system associated with (2.1), which we write in

the following condensed form:

∂ε(ρSU)−∂xF(U)=0, (2.2)

where U = t(Ψ0,Ψ1) denotes the state vector in A1, while the flux function is defined by:

F(U)= t
(

Ψ1,Ψ0χ
(Ψ1

Ψ0

))
. (2.3)

We first introduce a change of variables to eliminate ρ(x) and S(ε) from (2.2). An HLL
scheme [25] (see also [10, 40]) is then applied.

In a second step, we detail an extension of the introduced HLL scheme to take into
account the source term.

2.1 Numerical scheme for the homogeneous system

We consider the homogeneous system (2.2) to focus on the role played by both functions
ρ(x) and S(ε). In order to avoid numerical problems from large variations of the density
ρ(x), we propose a convenient change of variables.
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First, to get rid of the stopping power in the energy derivative, since S(ε) does not
vanish, we set:

Û(x,ε)=S(ε)U(x,ε), (2.4)

to rewrite (2.2) in the following form:

S∂ε(ρΨ̂0)−∂xΨ̂1 =0, S∂ε(ρΨ̂1)−∂x

(
Ψ̂0χ

( Ψ̂1

Ψ̂0

))
=0. (2.5)

Since the positive density does not depend on energy, we divide the system (2.5) by ρ to
write:

S∂εΨ̂
0−

1

ρ
∂xΨ̂1 =0, S∂εΨ̂

1−
1

ρ
∂x

(
Ψ̂0χ

( Ψ̂1

Ψ̂0

))
=0. (2.6)

Now, we introduce the function ε̃ :R+→R
+ by:

ε̃(ε)=
∫ ε

0

1

S(t)
dt, (2.7)

which is well-defined due to the positivity of S. Since S is a positive function, the map-
ping ε̃ : ε 7→ ε̃(ε) is clearly an increasing function. As a consequence, it may be used as a
change of variables to define:

Ū(x, ε̃)= Û(x,ε). (2.8)

Let us note that the energy derivative now writes as:

S(ε)∂εÛ(x,ε)=∂ε̃Ū(x, ε̃). (2.9)

As a consequence, the system (2.6) recasts as follows:

∂ε̃Ψ̄0(x, ε̃)−
1

ρ(x)
∂xΨ̄1(x, ε̃)=0, (2.10a)

∂ε̃Ψ̄1(x, ε̃)−
1

ρ(x)
∂x

(
Ψ̄0(x, ε̃)χ

( Ψ̄1(x, ε̃)

Ψ̄0(x, ε̃)

))
=0. (2.10b)

We adopt the same approach to deal with the positive density ρ(x). Hence we set:

x̃(x)=
∫ x

0
ρ(t)dt. (2.11)

As the density is positive, the function x̃ : R
+ →R

+ defines an increasing function, and
thus, we consider it as a change of variables to define:

Ũ(x̃, ε̃)= Ū(x, ε̃). (2.12)

Since we easily have:
1

ρ(x)
∂xŪ(x, ε̃)=∂x̃Ũ(x̃, ε̃), (2.13)
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the system (2.10) gives:

∂ε̃Ψ̃
0(x̃, ε̃)−∂x̃Ψ̃1(x̃, ε̃)=0, (2.14a)

∂ε̃Ψ̃
1(x̃, ε̃)−∂x̃

(
Ψ̃0(x̃, ε̃)χ

( Ψ̃1(x̃, ε̃)

Ψ̃0(x̃, ε̃)

))
=0. (2.14b)

To shorten the notations, let us write the system of conservation laws (2.14) as follows:

∂ε̃Ũ−∂x̃F(Ũ)=0, (2.15)

where the flux function F is defined by (2.3). To summarize the sequence of changes of
variables (2.4), (2.8) and (2.12), we have the following identity:

S(ε)U(x,ε)= Ũ(x̃, ε̃). (2.16)

In order to discretize the system (2.2) on [0,xM], we propose to approximate (2.15) using
a uniform mesh in the tilde variables. For a fixed interval [0,xM], we apply the space
change of variables (2.11) to obtain an interval [0, x̃M] where:

x̃M := x̃(xM)=
∫ xM

0
ρ(t)dt. (2.17)

On this interval, we construct a uniform mesh by setting:

x̃i+ 1
2
= i∆x̃, with ∆x̃=

x̃M

imax
, for 0≤ i≤ imax,

where imax is the number of cells. As usual, x̃i+1/2 denotes the interfaces between cells.

Using the notation M̃i =[x̃i−1/2, x̃i+1/2] for a cell, we obtain the decomposition

M̃=(M̃i)1≤i≤imax, (2.18)

of [0, x̃M]. From the mesh M̃, we obtain a non-uniform mesh M of [0,xM] by

xi+ 1
2
= x̃−1

(
x̃i+ 1

2

)
, (2.19)

where x̃−1 is the inverse function of x̃ given by (2.11).
In general, the increment xi+1/2−xi−1/2 is not constant. Note that we have

⋃imax
i=1 Mi=

[0,xM].

Now, we establish a backward HLL scheme for (2.15) on the uniform mesh M̃, and
a uniform mesh ε̃p = p∆ε̃ in energy. As usual, we assume that we are given a piecewise
constant approximation Ũh(ε̃p+1, x̃) at energy ε̃p+1, defined by:

Ũh(ε̃p+1, x̃)= Ũ
p+1
i , if x̃∈M̃i.



1192 C. Berthon et al. / Commun. Comput. Phys., 10 (2011), pp. 1184-1210

This approximation is now evolved in energy to define an updated state vector Ũ
p
i at

energy ε̃p. We obtain the following backward HLL scheme:

Ũ
p
i = Ũ

p+1
i −

∆ε̃

∆x̃

(
F̃

p+1

i+ 1
2

−F̃
p+1

i− 1
2

)
, (2.20)

where the numerical flux function is given by:

F̃
p+1

i+ 1
2

=
1

2

(
F(Ũ

p+1
i )+F(Ũ

p+1
i+1 )

)
−

1

2

(
Ũ

p+1
i+1 −Ũ

p+1
i

)
.

After the work by [25] for instance (see also [10]), the energy increment ∆ε̃ is restricted
according to the following CFL like condition:

∆ε̃≤
∆x̃

2
. (2.21)

The key idea now is that, due to relation (2.16), we automatically have a scheme for the
original untransformed variables:

S(εp)U
p
i =S(εp+1)

(
U

p+1
i −

∆ε̃

∆x̃

(
F

p+1

i+ 1
2

−F
p+1

i− 1
2

))
, (2.22)

where

F
p+1

i+ 1
2

=
1

2

(
F(U

p+1
i )+F(U

p+1
i+1 )

)
−

1

2

(
U

p+1
i+1 −U

p+1
i

)
.

Let us emphasize that the discretization in the initial variables (x,ε) is not uniform as
soon as ρ is not constant. The initial values are discretized on a non-uniform grid. The
energy step, however, is performed with a scheme that does not differ from a scheme on
a uniform grid.

To conclude with this description of the 1D scheme for the homogeneous system (2.2),
the robustness of the method is given in the following statement:

Lemma 2.1. Let U
p+1
i be in A1, for 1≤ i≤ imax. We assume that the updated state vector Ũ

p+1
i

is given by (2.22). Then, under the CFL condition (2.21), U
p
i is in A1 for 1≤ i≤ imax.

Proof. We assume that U
p+1
i belongs to A1, for all 1 ≤ i ≤ imax. We thus have the two

following relations:

(Ψ0)
p+1
i >0 and

|(Ψ1)
p+1
i |

(Ψ0)
p+1
i

<1.

From relation (2.16), we immediately deduce:

(Ψ̃0)
p+1
i =S(εp+1)(Ψ0)

p+1
i and (Ψ̃1)

p+1
i =S(εp+1)(Ψ1)

p+1
i .
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Since S is a positive function, we have the relations:

(Ψ̃0)
p+1
i >0 and

|(Ψ̃1)
p+1
i |

(Ψ̃0)
p+1
i

<1,

which imply that Ũ
p+1
i belongs to A1 for all 1≤ i≤ imax. After [10, 25], under the CFL

restriction (2.21), the states Ũ
p
i belong to A1 for 1≤ i ≤ imax, as long as Ũ

p+1
i ∈A1 for

1≤ i≤ imax. Finally, from the relation (2.16) and the positivity property of the function S,
we deduce that if Ũ

p
i ∈A1, and then U

p
i ∈A1. This concludes the proof.

2.2 Source term discretization

We now reintroduce the source term into the system. In the transformed variables, the
initial system (2.1) can be rewritten:

∂ε̃Ψ̃0(x̃, ε̃)−∂x̃Ψ̃1(x̃, ε̃)=0, (2.23a)

∂ε̃Ψ̃1(x̃, ε̃)−∂x̃

(
Ψ̃0(x̃, ε̃)χ

( Ψ̃1(x̃, ε̃)

Ψ̃0(x̃, ε̃)

))
= T̃(ε̃)Ψ̃1(x̃, ε̃), (2.23b)

where, according to the change of variables (2.16) and by definition of T given by (1.3),
we have:

T̃(ε̃)=T(ε). (2.24)

To discretize the source term, we adopt the source term approximation proposed in [7].
The intermediate state of the Riemann solver is modified in a way that preserves the
domain of admissibility. The flux is a convex combination of the HLL flux and a dis-

cretization Σ̃
p+1
i of the source term:

Ũ
p
i = Ũ

p+1
i −

∆ε̃

∆x̃
α
(
F̃

p+1

i+ 1
2

−F̃
p+1

i− 1
2

)
+2 ∆ε̃

(1−α)

∆x̃
Σ̃

p+1
i . (2.25)

The parameter 0 < α < 1 can be chosen. Here we use a version that guarantees a good
behavior for large transport coefficients

α=
2

2+∆x̃
.

Here,

Σ̃
p+1
i =

(
0

(Ψ̃1)
p+1
i T̃p+1

)
.

Using the relations (2.16) and (2.24), this gives us a scheme for the initial variables (x,ε):

S(εp)U
p
i =S(εp+1)

(
U

p+1
i −

∆ε̃

∆x̃
α
(
F

p+1

i+ 1
2

−F
p+1

i− 1
2

)
+2 ∆ε̃

(1−αp+1)

∆x̃
Σ

p+1
i

)
, (2.26)
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where

Σ
p+1
i =

(
0

(Ψ1)
p+1
i Tp+1

)
and α=

2

2+∆x̃
.

We call this scheme HLLcv, where the index cv stands for change of variables.

2.3 Validation test

In order to show the validity of the proposed numerical procedure, several numerical
experiments are now performed.

The first numerical test is devoted to the approximation of a Riemann problem for
(2.23). The initial data consists of two constant states separated by a discontinuity located
at x=0.5. It is defined as follows:

Ψ0(x,εmax)=

{
0.5, if x<0.5,
3, if x>0.5,

Ψ1(x,εmax)=0. (2.27)

In this benchmark, we omit the source term, and thus set T(ε)= 0. Furthermore, we set
εmax =1, S(ε)=1, but we prescribe a discontinuous density

ρ(x)=





1, if x<0.3,
0.01, if 0.3< x<0.5,
1, if x>0.5.

(2.28)

The simulation is performed on the space interval [0,1] discretized with 256 cells, and the
approximation is displayed in Fig. 1. The resulting numerical solution Ψ0 is compared to
a reference solution, which was obtained by the same method but with 16384 cells. We
observe a fairly good approximation and the numerical diffusion is in agreement with
what we expect from the HLL scheme (see [10, 40]). In fact, the main difficulty coming

Figure 1: Solution Ψ0 of the Riemann problem (2.27): reference solution (solid line) and approximated solution
by the HLLcv scheme (dashed line) at energy ε=0.5.
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with this experiment turns out to be the discontinuities in the density. As expected, the
proposed scheme is independent of these density discontinuities.

In the next section, this numerical experiment will be compared to another one and
several numerical convergence improvements will be detailed.

3 Projection method in 1D

So far, we have derived a specific 1D method for (1.6) based on a suitable change of vari-
ables. The main benefit of the detailed changes of variables comes from the independence
of the scheme (2.23) on the discontinuous density function ρ(x). This makes the result-
ing numerical scheme very convenient and the obtained approximate solutions are fairly
good.

However, we needed a uniform mesh for the undistorted space (x̃, ε̃). Now, in the
goal to extend the method to 2D, let us underline that a global change of variables that
eliminates ρ is not possible in general. Indeed, a transformation that satisfies (2.13) with
the partial derivative replaced by the divergence operator only exists for constant ρ or a
density ρ that does not depend on either x or y. As a consequence, we propose to modify
the 1D scheme (2.26) in order to consider a local change of variables. Such a modified
method must admit an easy 2D derivation. In fact, to obtain the scheme (2.26), we have

imposed a uniform mesh M̃ while the non-uniform mesh M was derived from the nodes

x̃i+1/2. In the modification, we enforce the two meshes M and M̃ to be uniform. As a
consequence, the nodes xi+1/2 are not linked by (2.11), and we have in general,

x̃i+ 1
2
6= x̃
(

xi+ 1
2

)
.

The main discrepancy with the above derived 1D method, is the loss of a direct correspon-

dence between the grid points of the meshes M and M̃. In this section, we introduce a
projection technique to transform between the two meshes.

First, we define the two meshes M and M̃ under consideration. We denote by ∆x
and ∆x̃, the respective constant sizes of the cells and set:

xi+ 1
2
= i∆x, with ∆x=

xM

imax
,

x̃i+ 1
2
= i∆x̃, with ∆x̃=

x̃M

imax
,

where x̃M is still defined by (2.17). Note that both meshes can consist of a different num-
ber of cells. However, for simplicity we have taken both meshes to consist of imax cells.
The cells are thus defined by:

Mi =
[
xi− 1

2
,xi+ 1

2

]
and M̃i =

[
x̃i− 1

2
, x̃i+ 1

2

]
.
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Figure 2: Projection steps in 1D.

For convenience, we denote by xi and x̃i the center of each cell Mi and M̃i. Note that we
have:

imax⋃

i=1

Mi =[0,xM] and
imax⋃

i=1

M̃i =[0, x̃M].

At each energy εp+1, the state vector U
p+1
i is known on the mesh M. To evolve

(U
p+1
i )1≤i≤imax to (U

p
i )1≤i≤imax, we will use the scheme (2.25) on the mesh M̃. As a

consequence, we have to determine Ũ
p+1
i on the mesh M̃. Our purpose is now to estab-

lish a relevant projection step from M to M̃ to evaluate Ũ
p+1
i . In order to preserve the

conservation to be satisfied by the scheme, we impose the projection to be conservative.
We introduce a third non-uniform mesh Ξ, to discretize [0,xM], made of the nodes ξi+1/2

defined by:

ξi+ 1
2
= x̃−1(x̃i+ 1

2
),

where x̃−1 is the inverse of x̃ given by (2.11). We denote by ξi the center of the cell Ξi =
[ξi−1/2,ξi+1/2]. Let us note that the mesh Ξ exactly coincides with the non uniform mesh
M, defined by (2.19), which we obtained in 1D from the change of variables. Clearly, as
soon as the state vector is known at each cell Ξ for 1≤ i≤ imax, the scheme (2.25)-(2.26)
can be applied involving the meshes Ξ and M̃.

We define the projection Π̃, which gives the piecewise constant function Ũ on the

mesh M̃ from the solution U on the mesh M, by the relation:

(Π̃U)
p
i =S(εp)

imax

∑
k=1

ãi,kU
p
k and ãi,k =

meas(Ξk∩Mi)

meas(Mi)
, (3.1)

where the coefficient ãi,k is the ratio of the lengths of the cells Ξk∩Mi and Mi (see Fig. 2).
In fact, we note that ∑

imax
k=1 ãi,kU

p
k is nothing but the projected value of the state vector U

p
i

on the cell Ξi. Hence, a direct application of the change of variables (2.16) yields to the
projection definition (3.1). For fixed 1≤ i ≤ imax, let us underline that, by definition of
ãi,k ≥0, we have:

imax

∑
k=1

ãi,k =1.



C. Berthon et al. / Commun. Comput. Phys., 10 (2011), pp. 1184-1210 1197

As a consequence, we preserve the required conservation property as follows:

imax

∑
i=1

U
p
i =

imax

∑
i=1

( imax

∑
k=1

ãi,kU
p
k

)
.

Reversely, we define the projection which gives U on the mesh M from the solution Ũ

on the mesh M̃. This second projection reads as follows:

(ΠŨ)
p
i =

1

S(εp)

imax

∑
k=1

ai,kŨ
p
k and ai,k =

meas(Mk∩Ξi)

meas(Ξi)
. (3.2)

Once again, the projection Π is conservative since we have:

imax

∑
i=1

Ũ
p
i =

imax

∑
i=1

( imax

∑
k=1

ãi,kŨ
p
k

)
.

To conclude the introduction of the projections, we remark that Π and Π̃ do not commute:
Π(Π̃U) 6= Π̃(ΠU).

Involving the above projections, we exhibit a numerical procedure from

(U
p+1
i )0≤i≤imax to evaluate (U

p
i )1≤i≤imax. This numerical scheme summarizes as follows:

1. From the state vectors (U
p+1
i )1≤i≤imax on the mesh M and at the energy εp+1, we evaluate

(Ũ
p+1
i )1≤i≤imax on the mesh M̃, by the projection Π̃:

Ũ
p+1
i =(Π̃U)

p+1
i , for 1≤ i≤ imax.

2. We apply the scheme (2.25) to get the updated state vectors (Ũ
p
i )1≤i≤imax on the mesh M̃.

3. We re-project the solution (Ũ
p
i )1≤i≤imax from the mesh M̃ on the initial mesh M thanks to

the operator Π:
U

p
i =(ΠŨ)

p
i , for 1≤ i≤ imax.

For the sake of clarity in the notations, this numerical procedure will be called
(2.25)

Π̃
-(2.26)Π in the sequel.

The robustness of the method is established in the following result:

Lemma 3.1. Let U
p+1
i be in A1 for 1≤ i≤ imax. Assume that the updated state vectors U

p
i to be

given by the numerical procedure (2.25)
Π̃

-(2.26)Π. Under the CFL like restriction (2.21), for all

1≤ i≤ imax, U
p
i belongs to A1.

Proof. Since the projection step Π̃ is made of a convex combination of vectors U
p+1
i , as

soon as U
p+1
i ∈A1 for all 1≤ i≤ imax, the projected vectors Ũ

p+1
i is still in A1. Indeed,

A1 is a convex set. After [25], under the CFL condition (2.21), the HLL scheme (2.25)
preserves the admissible states. As a consequence, we immediately deduce that Ũ

p
i is in

A1, for all 1≤ i≤ imax. Finally, the re-projection of the solution in M, which is made of
convex combinations of elements of Ũ

p
i , preserves the admissibility of U

p
i . Hence, U

p
i is

in A1, for all 1≤ i≤ imax, and the proof is completed.
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Figure 3: Solution of a Riemann problem performed with a first order HLLcv scheme, a first order HLLcvp

scheme, and two second order HLLcvp schemes with minmod and Van Leer limiters at energy ε=0.5.

To validate the scheme (2.25)
Π̃

-(2.26)Π, we solve the Riemann problem (2.27), where
the density ρ and the function S are defined by (2.28). This scheme, involving projection
steps, will be called HLLcvp. The index stands for change of variables with projection.

The obtained numerical results, with a mesh made of 256 cells, are displayed Fig. 3,
where we compare the results obtained with first and second order schemes. The second
order accuracy is obtained when considering a standard MUSCL method (see [3,4,31,43]).
Here, we have adopted the well-known minmod and Van Leer limitation procedures.

Table 1 shows the L1, L2 and L∞ errors evaluated on several mesh refinements. First
of all, we notice that the first order method with projections roughly gives the same ac-
curacy as the method without projection by taking twice more cells. As a consequence,
the convergence rates of these two methods are similar. Moreover, it is to note that the
accuracy with the MUSCL correction of the HLLcvp method is slightly better than the first
order HLLcv. Here, the use of MUSCL techniques for the HLLcvp scheme only marginally
improves the order of convergence due to the projection steps. This example validates
the HLLcvp approach which will be extended to two dimensions in the next section.

4 Projection method in 2D

The present section is devoted to extend the above 1D scheme to approximate the solu-
tions of the 2D model (1.6). To shorten the notations, we write our model as follows:

∂ε(ρSU)−∂xF(U)−∂yG(U)=Σ(U), (4.1)

where U=t(Ψ0,Ψ1
x,Ψ1

y) is the state vector in A2 and the flux functions F and G are defined

as follows:

F(U)=




Ψ1
x

Ψ0 1−χ
2 + 3χ−1

2‖Ψ1‖2 (Ψ1
x)

2

Ψ0 3χ−1
2‖Ψ1‖2 Ψ1

yΨ1
x


, G(U)=




Ψ1
x

Ψ0 3χ−1
2‖Ψ1‖2 Ψ1

xΨ1
y

Ψ0 1−χ
2 + 3χ−1

2‖Ψ1‖2 (Ψ1
y)

2


 . (4.2)
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Table 1: Comparisons of L1, L2, L∞ errors.

Method number of cells L∞ error L2 error L1 error order
32 0.5596 0.2065 0.1390
64 0.4812 0.1585 9.6021×10−2 0.5339

1st order 128 0.4214 0.1186 6.1040×10−2 0.6536
HLLcv 256 0.3907 8.5568×10−2 3.8265×10−2 0.6737

512 0.3971 6.2348×10−2 2.3751×10−2 0.6881
1024 0.3911 4.2702×10−2 1.3884×10−2 0.7746
2048 0.3455 2.7246×10−2 7.4848×10−3 0.8914

32 0.6553 0.2438 0.1908
64 0.5620 0.2002 0.1468 0.3780

1st order 128 0.5028 0.1530 9.5539×10−2 0.6200
HLLcvp 256 0.4679 0.1148 5.9349×10−2 0.6869

512 0.4523 8.5882×10−2 3.7806×10−2 0.6506
1024 0.4476 6.1713×10−2 2.3219×10−2 0.7033
2048 0.3960 4.2469×10−2 1.3518×10−2 0.7804

32 0.6162 0.2312 0.1740
64 0.5271 0.1744 0.1208 0.5263

2nd order 128 0.5167 0.1281 7.3075×10−2 0.7255
Minmod 256 0.4664 9.4580×10−2 4.3889×10−2 0.7355
HLLcvp 512 0.4461 6.9677×10−2 2.7110×10−2 0.6950

1024 0.4419 4.9287×10−2 1.5938×10−2 0.7663
2048 0.3999 3.3321×10−2 8.7471×10−3 0.8656

32 0.6208 0.2278 0.1683
64 0.5315 0.1706 0.1170 0.5241

2nd order 128 0.5153 0.1239 6.8487×10−2 0.7730
Van Leer 256 0.4638 9.1065×10−2 4.0879×10−2 0.7445
HLLcvp 512 0.4444 6.7074×10−2 2.5365×10−2 0.6885

1024 0.4411 4.7387×10−2 1.4715×10−2 0.7856
2048 0.3772 3.1995×10−2 7.9505×10−3 0.8882

Here, the source term Σ reads:

Σ(U)= t(0,ρTΨ1
x,ρTΨ1

y). (4.3)

The proposed 2D extension consists of a direction splitting to deal first with the x-
direction where the system reads:

∂ερSU−∂xF(U)=0, (4.4)

and next to consider the y-direction system given by:

∂ερSU−∂yG(U)=0. (4.5)

Concerning the source term, a specific treatment will be adopted by a 2D extension of
the method detailed in [7]. The approximated scheme involved per direction is given by
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(2.25)
Π̃

-(2.26)Π where a suitable attention is paid on the density which now depends on
x and y.

First of all, let us define all the needed meshes. Here, we are looking for solutions
on the domain Ω =[0,xM]×[0,yM ]⊂R

2. We adopt a uniform Cartesian mesh by setting
(xi+1/2,yj+1/2), for all 0≤ i≤ imax and 0≤ j≤ jmax, where

xi+ 1
2
= i∆x, with ∆x=

xM

imax
,

yj+ 1
2
= j∆y, with ∆y=

yM

jmax
.

For a fixed j, we deduce the pseudo 1D mesh given by M= (Mi)1≤i≤imax made of the
cells:

Mi =[xi− 1
2
,xi+ 1

2
],

so that
⋃imax

i=1 Mi = [0,xM]. Similarly, we set N =(Nj)1≤j≤jmax, the 1D mesh made of the
cells:

Nj =
[
yj− 1

2
,yj+ 1

2

]
,

so that
⋃jmax

j=1 Nj =[0,yM].

We denote by xi and yj the centers of Mi and Nj respectively. Let us remark that we
have the following writing of Ω:

jmax⋃

j=1

( imax⋃

i=1

Mi×
[
yj− 1

2
,yj+ 1

2

])
=[0,xM]×[0,yM ],

or similarly,
imax⋃

i=1

( jmax⋃

j=1

Nj×
[
xi− 1

2
,xi+ 1

2

])
=[0,xM]×[0,yM ].

Now, for a fixed j we consider the 1D mesh M×{yj} to apply the following change of
variables:

x̃(x,yj)=
∫ x

0
ρ(t,yj)dt, (4.6)

which is directly deduced from (2.11). We set

x̃
j
M = x̃(xM,yj),

to define a uniform mesh denoted M̃j of [0, x̃
j
M]. In fact, this mesh M̃j coincides with

(2.18) but for the 2D extension with a fixed yj. The cells of M̃j are defined by:

M̃
j
i =
[
x̃

j

i− 1
2

, x̃
j

i+ 1
2

]
,



C. Berthon et al. / Commun. Comput. Phys., 10 (2011), pp. 1184-1210 1201

where we have set

x̃
j

i+ 1
2

= i∆x̃j, with ∆x̃j =
x̃j

imax
.

The center of M̃
j
i will be denoted x̃

j
i .

Next, a similar mesh definition is adopted in the y-direction. For fixed i, the following
change of variables:

ỹ(xi,y)=
∫ y

0
ρ(xi,s)ds (4.7)

is applied to the 1D mesh {xi}×N . Such a change of variables is nothing but the y-
extension of (2.11). We set:

ỹi
M = ỹ(xi,yM),

to derive the uniform mesh Ñ i made of the cells:

Ñ i
j =
[
ỹi

j− 1
2
,ỹi

j+ 1
2

]
,

where we have set:

ỹi
j+ 1

2
= j∆ỹi , with ∆ỹi =

ỹi

jmax
.

We denote by ỹi
j the center of the cells Ñ i

j .

The proposed numerical procedure consists in applying the 1D scheme
(2.25)

Π̃
-(2.26)Π in the x-direction for all fixed j when the mesh M×{yj} is consid-

ered. Next the scheme (2.25)
Π̃

-(2.26)Π is, once again, applied but for the y-direction with

a fixed i when considering the 1D mesh {xi}×N . Therefore the projections, Π̃ and Π

defined by (3.1) and (3.2) respectively, must be derived for all the meshes M×{yj} and
{xi}×N .

First, we define the projections Π̃
j
x and Π

j
x (see Fig. 4). According to (3.1) and (3.2),

we set:

(Π̃
j
xU)

p
i =S(εp)

imax

∑
k=1

ã
j
i,kU

p
k,j, (4.8a)

(Π
j
xŨ)

p
i =

1

S(εp)

imax

∑
k=1

a
j
i,kŨ

p
k,j, (4.8b)

with

ã
j
i,k =

meas(Ξ
j
x,k∩Mi)

meas(Mi)
, a

j
i,k =

meas(Mk∩Ξ
j
x,i)

meas(Ξ
j
x,i)

,

where we have introduced:

Ξ
j
x,i =

[
ξ

j

x,i− 1
2

,ξ
j

x,i+ 1
2

]
, ξ

j

x,i+ 1
2

= x̃−1
j (xi+ 1

2
),
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Figure 4: Projection steps in direction x.

Figure 5: Projection steps in direction y.

where x̃−1 denotes the inverse of the mapping x 7→ x̃(x,yj) defined by (4.6). Next, con-

sidering the y-direction, we introduce the projections Π̃i
y :N×{xi}→Ñ i and Πi

y : Ñ i →
N×{xi} (see Fig. 5), defined by:

(Π̃i
yU)

p
j =S(εp)

jmax

∑
k=0

b̃i
k,jU

p
i,k, (4.9a)

(Πi
yŨ)

p
j =

1

S(εp)

jmax

∑
k=0

bi
k,jŨ

p
i,k, (4.9b)

with

b̃i
k,j =

meas(Ξi
y,k∩Nj)

meas(Nj)
, bi

k,j =
meas(Nk∩Ξi

y,j)

meas(Ξi
y,j)

,

where we have set:

Ξi
y,j =[ξ i

y,j− 1
2
,ξ i

y,j+ 1
2
], ξ i

y,j+ 1
2
= ỹ−1

i (yj+ 1
2
),

where ỹ−1 denotes the inverse of the mapping y 7→ ỹ(xi,y) defined by (4.7).
Equipped with these projections, we are able to describe the numerical procedure to

evolve the numerical approximate solution U
p+1
i,j to get U

p
i,j. Involving a space splitting

technique, a two step method is adopted.
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• The first step is devoted to evolve in the x-direction. For a fixed j we define the state vectors

(Ũ
p+1/2
i,j )1≤i≤imax by using the projection mapping (4.8a). This state is next evolved in energy when

considering an HLL scheme with source term in the form (2.25). The scheme reads

Ũ
p+ 1

2
i,j = Ũ

p+1
i,j −

∆ε̃

∆x̃
αx

(
F̃

p+1

i+ 1
2 ,j
−F̃

p+1

i− 1
2 ,j

)
+2∆ε̃

(1−αx)

2∆x̃
Σ̃

p+1
i,j , (4.10)

where:

F̃
p+1

i+ 1
2 ,j

=
1

2

(
F(Ũ

p+1
i,j )+F(Ũ

p+1
i+1,j)

)
−

1

2

(
Ũ

p+1
i+1,j−Ũ

p+1
i,j

)
and αx =

2

2+∆x̃
, (4.11)

and

Σ̃
p+1
i,j =




0

T̃p+1(Ψ̃1
x)

p+1
i,j

T̃p+1(Ψ̃1
y)

p+1
i,j


. (4.12)

This first step is concluded by the projection of the state vectors (Ũ
p+1/2
i,j )1≤i≤imax by the mapping

(4.8b) to get (U
p+1/2
i,j )1≤i≤imax for all 1≤ j≤ jmax.

• During the second step, the evolution of U
p+1/2
i,j is performed in the y-direction. For all fixed

i from 1 to imax, the projection (4.9a) is used to define the state vectors (Ũ
p+1/2
i,j )1≤j≤jmax. These

vectors are now evolved in energy by the following HLL scheme:

Ũ
p
i,j = Ũ

p+ 1
2

i,j −
∆ε̃

∆ỹ
αy

(
G̃

p+ 1
2

i,j+ 1
2

−G̃
p+ 1

2

i,j− 1
2

)
+2∆ε̃

(1−αy)

2∆ỹ
Σ̃

p+ 1
2

i,j , (4.13)

where

G̃
p+ 1

2

i,j+ 1
2

=
1

2

(
G(Ũ

p+ 1
2

i,j )+G(Ũ
p+ 1

2
i,j+1)

)
−

1

2

(
Ũ

p+ 1
2

i,j+1−Ũ
p+ 1

2
i,j

)
and αy =

2

2+∆ỹ
, (4.14)

and

Σ̃
p+ 1

2
i,j =




0

T̃p+ 1
2 (Ψ̃1

x)
p+ 1

2
i,j

T̃p+ 1
2 (Ψ̃1

y)
p+ 1

2
i,j


. (4.15)

Finally, by the projection (4.9b), we deduce the expected updated state vectors U
p
i,j.

4.1 Validation test

In order to validate the proposed 2D numerical technique, we consider an experiment
which has a spherical symmetry. A source is applied in a 1cm-radius sphere in a material
made of a sequence of variable densities as follows:

ρ(r)=





1, if 1< r≤2,
0.25, if 2< r≤3,
0.1, if 3< r≤4,
2, otherwise.
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Figure 6: Spherical case: Ψ0 predicted by the 1D code with a mesh refinement from 128 to 16384 cells.

Figure 7: Spherical case: Ψ0 predicted by the 2D code with 256×256 cells (left) and 1024×1024 cells (right)
and cut line along the x axis (below).

Figure 8: Spherical case: Ψ1 predicted by the 2D code with 256×256 cells and 1024×1024 cells and cut line
along the x axis (below).
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The goal of this test-case is to validate the projection procedures. We simplify the model
by considering T = 0, S = 1, εmax = 2.5 and Ψ

2 = Ψ0Id/3. One of the interests of such
an experiment is that the system reduces to a one dimension problem using the polar
coordinates. Indeed we have:

∂ε(rΨ0)+∂r(rΨ1)=0, ∂ε(rΨ1)+∂r

( rΨ0

3

)
=

rΨ0

3r
.

Using the variables (rΨ0,rΨ1) this system turns out to be a 1D model with source term.
Therefore, it can be discretized using the 1D procedure described above to compute a
reference solution to be compared with the full 2D model. Let us emphasize that such a
benchmark is very stiff and a lot of points are required in order to obtain a converged 1D
approximation as shown in Fig. 6 for ε=0.

Since the derived 2D numerical procedure is based on a Cartesian grid, the approxi-
mation of a spherical solution is challenging due to the multiple projections. Figs. 7 and
8 show the results at energy ε = 0 computed on respectively a 256×256 and 1024×1024
grids.

As expected, the results of the 2D scheme are in fairly good agreement with the refer-
ence solution.

5 Application to dose calculation

We took a two-dimensional slice of three-dimensional CT data from the Visible Human
data set. We apply our model to a case from the literature, a case of an irradiation of the
head with electrons [30]. The setting is shown in Fig. 9. It shows a horizontal cut through
a human head. In each of the voxels, the material is described by its Hounsfield grey
value G(x,y). The grey values can be translated into physical parameters as follows,

ρ(x,y)=
(G(x,y)

1000
+1
)

ρW ,

where ρW is the density of water. Dark regions have low density, bright regions higher
density. Black is air with a density of approximately 10−3kg/m3, gray is water with
roughly 1kg/m3, and light gray is bone with about 2kg/m3. On the right side a bolus
made of plastic is attached. In practice, this is used to shape the electron beam.

The head is irradiated from the right with a 12MeV electron beam of width 14cm. To
model the incoming beams, we have taken a very narrow Gaussian in energy, and a δ
pulse in angle. Other energy spectra are possible. From these, the angular moments ψ(0)

and ψ(1) have to be computed, which are used in the code.
As a comparison to our method, we use the state-of-the-art Monte Carlo code PENE-

LOPE [36]. This code has been extensively validated against experimental results. The
code solves a far more complicated transport equation with many more physical effects
than our model. Both physics models are completely independent. We use PENELOPE
as a black box and consider its results as benchmark experimental results.
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Figure 9: Cut through CT scan of head, with bolus attached to the right.

PENELOPE was set up in a pseudo-2D setting with a large beam size perpendicular
to the plane in which the beam propagated. We have used penEasy2009 in a voxelized
geometry with standard simulation parameters. The energy cutoff for the initial source
energy was set to 15MeV. Electrons and positrons are assumed to be absorbed when their
energy becomes less than 150keV. For photons, this value was set to 15keV. The critical
angle θc and critical energy Wc that separate hard events and soft events was set in the
following way: for inelastic collisions, we set Wc =150keV, for bremsstrahlung emission
Wc =15keV. The average angular deflection between consecutive hard elastic events C1=
0.1 and the maximum average fractional energy loss between consecutive hard elastic
events C2 = 0.1 uniquely determine θc. The maximum allowed step length for electrons
and positrons is set to infinity: DSMAX = 1035cm. No variance reduction method was
used. Let us note that the physical models entering our code are independent from the
physical models underlying penEasy.

Fig. 10 shows the isodose curves obtained with both methods. The 10%, 25%, 50%,
70% and 80% lines are shown. The statistical noise of the Monte Carlo (MC) solution can
be seen in the 80% curve. We can also see that the M1 result is slightly more diffusive than
the MC solution, i.e., the beam is a bit wider and the contours for the lower values are
further apart. The orange curve even encompasses the void region toward the bottom.
But note that this is just the 10% dose curve, so it is not very relevant to the overall
irradiation. The major difference, however, is that the M1 model does not produce the
same buildup region as the MC solution. this can be seen by the difference in the 80%
curves near the boundary. In a previous paper [17], this shortcoming has been attributed
to the M1 model, and not the numerical scheme.

Fig. 11 shows a difference plot of the two solutions. In radiotherapy dose calcula-
tion, methods are compared by their relative error in the dose and in terms of distance-
to-agreement. Overall, about 63% of the voxels are within 4% or 4mm distance-to-
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Monte Carlo solution Minimum entropy solution

Figure 10: Isodose curves for electron beam on vertebral column. Normalized by Dmax, they are shown as 10%
orange, 25% yellow, 50% light blue, 70% dark blue, 80% violet.

Figure 11: Contour plot of the dose differences between the M1 model and PENELOPE, scaled by the maximum
dose (2% difference shown in yellow, 5% difference cyan, 10% difference red).

agreement. This is of course not sufficient to be relevant in practice yet. The reason
are mainly due to an oversimplified physical model and shortcomings in the M1 model.

However, it can serve as a prove of concept. The HLLcvp method gives a good ap-
proximation of the dose. It has no statistical noise, which is an advantage of determin-
istic methods. In our numerical experiments, the code using the HLLcvp method needed
about 50 minutes on 12 cores, while PENELOPE runs for roughly one day. Of course, this
comparison is not fair, since PENELOPE runs in a pseudo-2D setting. But if we extrap-
olate the computational results to 3D, we can expect an advantage for the deterministic
method.
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