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Abstract. The paper is concerned with the numerical solution of Schrédinger equa-
tions on an unbounded spatial domain. High-order absorbing boundary conditions
for one-dimensional domain are derived, and the stability of the reduced initial bound-
ary value problem in the computational interval is proved by energy estimate. Then a
second order finite difference scheme is proposed, and the convergence of the scheme
is established as well. Finally, numerical examples are reported to confirm our error
estimates of the numerical methods.
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1 Introduction

Schrodinger equation is one of the basic equations of quantum mechanics, and can be
found in many areas of physical and technological interest, e.g., optics, seismology and
plasma physics. In this paper, the numerical approximation of Schrédinger equation of
the following form is considered:

i0pp(x,t) = — 02 (x,t) +V (x,t) 1, xeR, 0<t<T, (1.1a)
|llim P(x,t)=0, t>0, (1.1b)
P(x,0) =1o(x), x€R, (1.1c)
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where V(x,t) is the potential function and V (x,t) € L® with real (or negative complex)
part. It is assumed that the initial data is compactly supported on a finite (interior) do-
main Q; = {x|x; <x<x,}, V(x,t) is constant on the complementary region Q. =R/();.
If the initial value is not compactly supported, one refers to [13] and references therein
to see how to treat it. A great numerical challenge lies on the unboundedness of the def-
inition domain of the model equation (1.1a)-(1.1c), since the traditional methods (finite
difference method and finite element method et al.) can not be used directly. In practi-
cal numerical simulations, people are concerned about the evolution of the solution in a
finite domain of physical interest, rather than the whole space. Thus the equations need
to be reduced to a problem on bounded (computational) domain in a neighborhood of
the region of physical interest. An often used method is to limit the interest region by
an artificial boundary, impose the ideal absorbing boundary conditions (ABCs), and then
solve a reduced initial boundary value problem on a bounded domain. This procedure
is usually called artificial boundary methods [3,12,15,20-22, 24, 25, 28, 38, 40]. Artificial
boundary conditions consist of two categories: nonlocal and local. The nonlocal ABCs
in time (and in space for multimensional cases) are well-posed, but are expensive. It is
often desirable to design local ABCs which are both computationally efficient and easy to
implement. However, the proposed ABCs often result in a degradation of accuracy and
stability. Other solutions to address the unboundedness issue are the perfectly matched
layer method [8,45], infinite element or boundary element method [41] and so on.

Many efforts have been continuously devoted to the study of using artificial bound-
ary methods for Schrédinger equations [1,6,9-11,14,23,26,30,36,37,46] and the references
therein. For recent development, we shall refer to a review paper [3]. When the simu-
lation is for a long time or high accuracy is needed, high-order ABCs are necessary for
efficiently minimizing the unphysical reflection. The high-order method has been widely
used in wave equations [7,16-19], based on which, in this paper we construct a family of
high-order ABCs for Schrédinger equation. To differ from ABCs obtained by Di Menza,
Szeftel and Antoine etc [2,10,11,36,37] and use the idea of Kuska [30], a physical param-
eter ko is introduced to adjust the performance of high-order ABCs, which is related to
the velocity of wave impinged on the artificial boundary. The boundary condition can
efficiently absorb the “fast” or “slow” waves by choosing suitable values ky. In [2] (with
ko =1), the authors proposed high-order ABCs for Schrédinger equation with an exterior
repulsive potential, which is a more difficult case. The aims of this paper are to establish
the theoretical aspects of the reduced problem and design a corresponding finite differ-
ence scheme. The focuses of the presentation are on the stability of the initial boundary
value problem with high-order ABCs on finite (computational) domain, and then on the
difference scheme. We prove the solvability and convergence of the difference scheme
and obtain the optimal convergence rate at the order of O(h*+ 72) with mesh size h and
time step T (see Theorem 4). One is also recommended to refer to the strategy of proving
the well-posedness of the corresponding initial boundary problem in [36]. The theoretical
results in this paper have formed a basis to study the stability of ABCs for the nonlinear
Schrodinger equation in the future [42,43].
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The remaining part of the paper is organized as follows. Section 2 is devoted to
the construction of high-order ABCs. Some auxiliary variables are introduced to avoid
high-order derivatives, and the energy estimate of the solution to the approximate initial
boundary value problem is proved. Section 3 discusses the Crank-Nicolson type differ-
ence scheme for the reduced problem, and gives the stability and convergence analysis.
Section 4 presents some numerical examples to demonstrate the effectiveness and effi-
ciency of the proposed methods, and finally, concluding remarks are given in Section
5.

2 Construction of high-order absorbing boundary conditions

In this section the design of high-order local ABCs follows the basic ideas in references [1,
12,16,30,33]. Restricting (1.1a) to the exterior domain ()., we have

i (x,t)=—2p(x,t)+ VY, x€Q,, 0<t<T. 2.1)

Since the potential V is a real constant on the region ()., we may assume V=01in Q.. Since
otherwise a simple change of variable would eliminate the term V. Thus, we have

0 (x,t) =—2p(x,t), x€Q, 0<t<T. (2.2)
The previous works show the transparent boundary conditions in an exact manner:

e~ 1l t dt
anl/)+ ﬁat/o l/)(x,T)ﬁ :0, (23)

where n denotes the outwardly directed unit normal vector at x = x;, x,. The equivalent
forms are given by the Neumann-Dirichlet map [32]

v+ [apnn) =
Vo TN =t
For more literature works that focus on the numerical treatment of (2.3) and (2.4), we

shall refer to [4,27,29,34,35], etc. To construct local ABCs, the boundary should be almost
transparent for a plane wave of the form [30]

v
el

=0. (2.4)

P(x,t)=exp[—i(wt—Cx)]. (2.5)
The idea underlying this form is, firstly, to get the dispersion relation,
F=w, (2.6)

then to implement the duality between the x—t space and the {—w space to obtain a
differential equation on the artificial boundary. The expression (2.5) implies that there
exist only the scattering waves. We solve (2.6) and arrive at

I=+Vw, 2.7)
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where the plus sign in ”“+” corresponds to ABCs at boundary x,, and the minus sign to
ABCs at x;. Without loss of generality, the plus sign and minus sign in "+” also mean
the right boundary condition and left boundary condition in the following discussions,
respectively. By Taylor or Padé approximation to v/w, Kuska and Shibata etc [1, 30, 33]
proposed what follows:

2nd order:  idyp+i2kgd,p+k3p=0, (2.8a)
3rd order:  3ik30, P — 0,09+ (k3ip+3ikodsp) =O0. (2.8b)

The parameter ko = \/wy is chosen according to the underlying physical meaning, rep-
resenting the wavenumber of the wave impinged on the artificial boundary, and wy is a
positive constant. To expand /w as accurate as possible, we use the expansion:

n(1-5)

Vo, | —r/wo— \/_Z—(l__),

for (1—%‘ <1, 2.9)

where

am:c052 <%), m:msinz (%), m=1,2,---,N.

Substituting (2.9) into (2.7), we have

N buy(1-%)
CZZE(kO—kO E 1(1,11(—1“’)> (2.10)

m=1 k2

ONIE

Using the dual relation ¢ < —idy and w < id;, (2.8b) is the simplest case with N =1 for
(2.10). Obviously (2.10) will put us in trouble when N chosen larger. We perform Lind-
mann’s trick [31] to introduce some auxiliary variables to decrease the order of partial
derivatives. The auxiliary variables are defined as

1 L B
(1—um)k%—|—umw¢ P = (1—am)k3+amw

4)7’”/] = llJ/

where [ =1,2. [ =1 represents the left-hand-side boundary auxiliary, / =2 represents the
right-hand-side one. Turning to ¢ < —id, and w < id;, we have two groups of high-order
boundary conditions: BC1

N
{ 1 xllj < 011[] OmZ:‘ll m( 04) 11 t¢ ,7)) (211)
(1_am)k%¢m,]+1amat¢m/]:ll], m:1/2/"',N,
and BC2:
ot (kow—ko 3 b 0
{ 1 xll) < Oll)_ Omgl m47m,l>— , (212)
<1_am)k%¢m,l+mmat¢m,l:k%ll)—latl/), m:llzl...,N_
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We remark that BC1 and BC2 are similar to Di Menza’s [10, 11], Szeftel’s ABCs [36, 37]
and Antoine etc [2], but different from them by introducing the physical parameter kg to
adjust ABCs such that they can absorb the “fast” or “slow” waves efficiently. For more
recent development in wave equations one refers to [3,7,16-20] and references therein.

In view of mathematical theory, BC1 and BC2 are equivalent to each other. Therefore,
we only concentrate on the approximate problem coupled with the above BC1 (approxi-
mate problem I)

01 (x,t) = —2p(x,t)+V(x,)w(x,t), x<x<x, 0<t<T, (2.13a)

N bm
idxtp(x,1) ko[(1+2 ) ¥ (x,t) kgzu—cpm,l(t)]:o, 0<t<T,  (2.13b)
m=1"m

m—1%4m m=1"m
(1= )k pm1 () +iamdipm1(t) =p(x1,t), 1<m<N, 0<t<T, (2.13d)
(1- am)k04>m2 +iay 0t pma(t) =w(x,,t), 1<m<N, 0<t<T, (2.13e)
IIJ( / )_IIJO )/ XISXSXT/ qjm,l(o):O/ 4)"1,2(0):01 1§m§N/ (2'13f)

where we solved 0y, ;(t) from the second equality of (2.11) and then substituted the
result to the first equality of (2.11).

Theorem 2.1. Let {ip(x,t)} be the solution of (2.13a)-(2.13f) and denote

(2 )(1+2 ) (2.14)

m= 1

2 A bm
1 (2, +k0[(1+2 2 ) (1) kozu—cpm,z(t)]:o, 0<t<T,  (2.13c)
()
t)

Then we have
?)

Xr
<ot / lpo(x)2dx, 0<t<T. (2.15)
X1

Xy N
[ W GOP AR 3 bu(igma () + g2t

Proof. Multiplying (2.13a) by ¥(x,t) and integrating the result for x from x; to x,, we
obtain

i / X'wx,t)atlp(x,t)dx

1

=—1(x,1)0 —|—/ |0 (x,1)] de—i—/ (x,1) | (x,t) [Pdx. (2.16)

Taking the imaginary part, we get

%% xxy!llf<x £)[Pdx <Im {9 (x;,£)xtp(x1,8) =P (xr,£)3xtp(x7,1) }. (2.17)
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It follows from (2.13b) and (2.13¢) that
N
9 (x1,1) = —iko [(1+ Z ) P —k Y cpmll(t)}, 0<t<T,  (2.18a)

N
9 (x,t) _zko[(1+z ) ¥(xt) kgza—’”qu,z(t)], 0<t<T.  (2.18b)

m=1"m

Substituting (2.18a) and (2.18b) into (2.17), we have

1d ’ 2
EE/X,‘ xt)]dx< k0<1+2 ) xl, ‘—i—‘t/} xr,)’)

by

Am

=

N
—I—kgRe{ P(x,t Zu—m () +(x,,t)

m=1 m

4>m,2(t)}. (2.19)

1

Multiplying (2.13d) by ¢,, ;(t), we have

(1= )R, (D)4 iy (D31pn1 (1) =By (Dp(1,t), 1<m<N, 0<E<T. (220)

Taking the imaginary part, we obtain

2 n ()P =Tm (3, (D (.1} (221)
Multiplying the equality above by k3b,,/a,, and summing up for m from 1 to N, we have
3 o b
Odt Z bl ()P =3 m{ (x1,8) Y- 2,,1(8) }- (2.22)
m=1"m
Similarly, from (2.13e), we can obtain
3 oo b
Odt Z Dl P2 ()2 =13 Im{l[)(xr,t) Y. mlz(t)}. (2.23)
m=1

Adding (2.19), (2.22) and (2.23), we get

Ld v 2 3§ 2 2
—_— )| cdx+k b (| () |7+ |2 (
Zdt{/xl [ t)Pdx OmZ::l (1 ()1 + I, ()

~—
——

N
< —ko (1+ 1 2) (19 )+ ()P

=1Ym

1=
NS
3 |§

sl

3

=

=

——

N
R {9(x1,t) Y 2,1 (1) + ()

3
I
—_
3
3
I
—_

1=
NSRS
&

<

3

P

=
——

N
R {p(x,8) Y 2,0 (D) + () (2.24)

3
I
—_
32
3
I
—_
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Using [Re(Z)|+|Im(Z)| < /2|Z| and the € inequality, we have

AEkSRe{ X[, Z Qbm] +1/) Xt Z ¢m2 }

N

+tm{ (¢ Z B+ (¢ 21 2alt )}
1\7;17 m
ol
ety B MiZ—:am,zu)r)

6
<ellp D PG+ (1 22) ¥ b (10ma P +oma0F). @25

m:lmml

b
)

Taking
e=ky (1 +

107=

we arrive at

N b 2 2 Zz:l% 15 2 2
Asko(wg o) (9 G )P+ )] )+m 2k L b (9ma ()7 19m2(DF)
—ko(1+2 o) (9 G D+l (D) +e- —kSme (|fm1 (O P+lpma(HP). (2.26)

Inserting the inequality above into (2.24), we obtain

[ N
S 0D Pk Y- b (1w (0 + gma()?) }
X m=1
N
<c kg Y b (|1 () 2+ pm2 (1)) (2.27)
m=1
Noticing (2.27), Gronwall inequality yields (2.15). This completes the proof. O

We remark that if the parameter kj is a function of time ¢, the analysis above will be
complicate since the inequality (2.27) can not be achieved. For this case, one may also give
the stability analysis (see the details in [44]). Above, the first half of the proof is standard
(refer to [5]) under the assumption of the existence of the solution of (2.13a)-(2.13f).

3 The difference method

For the finite difference approximation, let M and K be two positive integers, and let h =
(xy—x;)/Mand T=T/K. Cover the domain [x;,x,] x [0,T] by ), x Qr, where O, = {xj|x;=
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x1+jh, 0<j<M} and Qc = {ty|t, =nT, 0<n <K}. Suppose p ={¢}|0<j<M, 0<n <K}
be a grid function on (), x Q). Introduce the following notations:
1 1 -1 1 -
=§(¢] i), Sy =Wy, T=S e,
1 1
"2

oy = (w, —¢ih, Syi=

1 3

"l = [h(§|¢3\2+ ; o done)]
=

Y

1
)
n—

(¢]+1 211[)] +¢] )

In addition, denote

1

<tn+tn71)/ V‘niz = V(xj’tnf%)'

X
)

j—3%

(xj+xj_1), tnf% =

NI~
NI~

Now, we introduce the two fictitious points x_1 =xo—h and xp;+1 = xp+h. The problem
(2.13a)-(2.13f) can be approximated by

_1 _1

o]~ ——62¢” 2+V]” 2, 0<j<M 1<n<K, (3.1a)

.1 —1 1 N _1

15(5,(1/{%2 ko[(l ) T Zl—m%lz}:, 1<n<K, (3.1b)
m

| _1 1

i3 (G, 2 +5xl/) +k0[(1+2 ) 2 _k Z ¢m2}:, 1<n<K, (3.1c)
m=

(1- am)k0¢m12+zam(5t¢m1 —1/)0 , 1<m<N, 1<n<K, (3.1d)

(1— am)k0¢m22+zam(5t¢m2 —1/) 2, 1<m<N, 1<n<K, (3.1e)

P =vo(xj), 0<j<M, ¢,1=0, ¢,,=0, 1<m<N. (3.1

At the n-th time level, we regard (3.1a)-(3.1f) as a system of linear algebraic equations
about the unknowns {¢7'| -1<j<M+1}U{¢}, ;, ¢;,,[1 <m <N}

Using (3.1a) for j =0 to remove 1/1;:% in (3.1b), we obtain
. n—l 5 N n——
1 op1
+V§ Ty 1<n<K. (3.2)

_1
Using (3.1a) for j=M to remove 1,07\4 4 in (3.1c), we obtain

i =2 (1 D) R 1 ] sl )

m=1"m

-t -
+Vy 2y 5, 1<n<K. (33)
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Then the difference scheme (3.1a)-(3.1f) is reduced to

. n—1 2 n—1 n—1 n-1 .
iop; =—oyy; HV g 7, 1<j<M-1, 1<n<K, (3.4a)
2 1 -1 N _1
e R [ sEA R oY)
n—l ,_1
+Vy 2y 2, 1<n<K, (3.4b)
N N
s i 2 AW BT i TR A
0y = h{lko[(HElam)IPM k(’m;am O’ | =003 |
_1 _1
+Vy 2y 5, 1<n<K, (3.40)
_1 _1 _1
(1= )5y, 12 +iamdrpy, 1 =g 2, 1<m<N, 1<n<K, (3.4d)
(1- am)kocpmzz—l—zam&tcpfnzzzlp , 1<m<N, 1<n<K, (3.4e)
W=wo(x;)), 0<j<M, ¢5,=0, ¢p,=0, 1<m<N. (3.4f)

If {yp~ o<j<Myu {Pmn ', ¢r 511 <m < N} has been determined, then it follows from
(3. 4d) and (3.4e) that

R ot o .
‘Pn P mmqj’;;rll +3%p ° n—jy _ mm‘l’:;,zl +3¥m
m it g (1—an)kg T a5 (1 an )

1<m<N, (3.5)

and

1
P11 = 24’ — P APES 24’::1,22 - ijlf I<m<N. (3.6)

Substituting (3.5) into (3.4b) and (3.4c) respectively, we find that the system (3.4a), (3.4b)
and (3.4c) is a tri-diagonal system of linear algebraic equations about the unknowns
{1/1;7|0 <j< M}. After this system has been solved, we obtain {¢Z1’1,4)g1,2|1 <m< N}
from (3.6).

3.1 Stability and solvability

Theorem 3.1. Let {1/]}1 |0<j<M,0<n<K} be the solution of (3.1a)-(3.1f), or, of (3.4a)-(3.4f).
Then we have

N
19" 24K Y b (|90 1 24 [l o [2) <e2T|[90)2, 1<n <K, (3.7)
m=1

where c is defined in (2.14).
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Proof. Multiplying (3.4a) by h@;?_%, (3.4b) by h@g_% /2, (3.4c) by h@nM_% /2, then adding
the results, we obtain

; 1—n—} n—3 ke —n—3} -3 3
1'h<§¢’0 oty +zll’] ‘5th] +5 ‘/’M Sipp )

1 M-

—n—1 1
:71’[]61 Zéxlpg 2 _ Z —Nn— 2521’[]] 2+lpM 25.7(4)

L o—n—} N b 1 N po a1l
B S
., —n—1 N b _1 N p _1
(s B g ]
M-1
5V e 2|2+;Vj";\¢7;\Z%V&;%;\z)‘ (3.8)
]:

Taking the imaginary part, we get
1 n n— al bm -12 -3p2
2 (9= 19" 1) <=ko (14 0 2 ) (jwa [+l )

sped @ty b bt g b i)
+koRe{1/’o Z ‘Pml Pt Y 2, ¥m2 } (3-9)

m:l m=1

Multiplying (3.4d) by 52,_1%/ we have

1=, )R ¢" 2 Pt ian@l 2 6 =3 T "7, 1<m<N, 1<n<K 3.10
( llm) 0‘4)111,1 | +mm¢m,1 t(lbm,l 4)m,1 1/10 ’ SmM=N, 1sn=A. ( ) )

Taking the imaginary part, we obtain

(19~ lop ) =tm{@pr’ 95 2}, 1<m<N, 1<n<k @A)

Multiplying the equality above by k3b,/a,, and then summing up for m from 1to N, we
get

1 /s n 2 v n—12 3 iy bnon—t
E(ko Y bl 1P =3 Y bl | ):kolm{w Z B } 1<n<K. (3.12)
m=1 m=1

Similarly, we can obtain from (3.4e) that

<k32b 9,2 —k32b 92 [*) =R { 12 "gra ), 1<n<K. (313)
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Adding (3.9), (3.12) and (3.13), we get
1 n)2 3 al no|2 3 al no |2
= L9712+ Y bl 24K 3 bl |?)
m=1 m=1
n—12 3N n—1)2 3N n—1)2
—(Hl/’ "+ Zlbm|4’m,1 |"+ko Zlbm|4’m,2 | )}
m= m=

N
bm n—1.2 n—3i2
S*ko(1+n§la)(|% Al )
N N
HRRey L g e )

m=1%m m=1m

Nyl Nyl

n —-n n —n

k(B)Inl{lpO : Z m¢m,12 lpM ’ Z m(l)m,Zz}'
m=1 Am m:lam

Similarly to the derivation of (2.27), we may get

l ny2 k3 al b n |2 k3 a b n |2
(19" 12443 X bl P13 Y bl
T m=1 m=1

n—12_ 13 al n—112_ 3 al n—1|2
—<H1P 124k Y b |dp 1| +ho Y by | )]
m=1 m=1
N 1 _1
<ekg 3. b (|4n,1° 1972 [°):
m=1
This is a discrete analog of (2.27). Denoting

2

7

n n||2 3 al n |2 3 N n
E"=|[9"|" K5 Y bun| @i | K5 Y b |2
m=1 m=1

we have . 1
;(E” o L Eckg(E”JrE”—l), 1<n<K.

When 7 <2(3ck3) !, this implies
E"< (1 + gck%”L') E"!, 1<n<K.
The Gronwall inequality yields
E"<er®mE0, 1<n<K,

or,

N 3 .12
9" 2 4K3 Y b (0] + |20 *) < 20T |0
m=1

This completes the proof.

2 1<n<K.

(3.14)

(3.15)
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Now we consider the uniqueness of the difference scheme.
Theorem 3.2. The difference scheme (3.1a)-(3.1f), or (3.4a)-(3.4f) is uniquely solvable.

Proof. One proves the theorem by induction method.
From (3.4f), {1/]0]O << M}U{qu 199,211 <m <N} is given. Suppose we have deter-

mined {1,0” No<j<MPu{er, qb,’; 5|1 <m < N}. Then (3.4a)-(3.4e) is a system of linear
algebraic equatlons about unknowns {Yr10<j<M}U{¢y, 1, P/l <m<N}:

1

1 _1
o}~ ——52¢” Ty Ty, 1<j<M-, (3.16a)

j
_1 2 1 N _1 N p _1 1 o1
gt =g {owy ko[ (1 10 2 )ul - X St gt Je TG, aash)
m=1 m=1

1

o on-ld 2. N b _1 N p 1 1,1
i611pyy 2 IfE{zko[(H Zlﬁ)wﬁﬂ *—ko ). - P’ ] Seyp) 2 }+VZ\Z 2P %, (3.160)
m=

m=1
1
(1*ﬂm)k0¢m12+mm5t¢m1 —l/’o 2/ 1<m<N, (3.16d)
(1—- am)k0¢m22+iam(5t¢m,2 =y, 2, 1<m<N. (3.16e)
Consider the homogenous system of (3.16a)-(3.16e):
%l/)]n ——(52¢]+1V" Tyr, 1<j<M-1, (3.17a)
i , 1
;lpg:—ﬁ{axtpgﬂko[(uZﬁ)lpg— Z cpml}}+ Ve g, (3.17b)
m=1 m=1
i n fl ] Al b_m n 12 _m n 1 3
Lyl= h{zko[(umglam)% kom;am R }+2vM e (3.170)
1 i 1
5 (I=an)kggh+—and 1 =595, 1<m<N, (3.17d)
1 i 1
5 (1= @)k o+ —amdy 2 =5¥iy, 1<m<N. (3.17¢)

It suffices to prove that (3.17a)-(3.17e) has only zero solution.
Multiplying (3.17a)-(3.17c) by h@?, hp,/2 and hipy,/2, respectively, then adding the
results and taking the imaginary part, we get

1 1 N b 2 2
oI <=k (1 15 20 ([0 +loiul’)
Lao (—nsabu 0 =0 oo bn
+3kaRe{F 10 20 90 Ph L T 9na - (318)
Multiplying (3.17d) by b,,k3 qu 1am ! and taking the imaginary part, we obtain

1 1 -
ZRbulgh 1P = 3R] 95}, 1<m<N.
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Summing the equality above for m, we have

15y 2

—ko Elbm|¢z1,1| = {llfo Z ¢m1} (3.19)

m=

Similarly, it is easy to obtain from (3.17e) that

5 Z bl = k31m{¢M Z o) (3.20)
Adding (3.18), (3.19) and (3.20), we get

1
— "2+ me (I PRSIl |

N

— b
S—Eko(l-i‘za—m) (957-+93al?) + 53R {wSZ " QP L L Oha )
m= m=1"m
1 b Nob
+ 5 k3m {%2 TR P M)
m=
1 N 2 2 ny2 3 N n |2 31an |2
SE Z (Pml‘ +|¢m2‘ ) < Cko{HlP 1 +kOme(‘¢m,l| +kg| Py | )}/ (3.21)
m=1 m=1
which follows, when T < Z(Ck%)_l
2+k3 Zb |¢m1’2+k |¢m2| ):
9"
This completes the proof. O
3.2 Convergence
Define the grid functions
\F}q:l/](sztn)/ OSJSM/ OS”SK/
q)zllqum,l(tn)/ q)Zq,ZZQDm,Z(tn)/ 1<m<N, 0<n<K
Let
_1 _1 _1 11
Pl =ioy] 2—{—5,%?’? A 2}, 1<j<M-1, 1<n<K, (3.22a)
_1 N _1 N _1
P iy 2+h{5 ¥ 2+zk0[(1+2 AR z—mq’;/f}}
m=1%m m=1"m

—Von_71p3_7, 1<n<K, (3.22b)
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i mislyd e 2 {lko[(u 3yt og 3 b o) ar )

fVM 7‘{’ 2 1<n<K, (3.22¢)
rrr;z%:(l—am)kz +zam5t 2 ‘-I’gf%, 1<m<N, 1<n<K, (3.22d)
r 25:(1 am)k3 P, 2+zam(5t<b \P']M’%, 1<m<N, 1<n<K (3.22¢)

Then noticing (2.13a)-(2.13e) and using the Taylor expansion, there exists a constant c;
such that

| ’?’%\<c1 ?+h?), 1<j<M-1, 1<n<K, (3.23a)
|p0 2‘<c1 > +h), ‘pM2‘<c1 > +h), 1<n<K, (3.23b)
|r 2‘<c172 |r 2|<cl'r2 1<n<K. (3.23¢)

In the derivation of (3.23b), we have used
i1 (xo,t) = =039 (x0,t) +V (x0,t) (x0,t)
= 2L 190~y )] (0 |+ (o, (o) + O(h)
. N by N by
= (i 0 —yxon] wika [ (14 1 2 )pirot) 3 12 2 (6]}
m=1"Mm m=14%m
+V(xo,t)P(x0,t)+O(h), 0<t<T,
and
e (xp,t) =— 03 (xps, ) +V (ep, ) (s t)
=2 Lo (eant) 3 PG D) e 1.0] | +V () p (i) +O(0),
2. N by, N by 1
=7 {lko [(1+m§1@) P(xmt) —k%m;l o 4’m,2(t)} 7 [ (xmt) —(xpr-1,1)] }
+V(xp t)P(xpt)+O(h), 0<t<T.

From (3.22a)-(3.22¢e) and (2.13f), we have

. n— % 2a— 2 n— % n— 2 % . _
0¥ —OTY] P4V YT 4p %, 1<j<M-1, 1<n<K, (3.24a)
1 _1 N _1
2 _ ) ” 2 12 Im zn—z
TR h{zs ¥ +zk0[(1+§ am) k0m§::1am 7]}
n—3

+V0”‘7¢0‘7+p0 , 1<n<K, (3.24b)
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_1 _1 _1
+Vj\”,I 2‘1"]\42+p”M2, 1<n<K,
1
(1—an)k3®) +zam5t<I> _‘f” 2y i, 1<Sm<N K
1 1
(1—am)k5c1>” 2+iam5t<1> 2:‘I’M2+rm,22, 1<m K
¥=yo(xj), 0<j<M, @;=0, @,,=0, 1<m<N.

m,2

~

Denote

v =1 —y7, 0<j<M, 0<n<K,
Pr1=Pn1—Pm1, Pu2=Puo—Pmo 1<m<N, 0<n<K.

(3.24¢)
(3.24d)

(3.24¢)
(3.24f)

Theorem 3.3. Let {1/]7 |0<j<M, 0<n <K} be the solution of the difference scheme (3.1a)-(3.1f),

or (3.4a)-(3.4f). Then we have

N
||1ﬁ”||2+k82bm<‘qu1| + || )<C2 T2 +h?)?, 1<n<K,
m=1

where

_ v+ 1 390 bn
co =exp{3(1+ckj)T} TR [ko—l— —x7)+2k} Z:: %Z]

Proof. Subtracting (3.4a)-(3.4f) from (3.24a)-(3.24f), we obtain the error equations

iéﬂ/?f =—539; 2+V lp” i pl 7, 1<j<M-1, 1<n<K,

o ael 1 N p \ _,_1 N p 1

iy 2= { ) 2+zko{(1+2£)¢g Z—k%2£¢2,12]}
m=1 m=1

1 1
+Vn zlpo 2+p 2, 1§7’1§K,
_1 N p _1 _1
'N”z___ 2 omo gy _ 5 mhT2
6 % = {zko[(l—i—z ) komglam B’ | =0y, 4 )
]
+Vyy 2¢M2+p 2, 1<n<K,
(1—am)k0cpm1 —i—zam&t(pm’l 1p0 2+rm1 , 1<m<

1 1
(1—am)k%¢m,22+iam5tcp;,22 =y, Py, Taats 1<m<
§)=0, 0<j<M, §,;=0, ,,=0, 1<m<N.

(3.25a)

(3.25b)

(3.25¢)
(3.25d)

(3.25¢)
(3.25f)

1 —pn—1 —n—1
Multiplying (3.25a) by I *, (3.25b) by I, * /2, (3.25¢) by I, * /2, respectively, then
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adding the results, we obtain

( B 25“/’0 2+Zl/’] 25t1/’7 e J’M 25”/’ )
=
M=

e L [ e

j=1 m=1%m

-

N ol -l N p .1 N p 1 1,1, .1
G Y 2 ] —ikody, [ (1+ B LT M i R CL AR T
m= m=

m=1

M—1 1 1 1 1 1 M-1__ 1 1 1
n—s| n—52 n—s| n—52 =1 n— n
LVl e T )+h(3% o} 2*;% g ).
= =

Taking the imaginary part, we get

%(I\&nI\Z—W—lI\Z) §k0(1+milz_z) (ng% |z+|%,% |2)

s (53 by i) =t by )
+k0Re{1p0 Y= B M ) a_(Pm,Z }
m=1"m m=1"m

1

17”7% n—3 M71—~n7§ n—1 2 n—1
—n—1
Multiplying (3.25d) by §,,,’, we have

1

1 1
” 2

n—lo . =n-1 ~
(1—am)k%|¢:1,12| +in Py, 5f¢:1,1 ‘Pml o 2+¢m Tyt 1Sm<N, 1<n<K

Taking the imaginary part, we obtain

—pn_1 1
) = (B f By F), 1<m<N, 1<n<K.

1 -
5 I

Multiplying the equality above by k3b,, /a,, and then summing up for m from 1 to N, we
get

(k3zb 1]’ —k3zb )

_1
=iim{ gy~ Zb’”qﬁlz Zb’”qﬁf or’ }r 1<n<K, (3.27)

Similarly, we can obtain from (3.25e) that
1 N wn 12 N 2n—1)2
3 (8 1 bulhal” =8 1 bul 83 )

=iim{ g, L Z ”’”4”»22 Z bmgbez_ " 2%}, 1<n<K. (3.28)
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Denote
n |2 3 al n |2 3 al n |2
F'=|§"||"+k5 ) b | @1 | K5 Y Ou| fa| ™

Adding (3.26), (3.27) and (3.28), we get

1 — 1=n-1 1
Y0 )} 629)
Similarly to (2.25), we have

I N PR
B:koRe{% Y. Pua +u 2@4’%2

m=1"m m=1

3 ~n—% N bmrnf% ~n—% N —n—1
+kolm{¢’o Y E‘Pm,l Y a‘l’m,z }
m=1

n—1 n1 K Xob N n—1 n-1
<ol ") 450 (X 2 )- X b0 418,27 ):
m= m=

Taking

we obtain
k A | el N el el
B<7(1+ Elﬂ_) (1962418 2 ) +e-kd Elbm(|¢;,12|2+|¢,’;,22 ). (30)
m= m m=

In addition, we have

N N
3 bu=n—3 n-} bu=n—3 n-1
kO‘Im{mZ_:lum m,1 rm,12+§1um¢m2 mZZ}‘
N 1 1 1N _1 _1
Sk%[zlbm(|4’l,1z|2+|¢2,zz N+ Zlé(%ﬂzﬂr;; 9], (3.31)
m= e
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and

T SRR

1 n—j n—3 = 73 3 -3
<shldo *|-lpo |+ ;\lly RIZEES Sl et
-t W2 a1 MElo 1o 1 a1\ ko an-i2 B2 a—lp

2100 gyl Ty (152 Fglef 21+ 1 o g P

1 1 1 M-1 1
<8180 )+ g (15 PR 3 R P e
j=

Inserting (3.30)-(3.32) into (3.29) and noticing (3.23a)-(3.23c), we get

1 n n—1 “n—312 2\1.3 N ~n7% 2 ~n7% 2

pe (=P < P 1) 1 b (1,07 182" )
m=

h? n—3%2 -ty 1AL 1o 1 3 N b n-t2 n-ip2
+8_k0(}p0 [l )+Zh]§ |P]« ’| +Zk02a<|rm,12| +ruo’ | )

171 N b
2 n n—1 _ 3 m\ 20 2 22
(1+ckg) (F"+F" )+~ [ko (xr—2x7)+2k3 ) ) }cl(‘r +h%)7, 1<n<K.

m=1"m

I\)l)—‘

When 7 <[3(14ck3)] 7}, it holds that

N
F" < [143(1+ckj) 7] P”*%Z [kl+(x,—x,)+2k3 Y b—z’”} At(r?+1*)?, 1<n<K.
0

m=1"m

The Gronwall inequality yields

N
F" Sexp{?a(l-l-ck%)nr}-{Fo-l-m [£—O+(xr—x,)+2k8£127:]C%(Tz+h2)2}
gexp{3(1+ck%)T}-;2 [l—l—(xr—xl)—l—ZkS f: b—zm} 3 (T*+h*)?, 1<n<K.
4(1+ck3) Lko 1 B
This ends the proof. O

4 Numerical examples

In this section, three numerical tests are given to verify the theoretical results. We first
verify the second order accuracy of the difference scheme both in space and in time for
given kg and N. Then we investigate the influence of the parameters kp and N on the
efficiency of the high-order local ABCs. At last, the superposition of a Gaussian field
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with different wave numbers is considered. Let (exact(,t) be the solution of (1.1a)-(1.1c)
and {1/]7 |0<j<M, 0<n <K} be the solution of (3.1a)-(3.1f), or (3.4a)-(3.4f). Define the

error grid function
é? == l/Jexact(xjrtn) - 1,[J]n/ 0 S] S M/ 0 S n S K/

and the global error

E(h7)= max [|¢"].

If
E(h,T)~ah? 4B,
then, we have

1. when 7 is sufficiently small, E(h,7) ~ah? and p~log, (%) .

2. when & is sufficiently small, E(h,7) ~p717 and g~log, (12({22:)))

Example 4.1. Let the computational domain be [—5,5], V(x,t) =0, and let the initial value
be given by
o(x) =exp(—x?).

Then the exact solution of (1.1a)-(1.1c) corresponding to the above initial value on R is

2

(x,t)= L ex (—x )
ll)exact ’ —m P 14t .

Using fixed parameters ko =1.0, N=40, and T =5, we list the three cases as follows:
1. Fix T=1.0e-4. Taking h=1/8,1/16,1/32,1/64, respectively, Table 1 shows the second order
convergence of E(h,T) in h.

2. Fix h= 2.0e-4. Taking T=1/16,1/32,64,1/128, respectively, Table 2 shows the second order
convergence of E(h,T) in T.

3. Taking h=1t=1/16,1/32,1/64,1/128, respectively. We observe that the difference scheme are
second order convergent both in space and in time in Table 3.

For different parameters ky and N, Table 4 shows the global error E(h,7) with h=1=
1/1280.

Table 1: The global error and convergence order in i when T=1.0e —4 for Example 4.1.

h 1/8 order 1/16 order 1/32 order 1/64 order
E(h,T) | 9.367e-3 * 2.320e-3 | 2.014 | 5.784e-4 | 2.004 | 1.445e-4 | 2.001
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Table 2: The global error and convergence order in T when i =2.0e —4 for Example 4.1.

T 1/16 order 1/32 order 1/64 order 1/128 order
E(h,T) | 1.957e-2 * 4.883e-3 | 2.003 | 1.212e-3 | 2.010 | 3.025e-4 | 2.003
Table 3: The global error and convergence order when h =T for Example 4.1.
h=t 1/16 order 1/32 order 1/64 order 1/128 order
E(h,T) | 1.388e-2 * 3.425e-3 | 2.018 | 8.534e-4 | 2.005 | 2.132e-4 | 2.001

Table 4: The global error E(h,T) with different N and kg with h=1=1/1280 for Example 4.1.

ko\N 1 3 5 7 10 20 40
0.5 | 9.2158e-2 | 1.4475e-2 | 3.1787e-3 | 8.5344e-4 | 4.2008e-4 | 8.6432e-5 | 1.3417e-5
0.8 | 3.4254e-2 | 3.1599e-3 | 1.1213e-3 | 5.2838e-4 | 2.6362e-4 | 3.4596e-5 | 4.0263e-6
1.0 | 2.2618e-2 | 3.3776e-3 | 1.0711e-3 | 4.648%e-4 | 1.7987e-4 | 2.3413e-5 | 3.3431e-6
2.0 | 8.0027e-2 | 1.0680e-2 | 2.4561e-3 | 7.8611e-4 | 2.0884e-4 | 1.2367e-5 | 3.3428e-6
4.0 | 2.2432e-1 | 6.0722e-2 | 1.9620e-2 | 7.0785e-3 | 1.8032e-3 | 5.3560e-5 | 3.3427e-6
10 4.5262e-1 | 2.4390e-1 | 1.3942e-1 | 8.3093e-2 | 4.0265e-2 | 4.6131e-3 | 1.1415e-4

Example 4.2. In this example, we compare the numerical solution of (2.13a)-(2.13f) with
the exact solution, of (1.1a)-(1.1¢):

" 2 .
1Pexact(x,t):exp( m/4)ex (zx 6x 36t>.

Vat—i 4t—i

Let the computational interval be [—5,5]. The bound of the initial function remains under
1.0e-10 beyond the computational interval. The wave will pass through the left boundary
(x=—5) between t=0and t=1.

For fixed parameters ko =6.0, N =40, and T=1, we also list the three cases as follows:

1. Let T=1.0e-4. Table 5 shows the second order convergence of global error E(h,T) in T by taking
h=1/16,1/32,1/64 and 1/128.

2. Let h=2.0e-4. Table 6 shows the second order convergence of global error E(h,T) in h by taking
7=1/160,1/320,1/640 and 1/1280.

3. Table 7 presents global error E(h,T) when h=1=1/160,1/320,1/640,1/1280.

Take h=1=1/5120. We study the global error E(h,T) for different parameters ko and N.
Some results are shown in Table 8.

We remark that from Tables 1-3 and Tables 5-7, one can observe that the difference
scheme has the accuracy of second order in time and in space when the parameter N is
chosen larger (here N =40). From Table 4 and Table 8, one can see that the global error
E(h,7) is sensitive to the choice of ky. The global error E(h,T) tends to be smaller and
smaller when N is chosen larger and larger. Hence we conclude that when N is taken
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Table 5: The global error and convergence order in i when T=1.0e —4 for Example 4.2.

h 1/16 order 1/32 order 1/64 order 1/128 order
E(h,T) | 1.812e-1 * 4.498e-2 | 2.010 | 1.123e-2 | 2.001 | 2.823e-3 | 1.992

Table 6: The global error and convergence order in T when h=2.0e —4 for Example 4.2.

T 1/160 order 1/320 order 1/640 order | 1/1280 | order
E(h,T) | 9.070e-2 * 2.267e-2 | 2.000 | 5.665e-3 | 2.001 | 1.417e-3 | 1.999

Table 7: The global error and convergence order when h =T for Example 4.2.

h=t 1/160 order 1/320 order 1/640 order | 1/1280 | order
E(h,T) | 1.820e-1 * 4517e-2 | 2.011 | 1.127e-2 | 2.004 | 2.815e-3 | 2.001

Table 8: The global error E(h,T) with different N and ko with h=1=1/5120 for Example 4.2.

ko\N 1 2 4 6 10 20 40
1.0 | 4.0807e-1 | 2.1471e-1 | 6.2692e-2 | 1.9354e-2 | 2.0892e-3 | 9.0887e-5 | 9.0160e-5
3.0 | 5.1861le-2 | 8.4734e-3 | 3.0384e-4 | 9.1021e-5 | 9.0161e-5 | 9.0194e-5 | 9.0160e-5
6.0 | 3.4199e-3 | 3.2694e-4 | 9.0159e-5 | 9.0160e-5 | 9.0156e-5 | 9.0156e-5 | 9.0156e-5
9.0 | 2.2323e-2 | 3.3231e-3 | 1.6136e-4 | 9.0160e-5 | 9.0160e-5 | 9.0160e-5 | 9.0160e-5
12 5.9666e-2 | 1.2206e-2 | 9.1779e-4 | 1.0948e-4 | 9.0160e-5 | 9.0160e-5 | 9.0160e-5
20 1.9273e-1 | 6.6941e-2 | 1.0344e-2 | 2.0970e-3 | 1.4682e-4 | 9.0160e-5 | 9.0160e-5

larger enough, the obtained high-order ABCs will work well, and the influence of the
parameter kg can be ignored. For N =40. Tables 1-8 verified the efficiency of the high-
order LABCs to absorb the “fast” or “slow” waves.

Example 4.3. We consider an example (see, e.g., Section 6.2 in [3]) about the superposition
of a few Gaussian fields with different wave numbers. Let the potential V =0 and the
Gaussian initial condition

4
l/Jo:Zexp{—(x—x,)z—i—ik,(x—xl)}, (4.1)
=1

with x1=—9,x0=—6,x3=—2,x4=0and k; =5,k = —7,k3=—12,k4=2. The computational
domain is chosen to be ]x;,x,[=] —12,3] and the error E7 is defined by Er =max,—||é"||.
For fixed parameters kg =6.0, N =40, and T =4, we also list the two cases as follows:

1. Fig. 1 shows the evolution of reference solution (left) and the evolution of numerical solution
(right). In the calculation, the mesh sizes are chosen to be i =1.0e-2 and T=1.0e-3.

2. Let T=1.0e—4. Table 9 shows the error E7(h,T) and the corresponding convergence order in h
by taking h=1/20,1/40.1/80 and 1/160.
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Table 9: The error ET and convergence order in i when T=1.0e—4 for Example 4.3.

h 1/160 order 1/320 order 1/640 order | 1/1280 | order
E(h,T) | 3.346e-3 * 1.577e-3 | 1.085 | 7.554e-4 | 1.062 | 3.678¢e-4 | 1.038

From Fig. 1, no reflection wave is obviously observed. Table 9 shows that the con-
vergence is of first-order, since ko is fixed. Generally speaking, the parameter ko should
be taken approximately as the wave-number of the wave impinged on the boundary. In
practical computations, we can turn to a suitable wave-number picked adaptively by ap-
plying the Gabor transform [39,43]. Thus the parameter ky will be a function of time ¢,
and the analysis for this case would be more complicated.

Figure 1: The reference solution (left) and the numerical solution (right).

5 Concluding remarks

We have successfully constructed the high order ABCs for the Schrédinger equations,
and illustrated that the reduced initial boundary value problems are stable. The second
part of the article is on the difference approximation (a Crank-Nicolson type difference
scheme). The unique solvability, unconditional stability and convergence are proved.
The convergence order is two both in time and in space. Numerical examples have veri-
fied the theoretical results for single wave numbers. For the superposition of a few Gaus-
sian fields with different wave-numbers, we need to apply better ABCs (to refer to [3]).
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