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Abstract. Computations of microscopic circular pipe flow in a rarefied quantum gas
are presented using a semiclassical axisymmetric lattice Boltzmann method. The
method is first derived by directly projecting the Uehling-Uhlenbeck Boltzmann-BGK
equations in two-dimensional rectangular coordinates onto the tensor Hermite poly-
nomials using moment expansion method and then the forcing strategy of Halliday
et al. [Phys. Rev. E., 64 (2001), 011208] is adopted by adding forcing terms into the
resulting microdynamic evolution equation. The determination of the forcing terms
is dictated by yielding the emergent macroscopic equations toward a particular target
form. The correct macroscopic equations of the incompressible axisymmetric viscous
flows are recovered through the Chapman-Enskog expansion. The velocity profiles
and the mass flow rates of pipe flows with several Knudsen numbers covering differ-
ent flow regimes are presented. It is found the Knudsen minimum can be captured in
all three statistics studied. The results also indicate distinct characteristics of the effects
of quantum statistics.
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1 Introduction

Over the past two decades, significant advances in the development of the lattice Boltz-
mann methods (LBMs) [1–4] based on classical Boltzmann equations with the relaxation
time approximation of Bhatnagar, Gross and Krook (BGK) [5] have been achieved. The
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lattice Boltzmann methods have demonstrated its ability to simulate hydrodynamic sys-
tems, magnetohydrodynamic systems, multi-phase and multi-component fluids, multi-
component flow through porous media, and complex fluid systems, see [6]. The lattice
Boltzmann equations (LBE) can also be directly derived in a priori manner from the con-
tinuous Boltzmann equations [7, 8]. Most of the classical LBMs are accurate up to the
second order, i.e., Navier-Stokes hydrodynamics and have not been extended beyond the
level of the Navier-Stokes hydrodynamics. A systematical method [9, 10] was proposed
for kinetic theory representation of hydrodynamics beyond the Navier-Stokes equations
using Grad’s moment expansion method [11].

However, most of the existing lattice Boltzmann methods, despite their great success,
are limited to hydrodynamics of classical particles. Recent development in nanoscale
transport requires carriers of particles of arbitrary statistics [12]. The generalization of
the successful LBMs for classical gas to that for particles of arbitrary statistics is thus
desirable. Specifically, a semiclassical Boltzmann equation, which is analogous to the
classical Boltzmann equation, for transport phenomenon in quantum gases has been de-
veloped by Uehling and Uhlenbeck (UUB) [13]. Also, to avoid the mathematical com-
plexity of the collision term, BGK-type relaxation time models to capture the essential
properties of carrier scattering mechanisms can be similarly devised for the Uehling-
Uhlenbeck Boltzmann equation for various carriers and have been widely used in carrier
transports [14]. Recently, a new semiclassical lattice Boltzmann method for the Uehling-
Uhlenbeck Boltzmann-BGK (UUB-BGK) equations based on Grad’s moment expansion
method by projecting the UUB-BGK equations onto Hermite polynomial basis has been
presented [15] for D2Q9 lattice model. Hydrodynamics based on moments up to second
and third order expansions are presented. Simulations of flow over a circular cylinder at
low Reynolds numbers have been tested and have been found in good agreement with
previous available results.

One of the most common and important classes of fluid dynamical problems is the
axisymmetric flow in which the flow symmetry with respect to an axis can be identi-
fied. Classical axisymmetric lattice Boltzmann method was first proposed by Halliday
et al. [16] using a forcing strategy. By introducing source terms, the macroscopic equa-
tions for the axisymmetric flows can be recovered through Chapman-Enskog expansion.
The method of Halliday et al. has been successfully applied to a number of axisym-
metric flow problems [17–25]. Recently, an interesting lattice Boltzmann model for ax-
isymmetric flows based on Boltzmann-BGK equation in cylindrical coordinates has been
proposed [26].

The objective of this work is to present the simulation of circular pipe flow in rarefied
gases of arbitrary statistics using a semiclassical axisymmetric lattice Boltzmann method.
The rarefied circular pipe flows considered here covers the Knudsen (λ≫D), slip (λ∼D)
and Poiseuille (λ≪D) regions, where λ is the mean free path and D is the pipe diameter.
The size-variation effects in transport phenomena occur whenever the mean free path λ
of the elementary carriers becomes comparable in magnitude to the characteristic dimen-
sions of the system under study. When inter-particle collisions become relatively more
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frequent organized hydrodynamic flow of the Poiseuille type will compete with the col-
lisionless Knudsen flow. The competition between these two distinct types of flows will
be reflected in the appearance of a Knudsen minimum in the mass flow rate as first inves-
tigated by Knudsen for a highly rarefied classical gas [27, 28]. Thus, another objective of
this work is to capture the Knudsen minimum in the rarefied pipe flow of quantum gases
of three statistics. The method of Halliday et al. is adopted and forcing terms are added
into the two-dimensional semiclassical Boltzmann-BGK equation which are consistent in
dimension with the lattice Boltzmann equation. The forcing terms are determined by de-
manding the emergent macroscopic equations toward a particular target form. The set of
correct macroscopic equations for incompressible axisymmetric flows can be recovered
through the Chapman-Enskog multiscale analysis of the semiclassical LBM.

This paper is organized as follows. A brief description of element of semiclassi-
cal kinetic theory is given in Section 2. The basic two-dimensional semiclassical lattice
Uehling-Uhlenbeck Boltzmann-BGK method is described in Section 3. The derivation of
the axisymmetric semiclassical LBM is given in Section 4. Simulations of circular pipe
flows over a wide range of Knudsen numbers are presented in Section 5. Concluding
remarks are given in Section 6. The detailed Chapman-Enskog multiscale analysis and
derivation of the method are given in an Appendix.

2 Semiclassical Boltzmann-BGK equation

We consider the Uehling-Uhlenbeck Boltzmann-BGK equation

∂ f

∂t
+

~p

m
·∇~x f =−

(

f − f (eq)
)

τ∗ , (2.1)

where m is the particle mass, f (~p,~x,t) is the distribution function which represents the
average density of particles with momentum ~p at the space-time point ~x,t. In Eq. (2.1),
τ∗ is the relaxation time which is in general dependent on the macroscopic variables and
f (eq) is the local equilibrium distribution given by

f (eq) =
{

exp
[ (~p−m~u)2

2mkBT
− µ̄

kBT

]

−θ
}−1

, (2.2)

where ~u is the mean macroscopic velocity, T is the temperature, µ̄ is the chemical po-
tential, kB is the Boltzmann constant and θ =−1 denotes the Fermi-Dirac (FD) statistics,
θ =+1 the Bose-Einstein (BE) statistics and θ =0, the Maxwell-Boltzmann (MB) statistics.
Once the distribution function is known, the macroscopic quantities, the number density
n, number density flux n~u, energy density ǫ, pressure tensor Pαβ, and heat flux vector Qα

are defined, respectively, by

Φ(~x,t)=
∫

d~p

h3
φ f , (2.3)
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where Φ = (n,n~u,ǫ,Pαβ,Qα)T and φ = (1,~ξ,mc2/2,cαcβ,mc2cα/2)T . Here, ~ξ =~p/m is the

particle velocity and ~c = ~ξ−~u is the thermal velocity. The gas pressure is defined by
P(~x,t)=Pαα/3=2ǫ/3. Multiplying Eq. (2.1) by 1,~p, or~p2/2m, and integrating the resulting
equations over all ~p, then one can obtain the semiclassical hydrodynamical equations,

∂n

∂t
+∇~x ·(n~u)=0, (2.4)

mn
( ∂

∂t
+~u·∇~x

)

uα =− ∂P

∂xα
+

∂

∂xβ

{

2η
[

Dαβ−
1

3
(TrD)δαβ

]}

, (2.5)

∂ǫ

∂t
+∇~x ·(ǫ~u)+(∇~x ·~u)P=∇~x ·(κ∇T)+2η

[

Dαβ−
1

3
(TrD)δαβ

]2
, (2.6)

where Dαβ = (∂uα/∂xβ+∂uβ/∂xα)/2 is the rate of strain tensor, Tr denotes the trace of
tensor Dαβ, and η and κ are the viscosity and thermal conductivity, respectively.

The viscosity η and thermal conductivity κ for the semiclassical Boltzmann BGK
model have been derived in [29] based on the Chapman-Enskog solution [30] in terms
of the relaxation time as

η =τ∗nkBT
g 5

2
(z̄)

g 3
2
(z̄)

, (2.7)

κ =τ∗ 5kB

2m
nkBT

[7

2

g 7
2
(z̄)

g 3
2
(z̄)

− 5

2

g 5
2
(z̄)

g 3
2
(z̄)

]

. (2.8)

Here z̄(~x,t) = eµ̄(~x,t)/kBT is the fugacity. The function gν represents for either the Bose-
Einstein or Fermi-Dirac function of order ν which is defined as

gν(z̄)≡ 1

Γ(ν)

∫ ∞

0

xν−1

z̄−1ex+θ
dx=

∞

∑
l=1

(−θ)l−1 z̄l

lν
, (2.9)

where Γ(ν) is the Gamma function. The relaxation times for various scattering mecha-
nisms of different carrier transport in semiconductor devices including electrons, holes,
phonons and others have been proposed [14].

In this work, we consider the semiclassical incompressible viscous flows with rota-
tional symmetry around the z axis. The cylindrical polar coordinates ~x =(r,φ,z) system
is adopted where r denoting the radial distance from axis, φ the azimuthal angle about
axis and z the distance along the axisymmetric axis, respectively. The mean velocity is
~u =(ur,0,uz). The governing equations for the incompressible (constant n or ρ) axisym-
metric viscous flows in a cylindrical polar coordinates system can be expressed as

∂uj

∂xj
=−ur

r
, (2.10)

∂ui

∂t
+uj

∂ui

∂xj
=−1

ρ

∂P

∂xi
+η

∂2ui

∂x2
j

+
η

r

∂ui

∂r
− ηui

r2
δir. (2.11)
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Inserting the continuity equation into the momentum equation, we have

∂ui

∂t
+

∂(uiuj)

∂xj
=−1

ρ

∂P

∂xi
+η

∂2ui

∂x2
j

− uiur

r
+

η

r

∂ui

∂r
− ηui

r2
δir. (2.12)

The aim of this work in the following is first to derive a semiclassical lattice Boltz-
mann equation which shall render the macroscopic continuity and momentum equations,
Eqs. (2.10) and (2.12), self-consistently and second to apply the method to compute rar-
efied circular pipe flows in gases of arbitrary statistics. We note that the axisymmetric
Navier-Stokes equations, Eq. (2.10) and Eq. (2.12) have the 2-D Navier-Stokes equations
embedded. Similarly, the axisymmetric lattice Boltzmann method will also have the 2-D
method embedded. For this reason, we shall first briefly describe the 2-D semiclassical
lattice Boltzmann method in the next Section, for further details see [15].

3 A semiclassical lattice Boltzmann-BGK method

In [15], a semiclassical lattice Boltzmann method (SLBM) based on D2Q9 lattices in rect-
angular coordinates for gases of particles of arbitrary statistics has been developed. Since
the axisymmetric method has the 2-D method embedded in general. Here, for complete-
ness, we include some brief description of the essential elements of the method and use
it as the basis to extend to the axisymmetric case. The Grad’s moment approach was

adopted to find solutions to Eq. (2.1) by expanding f (~x,~ζ,t) in terms of Hermite polyno-
mials and the N-th finite order truncated distribution function f N was considered. The
expansion of the distribution function f to the N-th order can be expressed by

f N(~x,~ζ,t)=ω(~ζ)
N

∑
n=0

1

n!
a(n)(x,t)H(n)(~ζ), (3.1)

where ~ζ ≡~p/h3, ω(~ζ) = (2π)−3/2e−~ζ2/2 is the weighting function, a(n) and H(n)(~ζ) are
rank-n tensors and the product on the right-hand side denotes full contraction. The ex-
pansion coefficients a(n) are given by

a(n)(~x,t)=
∫

f N(~x,~ζ,t)H(n)(~ζ)d~ζ, (3.2)

where d~ζ =d~p/h3. Similarly, the equilibrium distribution function f (eq) can be expanded
to the same order as f and normally can be analytically found in terms of Fermi or Bose
function. The standard square D2Q9 lattice model is used:

~ζ0 =(0,0), (3.3a)

~ζa =
(

cos
( a−1

4

)

π,sin
( a−1

4

))

c, a=1,··· ,8, (3.3b)
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where c = δz/δt is the particle streaming speed and δz is the lattice size and δt is the

time step. When c is taken as 1, the lattice velocity ~ζa =(ζaz,ζar) has unit magnitude for

directions of a=1,3,5 and 7, and magnitude
√

2 for directions of a=2,4,6, and 8. For N=3,
we get the explicit Hermite expansion of the Bose-Einstein (or Fermi-Dirac) distribution

at the discrete velocity ~ζa as:

f
(eq)
a (~x,t)=wan

{

1+~ζa ·~u(~x,t)+
1

2

[

(~u(~x,t) ·~ζa)
2−u2(~x,t)+

(

T̂(~x,t)
g 5

2
(z̄)

g 3
2
(z̄)

−1
)

(ζ2
a−D)

]

+
~ζa ·~u

6

[

(~u·~ζa)
2−3u2+3

(

T̂
g 5

2
(z̄)

g 3
2
(z̄)

−1
)

(ζ2
a−D−2)

]

}

, (3.4)

where D=δii and T̂ is the non-dimensional temperature. A lattice UUB-BGK method for
solving Eq. (2.1) as constructed in [15] is expressed as

fa(~x+~ζaδt,t+δt)− fa(~x,t)=− 1

τ

[

fa− f
(eq)
a

]

, (3.5)

where τ =τ∗/δt is the dimensionless LBE relaxation time.
Once we have solved the new time values of fa(~x,t), the macroscopic variables such

as n(~x,t),~u(~x,t) and T̂(~x,t), can be calculated by:

n(~x,t)=
l

∑
a=1

fa(~x,t), (3.6)

n~u=
l

∑
a=1

fa
~ζa, (3.7)

n
(

DT̂
g 5

2
(z̄)

g 3
2
(z̄)

+u2
)

=
l

∑
a=1

faζ2
a =E. (3.8)

The above three equations provide a way to determine the fugacity z̄ through an iteration
method,

E−3
( n

g 3
2

)
5
3
g 5

2
−nu2 =0. (3.9)

After obtaining z̄, we can get the temperature T̂. These quantities are required in the local

equilibrium distribution function f
(eq)
a of Eq. (3.4).

Now we are ready to generalize to axisymmetric case based on the above two-
dimensional semiclassical LBM in rectangular coordinates.

4 Semiclassical axisymmetric lattice Boltzmann method

As we noted before, the axisymmetric lattice Boltzmann method will have the 2-D lattice
Boltzmann method embedded. To derive the semiclassical axisymmetric lattice Boltz-
mann method, we construct the method based on the above 2-D semiclassical lattice
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Boltzmann method and adopt the approach of Halliday et al. by incorporating a posi-
tion and time dependent source or sink term into the microdynamic evolution equation
as follows:

fa(~x+~ζaδt,t+δt)− fa(~x,t)=− 1

τ
[ fa− f

(eq)
a ]+ha(~x,t), (4.1)

where the 2-D equation is embedded and ha(~x,t) is an added source or sink term that will
be defined later. Following the analysis of [16], we assume

ha = εh
(1)
a +ε2h

(2)
a +··· , (4.2)

and take h
(1)
a to be zeroth order in gradient quantities and h

(2)
a to contain any first order

gradients in macroscopic dynamic quantities n,~u; that is h
(n)
a contains (n−1)-th order

gradients in n and ~u. The issue now is to determine the h
(n)
a that will render Eqs. (2.10)

and (2.12) in a self-consistent manner.
To extract the dynamics represented by this modifying scheme, one has to rely on

the Chapman-Enskog multiscale analysis. Here we first summarize the complete basic
equations and the detailed derivations are provided in the Appendix.

From Appendix, we have h
(1)
a as follow:

h
(1)
a =−wanur

r
δt. (4.3)

With this choice of h
(1)
a , then we have

∑
a

h
(1)
a =−nur

r
. (4.4)

We also have h
(2)
a as following:

h
(2)
a =

∂ur

∂r

[

δtur +
ζar

r
+

ζar(2µ−δtτ)

r

]

nwaδt+
∂uz

∂r

[µζaz

r

]

nwaδt

+
∂ur

∂z

[1

2
uzδt+

ζaz(2µ−δtτ)

r

]

nwaδt+
∂uz

∂z

1

2
δturδtnwa

−nwaδt

[u2
r ζar

r
+

uruzζaz

r
+

µurζar

r2
+

urζar(2µ−δtτ)

r2

]

. (4.5)

The derivative terms in Eq. (4.5) can be evaluated using the following:

∂ur

∂r
=

1

2

[

− 1

τnΘ
∑

a

ζarζar f
(1)
a +

ur

r

(

1− 1

Θ

)]

, (4.6)

∂uz

∂z
=

1

2

[

− 1

τnΘ
∑

a

ζazζaz f
(1)
a +

ur

r

(

1− 1

Θ

)]

, (4.7)

∂uz

∂r
=

1

2

[

− 1

τnΘ
∑

a

ζazζar f
(1)
a +

ur

r

(

1− 1

Θ

)]

, (4.8)

(∂ur

∂z

)

r,z
=

(ur)r,z+1−(ur)r,z−1

2δz
. (4.9)
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It is noted that only one derivative term has to be computed using finite (central) differ-
ence method and the rest of derivative terms can be analytically expressed and directly
computed. To complete the derivation, we set

ha =δth
(1)
a +δ2

t h
(2)
a

in Eq. (4.2) to achieve the final semiclassical lattice Boltzmann method (SLBM) for ax-
isymmetric flows.

In summary, Eqs. (4.1), (4.3) and (4.5) form a closed set of differential equations gov-
erning the set of variables fa(~x,t) in the physical configuration space and the correct hy-
drodynamic equations can be obtained via the Chapman-Enskog analysis. All the macro-
scopic variables and their fluxes can be calculated directly from their corresponding mo-
ment summations.

A major issue about using SLBM to simulate the micro flows is the treatment of wall
boundary condition. Bounce-back scheme is often used to realize non-slip boundary
condition in Poiseuille region while the specular reflection scheme is applied to free-
slip boundary condition where no momentum is to be exchanged with the wall along
the tangential component. For realistic flow in microtubes, a combination of the two
schemes is usually considered by defining the parameter 0 ≤ σ ≤ 1. For example, we
have f2(i,1)= f4(i,1), f5(i,1)=σ f7(i,1)+(1−σ) f8(i,1) and f6(i,1)=σ f8(i,1)+(1−σ) f7(i,1).
For σ = 1, there is no slip at wall and we have the bounce-back scheme; for σ = 0, we
have the specular reflection scheme. The choice of σ is usually done by matching with
experimental data.

To apply Eq. (4.1), one has to determine either τ or τ∗. For continuum flows, one can
perform Chapman-Enskog multiscale analysis to Eq. (4.1), and τ is determined in such a
way that the Navier-Stokes equations are recovered. As a result, we have the relaxation
time τ related to the fluid viscosity ν as

ν=
(

τ− 1

2

)

T̂
g 5

2

g 3
2

, (4.10)

where ν is the non-dimensional kinematic viscosity. The term −1/2 in the above equation
is a correction to make the LBE technique a second-order method for solving incompress-
ible flows.

5 Results and discussion

We consider a uniform pressure-driven circular pipe flow in a rarefied quantum gas. The
pipe length is L and diameter D and L/D=25. With the given fugacity at the inlet z̄in=0.2
for all three statistics, we have z̄out=0.09835 for the Fermi gas, z̄out=0.101913 for the Bose
gas, and z̄out = 0.1 for the classical limit. The inlet temperature is Tin = 0.5 and outlet
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Tout =0.5, then the pressure ratio will be

( Pin

Pout

)

=
(

nT
g 5

2
(z̄)

g 3
2
(z̄)

)

in

/(

nT
g 5

2
(z̄)

g 3
2
(z̄)

)

out
=

g 5
2
(z̄in)

g 5
2
(z̄out)

=2

for the three cases. The pressure gradient ∆P =0.0001832. Since the D2Q9 square lattice
is applied, L can be written as L = (Nz−1)δz, and D = (Nr−1)δr, where Nz and Nr are
the number of lattice nodes in the z- and r-direction, respectively. To begin with the
computation, the desired Kn=λ/D is first set. We also set the lattice spacing δz = δr =1.
The relaxation time τ can be expressed as

τ =Kn(Nr−1). (5.1)

Having Kn defined, appropriate Nr and τ could be chosen, which could then be used
in the determination of mesh size and the collision propagation updating procedure, re-
spectively. The computation domain is (0 ≤ z ≤ 524, 0 ≤ r ≤ 20) and 525×21 uniform
lattices were used. We assume σ = 0.75 at the pipe wall for all the results shown below.
Cases for other values of σ can be easily calculated. Several Knudsen numbers cover-
ing Poiseuille continuum, slip, transition and Knudsen flow regimes are calculated. The
so-called size-variation effects in transport phenomena occur in highly rarefied classi-
cal gas as first investigated by Knudsen will be studied using the present semiclassical
lattice Boltzmann method. Markedly distinct behaviors were observed due to different
inter-particles or particle-wall scattering. In particular, the appearance of a Knudsen min-
imum in the mass flow rate [27, 28] was observed. We note that the Fermi-gas analog of
the classical result was also reported before [31]. Here, we report some results for the
general type of carriers.

The steady velocity profiles for the three statistics, BE, MB, and FD gases for the case
of z̄=0.2 are shown in Fig. 1, respectively, for three different Knudsen numbers to repre-
sent the Knudsen, slip and Poiseuille regions. For the small Knudsen number, Kn=0.06,
the characteristic parabolic velocity profile is evident. For Kn=0.2, the velocity is smaller
than that of Kn = 0.6 and velocity slip at the walls can be identified. For Kn = 1.0, the
velocity peak at the centerline is slightly larger than that of Kn = 0.2. The velocity slip
at wall can be clearly observed. At even larger Knudsen number Kn = 2.0, the velocity
at centerline is getting larger and the velocity slip at wall is large. It can be found that
the profile for MB gas lies always in between that of the BE and FD gas and for small
Knudsen number, the three profiles get closer to each other.

The mass flow rates for all three statistics, BE, MB, and FD gases for the case of z̄=0.2
for Knudsen number covering Knudsen, slip and Poiseuille regimes are shown in Fig. 2.
Seven values of Knudsen number from 0.06 to 2.0 were calculated. The Knudsen mini-
mum can be clearly identified for all three statistics and the profile for MB gas lies always
in between that of the BE and FD gas. The Knudsen minimum is found to occur at the
Kn =0.4 case. Basically, the Knudsen minimum of a pipe of channel flow can be viewed



414 J.-Y. Yang, L.-H. Hung and Y.-T. Kuo / Commun. Comput. Phys., 10 (2011), pp. 405-421

(a) (b)

(c) (d)

Figure 1: Velocity profiles in a circular pipe flow of gases of arbitrary statistics (gas with z̄=0.2). (a) Kn=0.06,
(b) Kn=0.2, (c) Kn=1.0, (d) Kn=2.0.

Figure 2: Normalized mass flux in a
circular pipe flow as a function of Kn
number (gas with z̄=0.2).

and explained as a phenomena that appears when the flow passing through the com-
petition between the classical Poiseuille continuum flow and the Knudsen flow and the
value of Knudsen number at this minimum should lie in the slip and transition regime.



J.-Y. Yang, L.-H. Hung and Y.-T. Kuo / Commun. Comput. Phys., 10 (2011), pp. 405-421 415

(a) (b)

(c)

Figure 3: Velocity profiles in a circular
pipe flow of gases of arbitrary statistics
(gas with z̄ = 0.02). (a) Kn=0.06, (b)
Kn=0.6, (c) Kn=2.0.

Figure 4: Normalized mass flux in a
circular pipe flow as a function of Kn
number (gas with z̄=0.02).

It is also found that the Knudsen number value at Knudsen minimum is very sensitive to
the specularity condition (specified by σ) of the wall surface. Our value obtained here is
in agreement with that reported in the literatures (see [31–33]). For example, in [31], first
observation of the Knudsen minimum in normal liquid 3He was reported and the posi-
tion of Knudsen minimum was found to lie at Knudsen number of ≃0.5 as compared to
the value of 0.75. Also, Knudsen minima for phonons at Knudsen numbers of 0.87±0.13
and 0.65, respectively, have been reported, see [32, 33]. Other Knudsen values of Knud-
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sen minimum in liquid 3He in the Knudsen and Poiseuille regions for various specular
scattering coefficients were reported [34].

To further test the method, we also compute the case for smaller value of fugacity,
z̄in =0.02, which corresponds to near classical limit. The grid system and the flow param-
eters are all the same as the previous z̄in =0.2 case. Here, z̄in =0.02, z̄out,MB=0.01, z̄out,FD =
0.00998, and z̄out,BE = 0.010078. The value of σ = 0.75 was used at pipe wall. The veloc-
ity profiles at several Knudsen numbers for the three statistics are plotted in Fig. 3. For
Kn = 0.06 and Kn = 0.6, the velocity profiles of the three statistics almost coincide with
each other, though the maximum velocity at the centerline for Kn=0.06 is twice as large.
There is some velocity slip for the Kn=0.6 case. For the Kn=2.0 case, the three statistics
display noticeable difference and the velocity slip is very obvious. The mass flow rates
for several Knudsen numbers are shown in Fig. 4. We can see that for smaller value of z̄,
we are getting closer to classical limit and the three statistics indicate similar trend, par-
ticularly the mass flow rate which is almost identical. Again, the Knudsen minimum can
be clearly captured for all three statistics and the Knudsen minimum is found to occur at
the Kn=0.4 case.

Theoretically, as comparing with particles of classical statistics, the effects of quantum
statistics at finite temperatures (non-degenerate case) are approximately equivalent to in-
troducing an interaction between particles [35]. This interaction is attractive for bosons
and repulsive for fermions and operates over distances of order of the thermal wave-
length Λ. Our present simulation examples seem to be able to illustrate and explore the
manifestation of the effect of quantum statistics.

6 Concluding remarks

The flows of gases of particles of arbitrary statistics in a circular pipe flow are investigated
using an axisymmetric semiclassical lattice Boltzmann-BGK method. The method is de-
rived based on a previous D2Q9 semiclassical lattice Boltzmann method and the forcing
strategy of Halliday et al. [16] is adopted by adding forcing terms to modify the emergent
macroscopic equations toward axisymmetric governing equations. The equilibrium dis-
tribution of lattice Boltzmann equations is derived through expanding the Bose-Einstein
(or Fermi-Dirac) distribution function onto Hermite polynomial basis up to the same or-
der consistent with the velocity distribution function. The procedure is done in a priori
manner and is free of usual ad hoc parameter-matching. Moreover, our development
recovers previous classical results when the classical limit is taken. Computations of mi-
cro circular pipe flows in both Bose-Einstein and Fermi-Dirac gases have been simulated.
The velocity profiles and mass flow rates for wide range of Knudsen numbers covering
Knudsen, transition, slip, and Poiseuille regimes are detailed. The Knudsen minimum
phenomena in a circular pipe flow can be captured for all the three particle statistics and
the effect of quantum statistics on the hydrodynamics is clearly delineated. Our finding
is consistent with some previous results on Knudsen minimum for quantum gases [31].
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Also, our results are obtained based on a rather systematic and parallel treatment of all
statistics, hence it can be consistently examined within the theory itself among the three
statistics.
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Appendix to Section 4 derivation of forcing terms

According to the Chapman-Enskog expansion, fa can be expressed in a series of ε,

fa(~x+~ζaδt,t+δt)=
∞

∑
0

εn

n!
(∂t+~ζa ·∇)n fa, (A.1)

fa ⋍ f
(0)
a +ε f

(1)
a +ε2 f

(2)
a +··· , (A.2)

∂t = ε∂t1 +ε2∂t2 , (A.3)

∂β = ε∂β1
. (A.4)

The above expressions of the derivatives, Eqs. (A.1)-(A.4) are substituted into Eq. (4.1),
and terms involving different orders of ε are separated as:

f
(0)
a = f

(eq)
a , (A.5)

(∂t1 +ζaβ ·∂β1
) f

(0)
a =− 1

τδt
f
(1)
a +

h
(1)
a

δt
, (A.6)

∂t2 f
(0)
a +

(

1− 1

2τ

)

(∂t1 +ζaβ∂β1
) f

(1)
a +

1

2
(∂t1 +ζaβ∂β1

)h
(1)
a =− 1

τδt
f
(2)
a +

h
(2)
a

δt
. (A.7)

We have the usual conditions

∑
a

fa =∑
a

f
(eq)
a =n, (A.8)

∑
a

faζa =∑
a

f
(eq)
a ζa =n~u, (A.9)

∑
a

faζaiζaj =∑
a

f
(eq)
a ζaiζaj =n(uiuj +Θδij), (A.10)

∑
a

faζaiζajζaj =nΘ(uiδjk+ujδki+ukδij), (A.11)

where Θ= T̂g5/2

/

g3/2. For l≥1, we have

∑
a

f
(l)
a =0, ∑

a

f
(l)
a ζa =0. (A.12)
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A.1 Lattice continuity equation and h
(1)
a

We take the moment of Eq. (A.6) and Eq. (A.7), the different order mass conservation
equations are recovered below:

∂t1 ∑
a

f
(0)
a +∂β1 ∑

a

f
(0)
a ζaβ =− 1

τ ∑
a

f
(1)
a +∑

a

h
(1)
a , (A.13)

∂t2 ∑
a

f
(0)
a +∑

a

[1

2
(∂t1 +ζaβ∂β1

)h
(1)
a − 1

δt
h

(2)
a

]

=0. (A.14)

If we set the following constraint:

∑
a

[1

2
(∂t1

+ζaβ∂β1
)h

(1)
a − 1

δt
h

(2)
a

]

=0. (A.15)

Then, we have

∂t2 ∑
a

f
(0)
a =0. (A.16)

We have the conservation of mass, i.e., the continuity equation

∂tn+δt∂β(nuβ)=∑
a

h
(1)
a . (A.17)

In view of matching the target dynamics Eqs. (2.10) and (2.12), the selection of h
(1)
a be-

comes obvious:

h
(1)
a =−wanur

r
δt. (A.18)

A.2 Lattice momentum equation and h
(2)
a

Next we will determine h
(2)
a with h

(1)
a specified. After multiplication with ζai and sum-

mation with respect to a, the different order momentum conservation equations are re-
covered below:

∑
a

ζaih
(2)
a =δt

(

1− 1

2τ

)

∂xj ∑
a

ζaiζaj f
(1)
a +δt∂t2 nui+

δt

2
∂xj

(

− nurδt

r

)

δij. (A.19)

We first examine the term ∑a ζaiζaj f
(1)
a and with Eq. (A.19), we have

∑
a

ζaiζaj f
(1)
a

=−τδt∂t1

(

∑
a

ζaiζaj f
(0)
a

)

−τδt∂xk

[

nΘ(uiδjk+ujδki+ukδij)−τδt
nur

r

]

δij. (A.20)
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Assume the characteristic velocity, length and time of the flow problem are Uc, Lc, and

tc, respectively. Then ∂t1
(∑a ζaiζaj f

(0)
a ) is of order U2

c /tc and ∂xk
(nΘ(uiδjk+ujδki+ukδij))

is of order Uc/Lc, and we have

∂t1 ∑a ζaiζaj f
(0)
a

∂xk
nΘ(uiδjk+ujδki+ukδij)

=O(M2). (A.21)

Under the assumption M≪1, one can neglect the term ∂t1 ∑a ζaiζaj f
(0)
a , and one has

∑
a

ζaiζaj f
(1)
a =−τδtnΘ(∂xj

ui+∂xi
uj)+τδt

nur

r
(Θ−1)δij. (A.22)

Substituting the above equation into Eq. (A.19), we obtain

∑
a

ζaih
(2)
a =−δ2

t τnΘ
(

1− 1

2τ

)(∂2ui

∂x2
j

+
∂2uj

∂xi∂xj

)

+δ2
t

(

1− 1

2τ

) ∂

∂xj

τnur

r
(Θ−1)δij +δt

∂

∂t2

nui−
δ2

t

2

∂

∂xi

nur

r
. (A.23)

Using the relationship

∂

∂t1
nui =− ∂

∂xj
n(Θδij+uiuj) (A.24)

and after some algebra, we have

nδt

(∂ui

∂t
+

∂(uiuj)

∂xj
+

1

n

∂P

∂xi
−µ

∂2ui

∂x2
j

)

=−nδtµ
∂

∂xi

ur

r
−δ2

t

(nµ

δt
−nτ

) ∂

∂xi

ur

r
+∑

a

ζaih
(2)
a , (A.25)

where µ=δt(τ−1/2)Θ. We have h
(2)
a :

h
(2)
a =n

[

δt

(

−
uruj

r
+

ν

r

∂uj

∂r
− νur

r2
δir

)

ζajwa+(2δtµ−δ2
t τ)waζaj

∂

∂xj

ur

r

]

. (A.26)

We also have

h
(2)
a =

δ2
t

2
nwa

(∂Θ

∂r
+

∂

∂xj
uruj

)

. (A.27)

Finally, we obtain

h
(2)
a =

δ2
t

2
nwa

( ∂

∂r
Θ+

∂

∂xj
uruj

)

+nδt

(

−
uruj

r
+

µ

r

∂uj

∂r
− µur

r2
δir

)

ζajwa

+n(2δtµ−δ2
t τ)waζaj

∂

∂xj

ur

r
. (A.28)

Regroup the term h
(2)
a , we finally have Eq. (4.5).
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