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Abstract. The equilibrium metric for minimizing a continuous congested traffic model
is the solution of a variational problem involving geodesic distances. The continuous
equilibrium metric and its associated variational problem are closely related to the
classical discrete Wardrop’s equilibrium. We propose an adjoint state method to nu-
merically approximate continuous traffic congestion equilibria through the continuous
formulation. The method formally derives an adjoint state equation to compute the
gradient descent direction so as to minimize a nonlinear functional involving the equi-
librium metric and the resulting geodesic distances. The geodesic distance needed for
the state equation is computed by solving a factored eikonal equation, and the adjoint
state equation is solved by a fast sweeping method. Numerical examples demonstrate
that the proposed adjoint state method produces desired equilibrium metrics and out-
performs the subgradient marching method for computing such equilibrium metrics.
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1 Introduction

In traffic flow for transportation and communication, network equilibrium models are
commonly used for prediction of traffic patterns in transportation and communication
networks that are subject to congestion. The idea of traffic equilibrium originated as
early as 1924 in the work by Knight [12]. In 1952, Wardrop introduced two principles that
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formalize the notion of equilibrium [24]. Wardrop’s first principle states that no driver
may lower his/her transportation cost through unilateral action, which leads to the user-
optimized equilibrium. Wardrop’s second principle states that drivers behave cooper-
atively to minimize the total system travel time, which leads to the system-optimized
equilibrium. These two principles have been put into firm foundation by treating the
network equilibrium problem as a discrete convex programming problem in Chapter 3
of Beckmann et al. [2]. In a recent work [7] Carlier et al. introduced a continuous version
of Wardrop’s equilibria, proved the existence of continuous traffic congestion equilibrium
by introducing a variational problem analogous to the discrete convex programming in
Chapter 3 of [2], and related it to the optimal transportation problem with congestion. It
turns out that such an equilibrium is linked to a certain metric, and all actually used paths
(the continuous version of routes) must be geodesics for this metric. Based on the work
in [7], Benmansour et al. [4] have shown that an equilibrium metric is the solution of a
variational problem involving geodesic distances. Furthermore, to solve this particular
variational problem, they have designed a subgradient marching method [3] to approx-
imate continuous traffic congestion equilibria. This method requires intensive memory
and is computationally inefficient.

In this paper, as an alternative approach, we propose a new adjoint state method
which is efficient in both memory and computation to solve this variational problem.
By using this adjoint state method, we first derive the gradient descent direction for a
certain nonlinear functional in a continuous setting, and we then discretize the result-
ing gradient accordingly. This is different from the viewpoint of Benmansour et al. [4],
where they discretized the nonlinear functional first and computed the derivatives of
the discrete functional with respect to metrics in a discrete setting. In designing an ef-
ficient adjoint state method for continuous traffic congestion equilibria, there are two
challenging computational issues: one is how to compute geodesic distances efficiently
and accurately from a source location to many destination locations, as the distance func-
tion is not differentiable at the source location; the other is how to solve the adjoint state
equation efficiently. To deal with the first difficulty we use the factored eikonal equa-
tion [11] to discretize the eikonal equation so that the source singularity can be treated
with high accuracy. To deal with the second difficulty, we adopt a fast sweeping method
as designed in [13]. Numerical examples demonstrate that the proposed adjoint state
method produces desired equilibrium metrics. In a discrete setting with N grid points,
in terms of computational memory, the subgradient marching method in [3, 4] requires
O(N2) memory, while our new approach requires O(N) memory; in terms of computa-
tional complexity, the subgradient marching method in [3,4] is of O(N2 logN), while our
approach is of O(N).

The outline of this work is as follows. In Section 2, we present the continuous traffic
congestion model and its dual formulation as described in [4, 7]. In Section 3, we derive
our adjoint state method to compute the equilibrium metric. In Section 4, we present
numerical examples to illustrate the performance of our method and make comparison
with the subgradient marching method. We conclude the paper with some remarks.
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2 The model and the optimization formulation

In this section, we briefly recall the continuous traffic congestion model and its dual for-
mulation introduced in [4, 7]. Interested researchers may refer to [4, 7] and references
therein for details and proofs.

An equilibrium is related to the distribution of vehicles on all possible paths such
that all actually used paths have the same cost and the total cost is the minimum. The
distribution of vehicles is subject to the organization and communication of the city, for
example, residents and services. Mathematically, the city is modeled by the closure of
a connected open bounded set Ω ⊂ R2. All possible paths are represented by curves
C,W1,∞([0,1],Ω̄) (with the usual topology of C0([0, 1],R2)). A Borel probability measure
Q on the sets of paths is used to model the distribution of vehicles, which is subject to a
transportation plan γ that models movements on source-destination pairs. γ is a Borel
probability measure on Ω̄×Ω̄, and its marginals model the distribution of residents and
services. See [4, 7] for more details.

The total congestion cost needs to be defined such that its minimum is related to an
equilibrium. For a certain distribution Q of vehicles, the congestion effects depend on the
traffic intensity iQ associated to Q. iQ is a Borel measure on Ω̄, such that

∫

Ω̄
φ(x)diQ(x),

∫

C
Lφ(σ)dQ(σ), (2.1)

for all φ∈C0(Ω̄,R+), where

Lφ(σ),

∫ 1

0
φ(σ(t))|σ̇(t)|dt,

and σ is a possible path in the set C; see [4, 7].

A continuous non-negative function g(x,i(x)) is used to model the congestion effects.
g(·,i) is the cost per unit length for a path when the traffic intensity is i. g(x,·) is strictly
increasing on R+ for every x and g also satisfies the following: There exist a>0, b>0 and
α∈ (0,1), such that

aiα ≤ g(x,i)≤b(iα +1), ∀i∈R+, ∀x∈Ω. (2.2)

The total congestion cost is defined as
∫

Ω
H(x,i(x))dx with H linked to g,

H(x,i),

∫ i

0
g(x,s)ds, ∀x∈Ω, ∀i∈R+. (2.3)

A Wardrop equilibrium is a measure Q which is a minimizer of a convex optimization
problem for the total congestion cost,

(P) inf
{∫

Ω
H

(
x,iQ(x)

)
dx : Q with iQ ∈Lq

}
, (2.4)
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where q =1+α. At an equilibrium Q, the drivers only use paths that are geodesics with
respect to the congested metric ξQ,

ξQ(x),
∂H(x,iQ)

∂i
= g

(
x,iQ(x)

)
, x∈Ω. (2.5)

ξQ is the equilibrium metric. Since H(x,·) is strictly convex, by using the Legendre trans-
form, a dual formulation can be derived to find the equilibrium metric ξQ.

For a continuous non-negative metric ξ∈C0(Ω̄,R+), the geodesic distance Tξ is given
as,

Tξ(x,y), inf
{

Lξ(σ) : σ∈C, σ(0)= x, σ(1)=y
}

. (2.6)

Tξ and Lξ can be extended by sequential approximations to the cases of ξ in some Lp space
with p>2. The extensions are still denoted as Tξ and Lξ without notational confusion.

By using the dual formulation, we may consider the following optimization problem
as suggested in [4, 7],

(P⋆) inf
{
J (ξ) : ξ∈Lq⋆

, ξ≥ ξ0

}
, (2.7)

with

J (ξ),

∫

Ω
H⋆

(
x,ξ(x)

)
dx−

∫

Ω̄×Ω̄
Tξ(x,y)dγ(x,y), (2.8)

where q⋆ is the conjugate exponent of q with 1/q+1/q⋆ =1, ξ0,g(x,0), and the Legendre
transform of H,

H⋆(x,ξ),sup
{

ξi−H(x,i) : i≥0
}

. (2.9)

One can prove that under appropriate assumptions [4],

min(P)=min(P⋆)

and an appropriate ξ solves (P⋆) if and only if ξ = ξQ for some

appropriate Borel probability measure Q solving (P).

(2.10)

Once an equilibrium metric ξQ is obtained, the corresponding equilibrium intensity iQ

can be recovered by inverting ξQ(x)= g(x,iQ(x)).

3 Adjoint state method

For the functional (2.8), we assume that γ is absolutely continuous with respect to the
Lebesgue measure. Then according to the Radon-Nikodym Theorem, we can write
dγ(x,y) = R(x,y)dxdy with R(x,y) ≥ 0 the Radon-Nikodym derivative [21]. Thus the
functional is rewritten as

J (ξ)=
∫

Ω
H⋆

(
x,ξ(x)

)
dx−

∫

Ω̄×Ω̄
Tξ(x,y)R(x,y)dxdy. (3.1)
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For each source x∈ Ω̄, we define

J x(ξ),−
∫

Ω̄
Tξ(x,y)R(x,y)dy. (3.2)

By the Fubini Theorem [21], we have

J (ξ)=
∫

Ω
H⋆

(
x,ξ(x)

)
dx+

∫

Ω̄
J x(ξ)dx. (3.3)

This is the functional that we want to minimize. An adjoint state approach will be de-
signed to solve the related minimization problem.

3.1 Adjoint state equation and factored eikonal equation

The evaluation of J or J x for a given source x requires geodesic distances Tξ , which can
be obtained as the viscosity solution of the following eikonal equation [9] (by denoting
T(y)=Tξ(x,y)), {

|∇T(y)|= ξ(y), y∈ Ω̄\{x},

T(x)=0.
(3.4)

Remark 3.1. By using the Hopf formula for the viscosity solution of (3.4) in [14], one can
easily see that

• For a fixed source x, if two metrics ξ and η satisfy ξ ≤ η, then Tξ(y)≤Tη(y) for all
y ∈ Ω̄. This is also a simple implication of the comparison principle for viscosity
solutions [9, 14].

• Tξ is concave in ξ, and since H⋆ is convex in ξ, the functional J is convex in ξ.

In this work, to solve the eikonal equation we will adopt a factorization formulation
of the eikonal equation, so-called the factored eikonal equation in [11]. This factorization
formulation is specially designed to resolve the source singularity so that the accuracy of
the numerical solution can be improved.

Let us consider a factored decomposition,

ξ(y)= ξ1(y)β(y), T(y)=T1(y)τ(y), (3.5)

where T1 and ξ1 are assumed to be known and satisfy the eikonal equation

|∇T1(y)|= ξ1(y) for y∈ Ω̄\{x}, T1(x)=0.

Substituting decomposition (3.5) into the eikonal equation (3.4), we get the factored
eikonal equation

T1
2(y)|∇τ(y)|2 +2T1(y)τ(y)∇T1(y)·∇τ(y)+

[
τ2(y)−β2(y)

]
ξ2

1(y)=0. (3.6)

By choosing appropriate T1 such that it captures the source singularity of T, the under-
lying function τ is smooth in the neighborhood of the source. In this work, we choose
ξ1 =1, so T1 is the distance function to the source x, which has a singularity at the source
x.
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3.1.1 Minimization of J x

To minimize J x, we use the method of gradient descent. We first perturb the metric ξ by

ǫξ̃, which causes a corresponding change in T by ǫT̃. The change in J x is given by

δJ x =−ǫ
∫

Ω̄
T̃(y)R(x,y)dy. (3.7)

From the factored eikonal equation (3.6), the perturbations in ξ and T are related by
(denote y=(y1,y2)∈ Ω̄⊂R2)

(τ+T1∇T1 ·∇τ)τ̃+T1(∇T1τ+T1∇τ)·∇τ̃ = ξξ̃ +
ǫ

2

(
ξ̃2−|∇(T1τ̃)|2

)
, (3.8)

where τ̃ is defined through T̃ =T1τ̃.
Dropping the higher order terms, multiplying (3.8) by ǫλ, integrating it over Ω̄, ap-

plying integration by parts, and adding the resulting expression to (3.7), we get

δJ x

ǫ
=−

∫

Ω̄
T1τ̃R(x,y)dy+

∫

∂Ω
λτ̃(T1∇T1τ+T1

2∇τ)·~ndl

+
∫

Ω̄

{
λ(τ+T1∇T1 ·∇τ)+∇·

[
−T1(∇T1τ+T1∇τ)λ

]}
τ̃dy−

∫

Ω̄
λξξ̃dy, (3.9)

where~n is the unit outer normal to Ω̄. We choose λ satisfying

λ(τ+T1∇T1 ·∇τ)+∇·
[
−T1(∇T1τ+T1∇τ)λ

]
=T1R(x,y), y=(y1,y2)∈Ω, (3.10a)

λ=0, y=(y1,y2)∈∂Ω. (3.10b)

By introducing this adjoint state function λ, we eliminate the dependence of τ̃ and we
get the perturbation in J x as,

δJ x

ǫ
=−

∫

Ω̄
λξξ̃dy. (3.11)

To minimize J x by the method of gradient descent, we could choose the perturbation

ξ̃ =λξ in Ω and ξ̃ =0 on ∂Ω, which implies

δJ x =−ǫ
∫

Ω̄
ξ̃2dy≤0, (3.12)

and the equality holds when ‖ξ̃‖L2(Ω) =0.

Remark 3.2. Note that the characteristic direction for the adjoint state equation (3.10) is

dy

dt
=−T1(∇T1τ+T1∇τ)=−T1∇T,

which is the opposite to the characteristic direction for the eikonal equation (3.4) or the
factored eikonal equation (3.6). If we assume that the metric outside the domain Ω is
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large (or infinity) and constant, then the characteristics of the eikonal equation (3.4) or the
factored eikonal equation (3.6) are straight lines outside the domain and thus outgoing,
that is, if a characteristic leaves the domain, it will not re-enter the domain again. As
a result, the characteristics for the adjoint state equation (3.10) are incoming. Moreover,
given a source location x, all the characteristics linking the source x and any other point
y trace back to the source x and these characteristics will not intersect with each other
except at the source according to the uniqueness of viscosity solution (e.g., [1, 9, 10]).
Namely, these characteristics trace back to the source x and intersect at the source location
only.

For the adjoint state equation (3.10), the term

∫

∂Ω
λτ̃(T1∇T1τ+T2

1∇τ)·~ndl

is eliminated by imposing λ=0 on ∂Ω. Technically, we want this term to be non-positive.
Since τ̃ is involved and one can not have control on τ̃, it is impossible to control the
sign of

∫
∂Ω

λτ̃(T1∇T1τ+T2
1∇τ)·~ndl or λτ̃(T1∇T1τ+T2

1∇τ)·~n. And we want to avoid the
involvement of τ̃, so we let this term be zero by setting λ=0 on ∂Ω.

3.1.2 Minimization of J

Utilizing the approach above, we have the following perturbation in J ,

δJ

ǫ
=

∫

Ω

∂H⋆
(
y,ξ(y)

)

∂ξ
ξ̃(y)dy−

∫

Ω̄

(∫

Ω̄
λx(y)dx

)
ξ̃(y)ξ(y)dy, (3.13)

where λx is the solution of the adjoint state equation (3.10) with source x.
Consequently, we can choose the following perturbation to minimize J ,

ξ̃(y)=−
(∂H⋆

(
y,ξ(y)

)

∂ξ
−ξ(y)

∫

Ω̄
λx(y)dx

)
, y∈Ω, (3.14a)

ξ̃(y)=0, y∈∂Ω. (3.14b)

Then we have

δJ =−ǫ
∫

Ω̄
ξ̃2dy≤0, (3.15)

where the equality holds when ‖ξ̃‖L2(Ω) =0.

Lemma 3.1. Let a non-negative ξ ∈ Lp be fixed. Considering any h∈ Lp such that ξ+h is non-
negative, we have

J (ξ+h)−J (ξ)≥ (∇ξJ ,h), (3.16)

where

(∇ξJ ,h)=
∫

Ω

∂H⋆
(
y,ξ(y)

)

∂ξ
h(y)dy−

∫

Ω̄

(∫

Ω̄
λx(y)dx

)
ξ(y)h(y)dy. (3.17)
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Proof. For a fixed source point x, letting ǫ = 1 and ξ̃ = h in Eq. (3.8), multiplying this
equation with λx, and integrating it over Ω̄, we have

∫

∂Ω
λxτ̃(T1∇T1τ+T1

2∇τ)·~ndl+
∫

Ω̄

{
λx(τ+T1∇T1 ·∇τ)+∇·

[
−T1(∇T1τ

+T1∇τ)λx
]}

τ̃dy−
∫

Ω̄
λxξhdy−

1

2

∫

Ω̄
λx(h2−|∇T̃|2)dy=0. (3.18)

Since λx satisfies the adjoint state equation (3.10), we have
∫

Ω̄
T1τ̃R(x,y)dy−

∫

Ω̄
λxξhdy−

1

2

∫

Ω̄
λx(h2−|∇T̃|2)dy=0; (3.19)

using Eq. (3.7), the above relation can be rewritten as

J x(ξ+h)−J x(ξ)=(∇ξJ
x,h)−

1

2

∫

Ω̄
λx(h2−|∇T̃|2)dy, (3.20)

where (∇ξJ
x,h)=−

∫
Ω̄

λxξhdy.
Using the method of characteristics to solve Eq. (3.10), we have

dλx

dt
=T1R(x,y)+

{
∇·

[
T1(∇T1τ+T1∇τ)

]
−(τ+T1∇T1 ·∇τ)

}
λx. (3.21)

Since λx =0 on ∂Ω (at t =0) and T1R(x,y)≥0, by the integrating factor method we have
λx ≥0. By Eq. (3.8), we have (without factorization),

2∇T ·∇T̃ =2ξh+(h2−|∇T̃|2)

⇒
1

2
(h2−|∇T̃|2)=∇T ·∇T̃−ξh

⇒
1

2
(h2−|∇T̃|2)≤|∇T||∇T̃|−ξh

⇒
1

2
(h2−|∇T̃|2)≤ ξ|∇T̃|−ξh

⇒
1

2
(h+|∇T̃|)(h−|∇T̃|)≤ ξ(|∇T̃|−h)

⇒ h≤|∇T̃| a.e. in Ω, (3.22a)

2∇T ·∇T̃ =2ξh+(h2−|∇T̃|2)

⇒
1

2
(|∇T̃|2−h2)= ξh−∇T ·∇T̃

⇒
1

2
(|∇T̃|2−h2)≤ ξh+|∇T||∇T̃ |

⇒
1

2
(|∇T̃|2−h2)≤ ξh+ξ|∇T̃ |

⇒
1

2
(|∇T̃|+h)(|∇T̃|−h)≤ ξ(h+|∇T̃ |)

⇒ h≥−|∇T̃| a.e. in Ω. (3.22b)



S. Luo, S. Leung and J. Qian / Commun. Comput. Phys., 10 (2011), pp. 1113-1131 1121

Therefore, we have
J x(ξ+h)−J x≥ (∇ξJ

x,h). (3.23)

With similar arguments for all sources x∈Ω and the assumption that H⋆ is convex, we
prove the lemma.

Based on this lemma, according to optimization theory in [5, 8, 19, 23] we may design
a convergent gradient descent algorithm to minimize the functional J in Eq. (3.1).

3.2 Algorithm and numerical implementation

3.2.1 Optimization algorithm

The algorithm for minimizing the functional (3.1) consists of solving the factored eikonal
equation and the adjoint state equation.

Optimization Algorithm:

1. Initialize ξk for k=0 with ξ =∞ on ∂Ω.

2. Obtain τ by solving (3.6) using ξ =ξk.

3. Obtain λ by solving (3.10).

4. Obtain ξ̃k using (3.14).

5. Determine the gradient step ǫk using, for example, the Armijo-Goldstein-Wolfe condition, or
simply ǫk =ǫ.

6. Update
ξk+1 =ξk+ǫk ξ̃k. (3.24)

7. Go back to Step 2 until ‖ξ̃k‖2 ≤ tol or k ≥ kmax, where tol and kmax are given convergence
parameters.

Since the functional to be minimized is convex in ξ (Remark 3.1), with Lemma 3.1, if
we choose appropriate gradient steps ǫk for iterations, the sequence {ξk} will converge
to the minimizer of the problem through the convergence of subgradient algorithms or
ǫ-subgradient algorithms (e.g., [5, 8, 19, 23]).

3.2.2 Fast sweeping method for the factored eikonal equation (3.6)

The fast sweeping method [6, 17, 18, 20, 25] has been designed as an efficient method for
solving static convex Hamilton-Jacobi equations. The error of the numerical solution
obtained by the fast sweeping method depends on the source singularity [15, 17, 18, 25].
In order to improve the accuracy, a factorization idea was introduced in [11]. By factoring
the original function T as a product of a known function T1 and an underlying correction
function τ, we get a factored eikonal equation (3.6). This known function T1 captures
the source singularity of T so that the underlying correction function τ is smooth in the
neighborhood of the source. By solving the factored eikonal equation (3.6) on τ, the



1122 S. Luo, S. Leung and J. Qian / Commun. Comput. Phys., 10 (2011), pp. 1113-1131

N

C

S

EW

CW

S

characteristics

Figure 1: Rectangular mesh.

accuracy of the numerical solution for T can be improved in comparison to solving the
original eikonal equation (3.4) directly. In [11], a fast sweeping scheme has also been
designed to solve (3.6), which follows the causality of T. The new fast sweeping method
for (3.6) is as efficient as the original fast sweeping method.

Here, we give a brief summary of the fast sweeping method for (3.6). Interested re-
searchers may refer to [11] for more details.

First we discretize the domain Ω̄ by a rectangular mesh Ωh with grid size h. For
a fixed point C with its adjacent four triangles, we discretize (3.6) on each triangle, for
example on triangle △CWS as in Fig. 1, and we get a discretized equation:

T1
2(C)

∣∣∣
( τC−τW

h
,
τC−τS

h

)∣∣∣
2

+2T1(C)τC∇T1(C) ·
(τC−τW

h
,
τC−τS

h

)
+

(
τ2

C−ξ2(C)
)
=0. (3.25)

When solving this equation, we enforce the following causality condition. Assuming
that τh

C is an appropriate root of Eq. (3.25), we require that the characteristic T1∇τh
C+

τh
C∇T1 is in between the triangle △CWS, that is,

T1(C)∇τh
C+τh

C∇T1(C)≥0, (3.26)

with

∇τh
C ≈

(τh
C−τW

h
,
τh

C−τS

h

)

(see Fig. 1).
Then we choose the minimum one τhT1 from all four triangles, and we update τ with

the solution τh of (3.25) corresponding to minimum τhT1.

Fast Sweeping Algorithm for (3.6):

1. Initialize the point source condition τ(x) for a fixed source x, if T1(x) 6=0, τ(x)=T(x)/T1(x);
else τ(x)=ξ(x)/ξ1(x) from Eq. (3.6) or L’Hospital’s rule.

2. Update the solution by Gauss-Seidel iterations with alternate sweeping. At each point, updating
τ according to the procedure above. For a rectangle mesh, four natural alternate orderings are:
i=1 : I, j=1 : J, i=1 : I, j= J : 1, i= I : 1, j=1 : J, i= I : 1 and j= J : 1.

3. Test convergence: for given convergence criterion tol>0, repeat Step 2 until ‖Tk+1
ξ −Tk

ξ ‖∞≤tol.
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Remark 3.3. Denoting the left-hand side of (3.25) as H(τC,τW ,τS), it has been proved that
H(τC,τW ,τS) is consistent and monotone under the causality condition (3.26) (e.g., see [17,
18, 25]); therefore the numerical solution of the fast sweeping method will converge to
the viscosity solution of the factored eikonal equation (3.6) as h→ 0 by the convergence
theorem of Barles-Souganidis [1] (see also [10, 17, 18, 25]).

3.2.3 Fast sweeping method for adjoint state equation (3.10)

For solving (3.10), we adopt the fast sweeping scheme in [13]. The adjoint state equation
can be written in the following form,

cλ+(aλ)x+(bλ)y = f , (3.27)

where c, a, b and f are given functions of (x,y)∈ Ω̄⊂R2 (without notational confusion,
we use (x,y) to represent a point in Ω̄⊂R2).

Considering a computational cell centered at (xi,yj) and discretizing the equation in
conservation form, we get

ci,jλi,j+
1

∆x

(
ai+ 1

2 ,jλi+ 1
2 ,j−ai− 1

2 ,jλi− 1
2 ,j

)
+

1

∆y

(
bi,j+ 1

2
λi,j+ 1

2
−bi,j− 1

2
λi,j− 1

2

)
= fi,j. (3.28)

The values of λ on the interfaces, λi±1/2,j and λi,j±1/2, are determined according to propa-
gation of the characteristics. In the case that ai+1/2,j >0, the characteristic for determining
λ blows from left to right, and this suggests that we choose λi,j to define λi+1/2,j. Other
cases are determined in a similar way.

With the following notations,

a±
i+ 1

2 ,j
=

ai+ 1
2 ,j±|ai+ 1

2 ,j|

2
, a±

i− 1
2 ,j

=
ai− 1

2 ,j±|ai− 1
2 ,j|

2
, (3.29a)

b±
i,j+ 1

2

=
bi,j+ 1

2
±|bi,j+ 1

2
|

2
, b±

i,j− 1
2

=
bi,j− 1

2
±|bi,j− 1

2
|

2
, (3.29b)

we get

ci,jλi,j+
1

∆x

((
a+

i+ 1
2 ,j

λi,j+a−
i+ 1

2 ,j
λi+1,j

)
−

(
a+

i− 1
2 ,j

λi−1,j+a−
i− 1

2 ,j
λi,j

))

+
1

∆y

((
b+

i,j+ 1
2

λi,j+b−
i,j+ 1

2

λi,j+1

)
−

(
b+

i,j− 1
2

λi,j−1+b−
i,j− 1

2

λi,j

))
= fi,j. (3.30)

Fast Sweeping Algorithm for Eqs. (3.27) and (3.30):

1. Assign λi,j =0 at grid points on ∂Ω.

2. Update λi,j at grid points in Ω according to (3.30). As in the fast sweeping method for the
factored eikonal equation, we sweep the whole domain with four alternate orderings.

3. Test convergence: for given convergence criterion tol>0, repeat Step 2 until ‖λk+1−λk‖∞≤tol.
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Denote the left-hand side of (3.30) as F(λi,j,λi−1,j,λi+1,j,λi,j−1,λi,j+1). For the adjoint
state equation (3.10),

c=τ+T1∇T1 ·∇τ =τ|∇T1|
2+T1∇T1 ·∇τ

=∇T1 ·(τ∇T1+T1∇τ)=∇T1 ·∇T,

(a,b)=−T1(τ∇T1+T1∇τ)=−T1∇T.

We prove that the numerical scheme is consistent and monotone.

Lemma 3.2. The numerical scheme (3.30) is consistent and monotone if ∇T is approximated
with linear interpolations.

Proof. The consistency is obvious. We prove the monotonicity. Note that

∂F

∂λi−1,j
=

−a+
i− 1

2 ,j

∆x
≤0,

∂F

∂λi+1,j
=

a−
i+ 1

2 ,j

∆x
≤0,

∂F

∂λi,j−1
=

−b+
i,j− 1

2

∆y
≤0,

∂F

∂λi,j+1
=

b−
i,j+ 1

2

∆y
≤0,

∂F

∂λi,j
= ci,j+

a+
i+ 1

2 ,j
−a−

i− 1
2 ,j

∆x
+

b+
i,j+ 1

2

−b−
i,j− 1

2

∆y
.

The first four inequalities are obtained from the definitions (3.29). We want to prove that

∂F

∂λi,j
= ci,j+

a+
i+ 1

2 ,j
−a−

i− 1
2 ,j

∆x
+

b+
i,j+ 1

2

−b−
i,j− 1

2

∆y
≥0.

Without loss of generality, we assume that the source point is (0,0), so we have T1(x,y)=√
x2+y2. We also assume that ai+1/2,j ≥0 and bi,j+1/2≥0, so

a+
i+ 1

2 ,j
= ai+ 1

2 ,j =−T1Tx

∣∣
(i+ 1

2 ,j)
and b+

i,j+ 1
2

=bi,j+ 1
2
=−T1Ty

∣∣
(i,j+ 1

2 )
.

By definition, ci,j = T1xTx+T1yTy|(i,j). Since we approximate Tx,Ty with linear ap-
proximations, we have Tx|(i,j) = Tx|(i+1/2,j) and Ty|(i,j) = Ty|(i,j+1/2). Then Tx|(i,j) ≤ 0 and
Ty|(i,j)≤0.

Thus we have

∂F

∂λi,j
≥

(
T1x|(i,j)−

T1|(i+ 1
2 ,j)

∆x

)
Tx|(i,j)+

(
T1y|(i,j)−

T1|(i,j+ 1
2 )

∆y

)
Ty|(i,j)≥0.

The last inequality is obtained by

(
T1x|(i,j)−

T1|(i+ 1
2 ,j)

∆x

)
≤0 and

(
T1y|(i,j)−

T1|(i,j+ 1
2 )

∆y

)
≤0,

which can be verified by simple calculation.
In conclusion, we prove that F(λi,j,λi−1,j,λi+1,j,λi,j−1,λi,j+1) is consistent and mono-

tone.
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Remark 3.4. The consistency and monotonicity of (3.30) guarantee that the numerical
solution of the fast sweeping method will converge to the viscosity solution of the ad-
joint state equation (3.10) as ∆x → 0, ∆y → 0 by the convergence theorem of Barles-
Souganidis [1] (see also [10, 17, 18, 25]).

3.3 Relation to the subgradient marching method, discrete formulation

In [3,4], a subgradient marching algorithm was proposed to solve the optimization prob-
lem (2.7) based on a discrete functional on a fixed rectangular discretization Ωh of Ω. The
functional to be minimized is the following

J h(ξ),h2 ∑
l,k

H⋆(xl,k,ξl,k)−∑
i,j

Th
ξ (Si,Dj)γi,j, (3.31)

where ξl,k = ξ(xl,k), Th
ξ (Si,Di) is the numerical solution to the eikonal equation (3.4) by

the fast marching method [22], the weights γi,j represent the coupling on the sources {Si}
and destinations {Dj}, and ∑i,j γi,j =1.

The discrete functional J h is viewed as a function on variables {ξl,k}. In order to
minimize this functional by the method of gradient descent, the direction of gradient
descent is chosen to be the opposite to the derivative of J h at {ξl,k},

−
∂J h

∂ξl,k
=−

(
h2∑

l,k

∂H⋆(xl,k,ξl,k)

∂ξl,k
−∑

i,j

γ(Si,Dj)
∂Th

ξ (Si,Dj)

∂ξl,k

)
. (3.32)

On the right hand side, ∂H⋆(xl,k,ξl,k)/∂ξl,k in the first term is just the derivative of a func-
tion, while ∂Th

ξ (Si,Dj)/∂ξl,k in the second term is a sub-differential which is calculated
by a subgradient marching algorithm [4].

The convergence of the minima and minimizers of the discretized formulation (3.31)
to those of the continuous formulation (2.8) has been shown in [4, 16] through a Γ-
convergence proof.

Remark 3.5. On a given mesh with N grid points, we briefly analyze computational
complexities and memory requirements of the two methods.

For the adjoint state method, the fast sweeping method for both the factored eikonal
equation and the adjoint state equation is of computational complexity O(N); therefore
the total computational complexity is O(N) [11,13,25]. The adjoint state and the updated
metric need to be stored to carry out each iteration; therefore the memory requirement is
O(N).

On the other hand, for the subgradient marching method, the complexity of the fast
marching method for solving the eikonal equation is O(N logN) with the factor logN as
a result of the heap-sorting process [22]; thus the computational cost for updating the
subgradient at each grid point is O(N logN). Since one needs to update the subgradient
at N grid points, the total complexity is O(N2 logN) [3]. The updated metric and the
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subgradient at each grid point need to be stored to carry out each iteration; the former
requires O(N) memory space and the latter requires O(N2) memory space. Therefore,
the total memory requirement is O(N2) (see [3]).

4 Numerical examples

A few examples are presented to illustrate the method. For all the examples, we choose
H⋆(x,ξ) = ξ3/3, which implies that H(x,i) = 2i2/3/3 and ξ0 = 0. Similar examples have
been used in [4] for the subgradient marching method. Here all our computations are
based on C-codes and carried out on Michigan State University Mathematics Department
Research Server.

The city is modeled with Ω=(0,1)×(0,1). We use a 101×101 mesh to discretize Ω̄. For
the optimization algorithm, we use the Armijo-Goldstein-Wolfe condition to determine
gradient steps. For a single pair of source and destination (Example 4.1), we also compare
the results of our method with those by the subgradient marching method.

Example 4.1. First we consider a single source-destination pair (S,D). We choose the
traffic strength γ(S,D)= 1 to connect the source and the destination, and the results are
shown in Fig. 2. We see that the equilibrium metric is symmetric about the source and
the destination.

With the computed equilibrium metric ξ, we integrate the characteristic ODE

dx

dt
=−

∇Tξ(S,x)

ξ

to find geodesics. Fig. 3 shows the distance by solving the factored eikonal equation (3.6)
with equilibrium metric ξ (contour plots), and some geodesics (black curves). The figure
reflects the concept of the Wardrop equilibrium; namely, each path is a geodesic.

We compare our results with those computed by the subgradient marching
method [4]. Fig. 4 shows the decreasing of functional values versus the number of it-
erations and the contours of computed metrics by both methods. The Armijo-Goldstein-
Wolfe condition is also used to determine the gradient step for the subgradient marching
method. The L2-difference between the two computed metrics is 0.0704. In terms of
computational time on a 101×101 mesh, the subgradient marching method uses 64,088
seconds (≈17.8 hours) of CPU time, while our adjoint state method only uses 2,382 sec-
onds (≈0.667 hours) of CPU time.

In addition, we also try to compare two methods on a refined mesh (201×201). Our
adjoint state method uses 14,158 seconds (≈3.93 hours), while the subgradient marching
method is too restrictive to implement in terms of memory and computational time.

Example 4.2. Next we consider the case of one source S and two destinations D1, D2,
with (a) γ(S,D1) = 0.5,γ(S,D2) = 0.5 and (b) γ(S,D1) = 0.1,γ(S,D2) = 0.9. Figs. 5 and 6
show the results.
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Figure 2: Example 4.1. One source-destination pair. Left: surf plot of ξ; Middle and right: the decrease of
functional value and contour plot of ξ.
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Figure 3: Example 4.1. Distance with equilibrium metric ξ (contour plots) and geodesics (black curves).
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Figure 4: Example 4.1. Left: metrics computed by two methods, the L2-difference is 0.0704; Right: functional
value. Blue: subgradient marching method, Red: adjoint state method.

When the traffic strengths to each destination are equal, the equilibrium metric is
symmetric about the source and destinations; when the traffic strength to one destination
is dominant to the other one, the equilibrium metric exactly reflects the situation.

With the computed equilibrium metric ξ, we also integrate the characteristic ODE
dx/dt =−∇Tξ(S,x)/ξ to find geodesics. Fig. 7 shows some geodesics. The figure also
reflects the concept of the Wardrop equilibrium; namely, each path is a geodesic.
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Figure 5: Example 4.2 (a). One source, two destinations. Left: surf plot of ξ; Middle and right: the decrease
of functional value and contour plot of ξ.
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Figure 6: Example 4.2 (b). One source, two destinations. Left: surf plot of ξ; Middle and right: the decrease
of functional value and contour plot of ξ.
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Figure 7: Example 4.2. Distance with equilibrium metric ξ (contour plot) and geodesics (black curves). Left:
(a); Right: (b).

Example 4.3. We consider the case of two sources S1,S2 and two destinations D1,D2 with
γ(S1,D1)=1.0/2.25, γ(S1,D2)=0.5/2.25, and γ(S2,D1)=0.25/2.25, γ(S2,D2)=0.5/2.25.
Fig. 8 shows the results. We see that if the traffic strength starting from source one is
twice of that from source two, then the equilibrium metric reflects this situation.

With the computed equilibrium metric ξ, we also integrate the characteristic ODE
dx/dt=−∇Tξ(S,x)/ξ to find geodesics. Fig. 9 shows some geodesics from the source S1

to the two destinations D1 and D2. The figure also reflects the concept of the Wardrop
equilibrium; namely, each path is a geodesic.
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Figure 8: Example 4.3. Two sources, two destinations. Left: surf plot of ξ; Middle and right: the decay of
functional value and contour plot of ξ.
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Figure 9: Example 4.3. Distance with equilibrium metric ξ (contour plots) and geodesics (black curves).
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Figure 10: Example 4.4. Two sources and two destinations with river. Left: surf plot of ξ; Middle and right:
the decrease of functional value and contour plot of ξ.
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Figure 11: Example 4.4. Distance with equilibrium metric ξ (contour plots) and geodesics (black curves). Left:
Source S1; Right: Source S2.
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Example 4.4. In this example, we add a river running through the city with a bridge
connecting two sides. Two sources, two destinations, and the traffic strengths are chosen
as in Example 4.3. This example has also been studied in [4]. Fig. 10 shows the results.

With the computed equilibrium metric ξ, for each source, we solve the factored
eikonal equation (3.6), and also integrate the characteristic ODE dx/dt =−∇Tξ(S,x)/ξ
to find geodesics. Fig. 11 shows some geodesics. The figure shows some paths, namely,
geodesics, connecting each source to the destinations. For a source and a destination on
different sides of the river, they are connected by geodesics through the bridge.

5 Conclusions

We have proposed an adjoint state method to compute the equilibrium metric for a dual
formulation of a continuous traffic congestion model introduced in [4, 7]. The optimiza-
tion problem is solved with the method of gradient descent, and the adjoint state method
is designed to provide the gradient descent direction. The adjoint state equation (3.10)
and the factored eikonal equation (3.6) can be solved efficiently by the fast sweeping
method designed in [13] and [11], respectively. One key point is to impose appropriate
boundary conditions for the derived adjoint state equation so that the problem is well-
posed.

On a given mesh with N grid points, for each iteration, the memory requirement of
our approach is O(N) and the computational complexity is O(N). For the subgradient
marching method [4], the memory requirement is O(N2) and the computational com-
plexity is O(N2 logN).

The methodology proposed here, by designing an adjoint state method with appro-
priate boundary conditions, can be applied to other optimization problems involving
geodesic distances and related metrics.
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