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Abstract. We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the
solution of the shallow water equations (SWE) with the bottom topography as a source
term. Our new scheme will be based on the FVEG methods presented in (Noelle and
Kraft, J. Comp. Phys., 221 (2007)), but adds the possibility to handle dry boundaries.
The most important aspect is to preserve the positivity of the water height. We present
a general approach to ensure this for arbitrary finite volume schemes. The main idea is
to limit the outgoing fluxes of a cell whenever they would create negative water height.
Physically, this corresponds to the absence of fluxes in the presence of vacuum. Well-
balancing is then re-established by splitting gravitational and gravity driven parts of
the flux. Moreover, a new entropy fix is introduced that improves the reproduction of
sonic rarefaction waves.
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1 Introduction

The shallow water equations (SWE) are a mathematical model for the movement of water
under the action of gravity. Mathematically spoken, they form a set of hyperbolic con-
servation laws, which can be extended by source terms like the influence of the bottom
topography, friction or wind forces. In this case, we will speak of a balance law. For
simplicity, this work will consider the variation of the bottom as the only source term.
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Many important properties of the model rely on the fact that the water height is
strictly positive. Despite this, typical relevant problems include the occurrence of dry
areas, like dam break problems or the run-up of waves at a coast, with tsunamis as the
most impressive example. So for simulations of these problems, we have to develop nu-
merical schemes that can handle the (possibly moving) shoreline in a stable and efficient
way. Another crucial point in solving balance laws is the treatment of the source terms.
For precise solutions, it is necessary to evaluate the source term in such a way that certain
steady states are kept numerically, i.e., the numerical flux and the numerical source term
cancel each other exactly for equilibrium solutions.

In the last years, many groups contributed to the solution of the difficulties described
above. In [2], Audusse et al. proposed a reconstruction procedure where the free surface
and water height are reconstructed and the bottom slopes are computed from these. This
guarantees the positivity of the water height and gives a well-balanced scheme at the
same time. Begnudelli and Sanders developed a scheme for triangular meshes including
scalar transports in [3]. They proposed a strategy how to exactly represent the free surface
in partially wetted cells, leading to improved results at the wetting/drying front. In [8],
Brufau et al. analyze how to deal with flow on an adverse slope. They locally modify the
bottom topography in certain situations to avoid unphysical run-ups or wave creation at
the dry boundary. Gallardo et al. discussed various solutions of the Riemann problem at
the front and used them in a modified Roe scheme. They then used the local hyperbolic
harmonic method from Marquina (cf. [24]) in the reconstruction step to achieve higher
order, see [9]. Kurganov and Petrova proposed a central-upwind scheme that is well-
balanced and positivity preserving in [13]. It is based on a continuous, piecewise linear
approximation of the bottom topography and performs the computation in terms of the
free surface instead of the relative water height to simplify the well-balancing. The last
feature is also a building block in the work of Liang and Marche [16]. They also provide
a method to extend this well-balancing feature to situations including wetting/drying
fronts. Liang and Borthwick [15] used adaptive quad-tree grids to improve the efficiency
of their schemes. Wetting and drying effects are handled as well as friction terms. In the
context of residual distribution methods, Ricchiuto and Bollermann developed a positiv-
ity preserving and well-balanced scheme for unstructured triangulations [26].

The finite volume evolution Galerkin (FVEG) methods developed by Lukáčová, Mor-
ton and Warnecke, cf. [18–20], have been successfully applied to the SWE in [19]. They
are based on the evaluation of so called evolution operators which predict values for the
finite volume update. Thanks to these operators, the schemes take into account all di-
rections of wave propagation, enabling them to precisely catch multidimensional effects
even on Cartesian grids. These schemes show a very good accuracy even on relatively
coarse meshes compared to other state of the art schemes and they are also competitive
in terms of efficiency (cf. [19]).

However, the existing FVEG schemes are not able to deal with dry boundaries. Thus
in this work we will present a method to preserve the positivity of the water height with
an arbitrary finite volume method. To achieve this, we reduce the outflow on draining
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cells such that the water height does not become negative. We will then provide the
means to preserve the well-balancing property under the presence of dry areas, and apply
both techniques to a new FVEG method. In addition, we present a new entropy fix for
the FVEG schemes that improves the reproduction of sonic rarefaction waves.

We start our paper with a short presentation of the SWE in Section 2. Section 3 de-
scribes the FVEG method we will start from. The arising difficulties by introducing dry
areas and means to overcome them are described in Section 4, which is the main part of
the paper. Finally, in Section 5, we will show selected numerical test cases that demon-
strate the performance of our schemes.

2 The shallow water equations

2.1 Balance law form

We consider the shallow water system in balance form

∂u

∂t
+∇·F (u)=−S(u,~x). (2.1)

The conserved variables and the flux are given by

u=




h
hv1

hv2


, F (u)=(F 1(u)F 2(u))=




hv1 hv2

hv2
1+gh2/2 hv1v2

hv1v2 hv2
2 +gh2/2


, (2.2)

where h denotes the relative water height,~v=(v1,v2)T the flow speed and g the (constant)
gravity acceleration. The source term S(u,~x) is given by

S(u,~x)= gh




0
∂b(~x)
∂x1

∂b(~x)
∂x2


, (2.3)

with b(~x) the local bottom height. We also introduce the free surface level, or total water
height,

H(~x)=h(~x)+b(~x), (2.4)

and the so-called speed of sound

c=
√

gh. (2.5)

This is the velocity of the gravity waves and should not be confused with the physical
sound speed in air.
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2.2 Quasi-linear form

For the derivation of the evolution operators in Section 3.2, it is helpful to rewrite (2.1) in
primitive variables. The system then takes the form

wt+A1(w)wx1
+A2(w)wx2 = t, (2.6)

with

w=




h
v1

v2


, A1 =




v1 h 0
g v1 0
0 0 v1


, A2 =




v2 0 h
0 v2 0
g 0 v2


, (2.7)

and the source term

t=




0
−gbx1

−gbx2


. (2.8)

For each angle θ∈ [0,2π), we define the direction

~ξ(θ) :=(cosθ,sinθ).

As system (2.1) is hyperbolic, for each of these directions and a fixed w the matrix

A(w)=~ξ1A1(w)+~ξ2A2(w) (2.9)

has real eigenvalues

λ1 =~v·~ξ−c, λ2 =~v·~ξ, λ3 =~v·~ξ+c, (2.10)

and a full set of linearly independent eigenvectors

r1 =




−1
gcosθ/c
gsinθ/c


, r2 =




0
sinθ
−cosθ


, r3 =




1
gcosθ/c
gsinθ/c


. (2.11)

2.3 Lake at rest

A trivial, but nevertheless important solution to (2.1) is the lake at rest situation, where
the water is steady and the free surface level is constant, i.e., we have

~v=(0,0)T and H(~x)= H0. (2.12)

From (2.4), we immediately get
∇h=−∇b, (2.13)

and therefore (with (2.1)-(2.3) and ~v=(0,0)T),




0
gh2/2

0




x1

+




0
0

gh2/2




x2

=−gh




0
∂b(~x)
∂x1

∂b(~x)
∂x2


. (2.14)

A scheme fulfilling a discrete analogon of (2.14) exactly is called well-balanced.
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3 FVEG schemes

Finite volume schemes are very popular for solving hyperbolic conservation laws for
several reasons. They represent the underlying physics in a natural way and can be im-
plemented very efficiently. Nevertheless, nearly all of them are based on the solution of
one-dimensional Riemann problems and therewith a dimensional splitting. This intro-
duces some sort of a bias: wave propagation aligned with the grid is very well repre-
sented, whereas waves oblique to the grid cannot be caught as accurate.

In the last decade, Lukáčová et al. developed a class of finite volume evolution
Galerkin schemes, see e.g., [17,20,22]. The FVEG scheme is a predictor-corrector method:
in the predictor step a multidimensional evolution is done, the corrector step is a finite
volume update.

In this section, we will recall the second order scheme presented in [19]. This method
will be the starting point for our extensions for computations including dry beds in Sec-
tion 4. Therefore we concentrate on the properties playing a role in this context and limit
ourselves to the main ideas otherwise.

3.1 Finite volume update

For our computations, we use Cartesian grids, i.e., we divide our computational domain
Ω in rectangular cells Ci, separated by edges E. On the edges, we have quadrature points
~xk. The subscript i will always refer to a cell, whereas k as a subscript is used as a global
index for quadrature points. If we talk about the local quadrature points on a single edge,
we use the index j instead.

On each cell, we define the initial value at as

u0
i :=ui(0)≈ 1

|Ci|
∫

Ci

u(~x,0)d~x, (3.1)

where we use a Gaussian quadrature to approximate the integral. Integrating (2.1) on
each cell, we can then define the update as

un+1
i =un

i −
1

|Ci|
∫ tn+1

tn

(∫

∂Ci

F
(
u(~x,t)

)
·~nd~x+

∫

Ci

S
(
u(~x,t),~x

)
d~x

)
dt, (3.2)

using the Gauss theorem. Here un
i denotes cell average in Ci at time tn and~n is the outer

normal. The solution on the whole domain at time tn is then defined as

Un(~x) :=U(~x,tn)=un
i , ~x∈Ci. (3.3)

For an approximation of (3.2), on each edge we define three quadrature points~xj, j=1,2,3,
see Fig. 1. These quadrature points are located on the vertices (j=1,3) and the centre (j=2)
of an edge. The flux over the edge is approximated by using midpoint rule in time and
Simpson’s rule in space, hence we will use the evolution operators from Section 3.2 to
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tn+1

tn

~x3

~x2

~x1

x1

x2t

Figure 1: Quadrature points ~xj for finite volume update.

predict point values at the quadrature points at time tn+1/2. The flux over an edge is then
defined as

F E :=
3

∑
j=1

αjF (u
n+ 1

2
j )·~n≈ 1

∆t|E|
∫ tn+1

tn

∫

E
F

(
u(~x,t)

)
·~nd~xdt. (3.4)

∆t = tn+1−tn is the time step, un+1/2
j is an approximation to u(~xj,t

n+1/2) and the αj rep-

resent the weights of Simpson’s rule, i.e., we have α1,3 = 1/6 and α2 = 2/3. Finally the
source term is discretised as

S i := g
3

∑
j=1

αj




0
1
2(hr

j +hl
j)(br

j −bl
j)

1
2(ht

j +hb
j )(bt

j−bb
j )


≈ 1

∆x∆t

∫ tn+1

tn

∫

Ci

S(u)d~x. (3.5)

Here, ∆x is the length of the element, hj represents the first component of un+1/2
j and

bj = b(~xj). The superscripts stand for the edges surrounding the cell, namely the right,
left, top and bottom edge. Eqs. (3.2)-(3.5) lead to the fully discrete scheme

un+1
i =un

i −
∆t

∆x

[(
∑

E,E⊂∂Ci

F E

)
+S i

]
. (3.6)

The time step is chosen as

∆t=µmin
i

∆x

max
k

|λk|
, (3.7)

with λk the eigenvalues from (2.10) and µ<1 a CFL number. For all the numerical exper-
iments in Section 5, we set µ=0.5.

3.2 Evolution operators

As mentioned before, we use so-called evolution operators to predict point values of the
solution for the quadrature points in (3.4). Indeed, a solution of (2.6) can be seen as a su-
perposition of waves. So for a fixed point P=(~x,t), we want to identify all the waves that
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contribute to the solution there. This section will describe shortly the evolution operator,
present an exact formulation and give an example of a suitable approximation allowing
an efficient implementation.

P

~ξ

x1

x2

P

x1

x2

Figure 2: Bicharacteristic decomposition. Left: Bicharacteristic curves for a fixed direction ~ξ. Right: Bicharac-
teristic cone.

The derivation of evolution operators is based on the quasi-linear form of the system
(2.6). For any given point P, we identify a suitable average value w̄ and linearise the
system around P:

wt+A1(w̄)wx1
+A2(w̄)wx2 = t. (3.8)

The waves we are looking for propagate along the characteristics of this system. Thus for

a fixed direction ~ξ(θ), we apply an one-dimensional characteristic decomposition of the
linearised system. This allows us to identify different wave propagations corresponding
to the eigenvalues (2.10), the bicharacteristics. The left side of Fig. 2 shows an illustration.
Integrating the decomposed system along the bicharacteristics, we get an integral repre-
sentation of the solution at point P. At this point, the solution still depends on a particular

direction ~ξ(θ) and therefore does not respect waves coming from other directions. Thus
we perform the decomposition for all angles θ∈[0,2π) and average the solution at P over
θ. This yields the exact evolution operator of (3.8). The combination of all bicharacteris-
tics yields the bicharacteristic cone shown in the right picture of Fig. 2. We introduce the
following notation for the peak P=(~x,tn+τ) and points on the sonic cone:

Q0 :=(x1+τv̄1, x2+τv̄2, tn), (3.9a)

Q̃0 :=
(

x1+(tn+τ− t̃)v̄1cosθ, x2+(tn+τ− t̃)v̄2sinθ, t̃
)
, (3.9b)

Q :=
(

x1+τ(c̄+ v̄1)cosθ, x2+τ(c̄+ v̄2)sinθ, tn
)
, (3.9c)

Q̃ :=
(

x1+(tn+τ− t̃)(c̄+ v̄1)cosθ, x2+(tn+τ− t̃)(c̄+ v̄2)sinθ, t̃
)
, (3.9d)

Qo is the centre of the sonic circle at time t= tn, Q̃0 denotes a point on the inner bicharac-
teristic connecting P and Q0, Q is a point on the perimeter of the sonic circle at time t= tn

and Q̃ denotes a point on the mantle of the sonic cone at an arbitrary time t̃∈ [tn ,tn+τ].
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After some tedious calculations, see e.g., [19], we get the evolution operators for the
SWE:

h(P)=
1

2π

∫ 2π

0
h(Q)− c̄

g

(
v1(Q)cosθ+v2(Q)sinθ

)
dθ

+
c̄

2π

∫ t+τ

t

∫ 2π

0

(
bx1

(Q̃)cosθ+bx2(Q̃)sinθ
)

dθdt̃

− 1

2π

∫ t+τ

t

1

t+τ− t̃

∫ 2π

0

c̄

g

(
v1(Q̃)cosθ+v2(Q̃)sinθ

)
dθdt̃, (3.10a)

v1(P)=
1

2
v1(Q0)+

1

2π

∫ 2π

0
− g

c̄
h(Q)cosθ+v1(Q)cos2θ

+v2(Q)sinθcosθ dθ− g

2

∫ t+τ

t
hx1

(Q̃0)+bx1
(Q̃0)dt̃

− g

2π

∫ t+τ

t

∫ 2π

0

(
bx1

(Q̃)cos2θ+bx2(Q̃)sinθcosθ
)

dθdt̃

+
1

2π

∫ t+τ

t

1

t+τ− t̃

∫ 2π

0

(
v1(Q̃)cos2θ+v2(Q̃)sin2θ

)
dθdt̃, (3.10b)

v2(P)=
1

2
v2(Q0)+

1

2π

∫ 2π

0
− g

c̄
h(Q)sinθ+v1(Q)sinθcosθ

+v2(Q)sin2θ dθ− g

2

∫ t+τ

t
hx2 (Q̃0)+bx2(Q̃0)dt̃

− g

2π

∫ t+τ

t

∫ 2π

0

(
bx1

(Q̃)cosθsinθ+bx2(Q̃)sin2 θ
)

dθdt̃

+
1

2π

∫ t+τ

t

1

t+τ− t̃

∫ 2π

0

(
v1(Q̃)sin2θ+v2(Q̃)cos2θ

)
dθdt̃. (3.10c)

For efficient computations these operators have to be simplified. In [19], the authors
follow [18] and present approximations of (3.10a)-(3.10c) that provide exact solutions of
some one-dimensional Riemann problems. For piecewise constant data, these approxi-
mations read

h(P)=
1

2π

∫ 2π

0

[
H(Q)− c̄

g

(
v1(Q)sgn(cosθ)+v2(Q)sgn(sinθ)

)]
dθ

−b(P)+
τ

2π

∫ 2π

0
(v̄1bx1

(Q)+ v̄2bx2(Q))dθ, (3.11a)

v1(P)=
1

2π

∫ 2π

0

[
− g

c̄
H(Q)sgn(cosθ)+v1(Q)

(
cos2 θ+

1

2

)

+v2(Q)sinθcosθ
]

dθ, (3.11b)

v2(P)=
1

2π

∫ 2π

0

[
− g

c̄
H(Q)sgn(sinθ)+v1(Q)sinθcosθ

+v2(Q)
(

sin2 θ+
1

2

)]
dθ. (3.11c)
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The corresponding operators for piecewise (bi-) linear data are given as

h(P)= H(Q0)(1−π

2
)−b(P)+

1

4

∫ 2π

0
H(Q)dθ

− c̄

gπ

∫ 2π

0
(v1(Q)cosθ+v2(Q)sinθ)dθ

+
τ

2π

∫ 2π

0
(v̄1bx1

(Q)+ v̄2bx2(Q))dθ, (3.12a)

v1(P)=v1(Q0)(1−π

4
)+

g

c̄π

∫ 2π

0
H(Q)cosθ dθ

+
1

4

∫ 2π

0

[
v1(Q)(1+3cos2θ)+3v2(Q)sinθcosθ

]
dθ, (3.12b)

v2(P)=v2(Q0)(1−π

4
)+

g

c̄π

∫ 2π

0
H(Q)sinθ dθ

+
1

4

∫ 2π

0

[
3v1(Q)sinθcosθ+v2(Q)(1+3sin2 θ)

]
dθ. (3.12c)

We introduce the operator E(W) as a shorthand for evaluating these evolution operators
at all quadrature points ~xk for any given numerical data W defined analogously to (3.3).
We will refer to the operators for piecewise constant data (3.11a)-(3.11c) as Econst(P) and
Ebilin(P) will denote the operators for piecewise bilinear data (3.12a)-(3.12c).

Figure 3: Left: Intersection of the sonic cone at quadrature points with grid cells. Right: Stencil of a quadrature
point.

In our schemes, these operators are evaluated at the quadrature points ~xk of the finite
volume update defined in (3.4). Thus all data contributing to the evolved values is de-
rived from the cell values next to the quadrature point. We therefore define the stencil Sk

of a quadrature point ~xk as
Sk :=

{
Ci|~xk ∈∂Ci

}
. (3.13)

An example of the intersection of the cone with grid cells and the resulting stencil is
shown in Fig. 3. The suitable average value w̄k used in (3.8) is chosen as

w̄k =
1

|Sk| ∑
i:Ci∈Sk

wi. (3.14)
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We also tried a local Lax-Friedrichs update at the prediction points to get a better lineari-
sation. The numerical results were almost exactly the same, so we chose the averaging
procedure (3.14) for our computations.

3.3 Numerical representation of the bottom topography

For finite volume schemes, the numerical representation of the bottom topography plays
a crucial role in well-balancing as well as positivity of the scheme. In [2] Audusse et al.
use cell averages of the bottom for the computation of the free surface and reconstruct
the free surface and the water height. The reconstruction of the bottom then results as
the difference between slopes of H and h. In [13] Kurganov and Petrova propose to use
a piecewise linear approximation of b instead of b itself by taking the values of b at cell
corners. The cell average of b is then computed as the average of the corner values.

For the FVEG schemes it is necessary to define some value of b not only for cell aver-
ages and the reconstructed slopes, but also at the quadrature points where the evolution
operators are evaluated. There is some freedom in doing this, as the source term dis-
cretisation (3.5) respects the well-balancing property independently of the reconstructed
slopes of the bottom topography. As the evolution operators for the water height com-
pute the free surface first and derive the actual water height via

h(P)= H(P)−b(P),

the only necessary condition for b(P) is

b(P)≤H(P).

In this work, we will define the cell averages of b as in (3.1). For the quadrature points
on cell corners, we set

bk :=
1

|Sk| ∑
i:Ci∈Sk

bi ≈b(~xk). (3.15)

The values of bk at the centres of each edge are linearly interpolated from the neighbour-
ing corners. While the latter condition has been derived in [4] to ensure well-balancing
on adaptive grids, the formula for the corner points will turn out to be helpful for the dry
bed case.

3.4 A multidimensional entropy fix for the FVEG scheme

It is well known that the weak solution of a Riemann problem for conservation laws is not
always unique, and an entropy condition is needed to single out the physically correct
solution. This has its correspondence on the discrete level, where conservative numerical
schemes may converge to entropy-violating solutions. This notorious difficulty seems
to appear only near sonic rarefaction waves, where the flow changes from subcritical to
supercritical velocity [27]. Various researchers have proposed so-called ”entropy-fixes”
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Figure 4: 1D dam break problem, solved with first order FVEG method. Left: solution without entropy fix.
Right: solution with entropy fix from [21].

for numerical schemes. In particular, we would like to mention Harten’s and Hyman’s
entropy fix for the Roe solver [11] (see also the discussion in [14]).

The FVEG schemes considered here make no exception, and may compute entropy
violating solutions, see the left picture in Fig. 4. As is well known for classical finite vol-
ume methods, this effect is less visible (though still there) for second order schemes [27].
In order to make our point clear, we therefore focus on first order computations for the
rest of this section.

In [21], Lukáčová and Tadmor proposed an entropy conservative variant for rarefac-
tion waves computed by certain Riemann solvers, see also [31]. They applied this tech-
nique successfully to the finite volume corrector step of the FVEG scheme. They derived
just the right amount of viscosity that one should add to the scheme to fulfil the entropy
equality. Fig. 4 clearly shows the effectiveness of the scheme: while the standard FVEG
scheme produces an entropy violating shock, the entropy conservative scheme clearly
reproduces the correct rarefaction wave. Nevertheless, the scheme from [21] does not
appear perfectly suitable for our needs. First, the proposed fix requires the characteristic
decomposition of the jump of the conserved quantities across an edge. As the decompo-
sition is not needed for the FVEG schemes, this is an undesired computational extra cost.
In the context of dry boundaries, we should also mention that the decomposition matrix
becomes very ill conditioned when h→0. The second point is that the scheme from [21]
has been developed for the one-dimensional case. Although it can be applied dimension
wise, this approach somewhat spoils the multidimensional spirit of the FVEG methods.

We therefore propose a new approach to solve the entropy problem. It is not based on
a flux correction, but on the correct evaluation of the EG operators. To motivate our solu-
tion, we take a closer look on a discrete one-dimensional Riemann problem that should
result in a transonic rarefaction, i.e., the flow is subsonic in upwind direction and super-
sonic in downwind direction. Thus let us assume we have two adjacent cells Cl and Cr

with cell averaged data

ul =(hl ,vl ,0), vl < cl and ur =(hr ,vr,0), vr > cr. (3.16)

Here c is the speed of sound defined in (2.5). To evaluate the evolution operators, we
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Figure 5: Position of sonic cones for the discrete sonic rarefaction with subsonic ul and supersonic ur. Left:
cone for vl < cl . Right: cone for vr > cr.

start with the sonic cones defined in (3.9a)-(3.9d). For simplicity, we limit ourselves to
the quadrature point at the centre of the edge. The sonic cones resulting from ul and ur

are sketched in Fig. 5. We can see that the cone resulting from ur is located completely
in Cl. Depending on the exact values of ul,r, this can also be the case for the sonic cone
resulting from the averaging procedure (3.14). In other words, we use an evolution oper-
ator resulting from a supersonic linearisation in a regime that is subsonic. At least for the
first order operators (3.11a)-(3.11c), this means that the predictor step exactly reproduces
ul, which is then used for the flux evaluation. This corresponds to the generalised up-
wind method which is known to compute entropy violating solutions in some situations,
cf. e.g., [14].

Figure 6: Position of sonic cones for the discrete sonic rarefaction with subsonic ul and supersonic ur. Left:
cone for averaged value ū. Right: superscribed cone.

Thus the core of the problems seems to be the wrong domain of dependence for the
predictor step. In case of a sonic rarefaction, the sonic cone should always include both
regions, the subsonic as well as the supersonic one. As this is not guaranteed, we modify
our method by extending the sonic cone if necessary. In a transonic situation we drop the
sonic circle resulting from the averaging procedure (3.14). Instead, we use a circle which
comprehends all the circles defined by the cell averaged values in the corresponding
stencils, see Fig. 6 for an illustration. The exact formulation used for our schemes is as
follows. Given two circles with midpoints ~xi and radii ri, i = 1,2, we compute the new
circle as

r=
r1+r2+d

2
and ~x=~x1+(r−r1)

~x2−~x1

d
,

with
d=‖~x2−~x1‖2.
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Figure 7: 1D dam break problem, solved with first order FVEG method. Left: solution with entropy fix from [21]
Right: solution with new entropy fix.

However, if one circle comprehends the other one, we just choose the bigger circle as our
new one. If the stencil of the evolution point consists of four cells, we apply the same
formula for the neighbours on the two diagonals first and then again for the resulting
circles.

In Fig. 7, we compare the results of the entropy stable scheme from [21] and our
new approach. They both clearly solve the entropy problem, with a slight advantage of
the scheme by Lukáčová and Tadmor. However, as we previously pointed out, the new
method is more efficient. Compared to the scheme without any entropy fix, the new one
took only about 2% extra time, whereas the approach from [21] needs about 8% more
computational time. As the new scheme is also suitable for computations including dry
areas, we chose it for all the numerical experiments in Section 5.

4 Dry bed modifications

To extend our schemes to computations including dry beds, we have to guarantee two
properties: the positivity of the water height, and the well-balancing under the presence
of dry areas. In literature, this is mainly achieved by two basic ingredients: a positivity
preserving reconstruction and an additional time step constraint. Examples can be found
in [2, 13, 26].

For the FVEG schemes, these measures fall short of the aims. The additional predic-
tor step via the evolution operator prevents a direct proof of a positivity property. One
reason for this is the extended stencil: the flux over an edge is computed using more cells
than the direct neighbours (see Figs. 1 and 3). Another problem is the complex evaluation
of the operators and with them the flux which makes an analysis of the positivity at least
challenging if not impossible.

Regarding the well-balancing, a sophisticated reconstruction is not enough. From
(3.5) it is obvious that the reconstruction does not directly affect the balancing of flux and
source terms. The core of the problem is that the lake at rest described in (2.12) changes
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to

~v=(0,0)T and H(~x)=

{
H0, h(~x)>0,

b(~x), else,
(4.1)

if dry areas are included. Thus for our schemes, we have to find evolution values for the
water and bottom height that can handle properly the occurrence of this situation, i.e.,
which avoid the generation of spurious waves at the shoreline.

In this section, we will present an alternative approach to ensure the positivity of
the water height as well as modifications of the finite volume update and the evolution
operator to ensure the well-balancing property. We make sure that the changes do not
affect the scheme away from dry regions.

4.1 A general positivity preserving FV update

For the derivation of a positivity preserving scheme, we study the first component of the
finite volume update (3.6)

hn+1
i =hn

i −
∆t

∆x ∑
E,E⊂∂Ci

HE, (4.2)

where

HE :=F
h
E (4.3)

is the first component of the flux vector FE. In the following, we will modify the flux HE

in order to guarantee positive water height. The technique presented here is applicable
to arbitrary finite volume fluxes, and the FVEG flux given in (3.4) is only a special case
within this framework.

The basic idea of our method is to cut off the outgoing fluxes as soon as they have
drained all water which has been contained in the cell at the beginning of the time step.
We will call this time the draining time. For convenience, we will later rewrite this as a
reduced time step ∆tE on these edges, but in fact the finite volume update will always
advance the solution by one global time step ∆t.

Thus our first step is to separate the fluxes contributing to the outflow off a cell C
from those contributing to the inflow by setting

H
+
E :=max

{
HE,0

}
, (4.4a)

H
−
E :=min

{
HE,0

}
. (4.4b)

This allows us to rewrite the update (4.2) as

hn+1
i =hn

i −
∆t

∆x ∑
E,E⊂∂Ci

H
+
E

︸ ︷︷ ︸
outflow

− ∆t

∆x ∑
E,E⊂∂Ci

H
−
E

︸ ︷︷ ︸
inflow

. (4.5)



A. Bollermann, S. Noelle and M. Lukáčová / Commun. Comput. Phys., 10 (2011), pp. 371-404 385

Now we introduce the draining time by

∆tCi ,drain :=
∆xhn

i

∑
E,E⊂∂Ci

H
+
E

. (4.6)

Once again, at time tn+∆tCi ,drain all water which was originally contained in cell Ci has
flown out, so

hn
i −

∆tCi ,drain

∆x ∑
E,E⊂∂Ci

H
+
E

︸ ︷︷ ︸
outflow

=0. (4.7)

Suppose now that
∆tCi ,drain <∆t,

for t∈ [tn +∆tCi ,drain, tn+1], no more water can leave the cell, at least not water which was
originally contained in cell Ci. Therefore we assume that there is no outgoing flux for

times beyond the draining time, and introduce the cut-off flux H̃
+

E by

H̃
+

E (t) :=

{
H

+
E (un), for tn ≤ t< tn +∆tCi ,drain,

0, for t> tn +∆tCi ,drain.
(4.8)

Now we integrate the draining flux in time and obtain the cut-off (or draining) finite
volume flux

∆tH+
E,drain(un) :=

∫ tn+1

tn
H̃

+

E (t)dt=
∫ tn+∆tCi,drain

tn
H

+
E (un)dt=∆tCi ,drainH

+
E (un). (4.9)

Before introducing the positivity-preserving modification of the finite volume scheme (3.6),
we rewrite the cut-off in the flux as a local cut-off in the time step. This cut-off time step
is defined for each edge E and takes into account the upwind cell C−(E):

∆tE :=min
{

∆t,∆tC−(E),drain

}
. (4.10)

This leads to the modified general update (3.6)

un+1
i =un

i −
1

∆x ∑
E,E⊂∂Ci

∆tEF E, (4.11)

which, with (4.9), corresponds exactly to the replacement of H
+
E with H

+
E,drain.

Theorem 4.1. Assume we have a conservative finite volume scheme for the solution of the shal-
low water equations that can be written in the form (3.6). Then the modified finite volume scheme
(4.11) with locally cut-off flux (4.9), respectively locally cut-off time step (4.10) is positivity pre-
serving.
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Proof. From the first component of (4.11), combined with definitions (4.10) of the cut-off
time step ∆tE and (4.6) of the draining time ∆tCi ,drain, the water height at the new time
step can be bounded as follows:

hn+1
i =hn

i − ∑
E,E⊂∂Ci

∆tE

∆x

(
H

+
E +H

−
E

)

≥hn
i − ∑

E,E⊂∂Ci

∆tE

∆x
H

+
E

≥hn
i − ∑

E,E⊂∂Ci

∆tC−(E),drain

∆x
H

+
E

=hn
i −

∆tCi ,drain

∆x ∑
E,E⊂∂Ci

H
+
E

=0.

The proof is completed.

Remark 4.1. The time step ∆tE used in the new finite volume update (4.11) and defined
in (4.10) might seem to be local for each edge. We would like to stress, however, that the
finite volume scheme (4.11) still advances the solution by one and the same global time
step ∆t. The apparent contradiction is resolved by considering Eq. (4.9): the time-integral
of the flux is still over the global interval [tn,tn+1]. However, the flux H

+
E,drain is cut-off in

the presence of vacuum, see (4.8).

4.2 Well-balancing at the shoreline: the finite volume update

In the derivation of the positivity preserving finite volume update, we so far neglected
the source term. Its introduction to the new scheme (4.11) rises the question which time
step should be used for the source term. To maintain the well-balancing, the source term
and the gravity driven parts of the flux must be multiplied with the same time step. This
is in contradiction to the definition of ∆tE, which may change for different edges of the
same cell. On the other hand, the reduced time step is not necessary for the momentum
equations. We therefore shift the gravity driven components of F into the source term,
i.e., we define

F
∗(u) :=




hv1 hv2

hv2
1 hv1v2

hv1v2 hv2
2


 and S

∗(u,~x) := gh




0
∂H(~x)

∂x1

∂H(~x)
∂x2


. (4.12)

By replacing F with F
∗ in (3.4) and changing (3.5) to

S
∗
i := g

3

∑
j=1

αj




0
1
2 (hr

j +hl
j)(Hr

j −Hl
j)

1
2(ht

j +hb
j )(Ht

j −Hb
j )


, (4.13)
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where
Hj =hj+bj,

we can rewrite (3.6) as

un+1
i =un

i −
1

∆x

[(
∑

E,E⊂∂Ci

∆tEF
∗
E

)
+∆tS∗

i

]
. (4.14)

This formulation ensures the well-balancing of the scheme even in the case of modified
local time steps. Away from the shoreline, we have

∆tE =∆t, ∀E,

and (4.14) equals the original update (3.6).

Remark 4.2. The rearrangement of the advective and gravity driven parts of the equa-
tions in (4.12) is independent of the scheme, provided the evaluation of advective and
gravity driven parts of the flux can be separated. Whenever this is satisfied for a given
finite volume scheme, it can be rewritten as in (4.14). To obtain a well-balanced scheme,
we only need a discretisation of S

∗ analogously to (4.13) that preserves the lake at rest
solution in the presence of dry boundaries.

4.3 Well-balancing at the shoreline: the evolution operator

The lake at rest situation with dry beds described in (4.1) is only preserved if the numer-
ical flux and source terms in (4.13) are exactly balanced, or equivalently if the evolution
operators reproduce the lake at rest. This is not necessarily the case if the stencil of a
quadrature point contains dry cells, as is demonstrated in Fig. 8. If bi >Ho for a cell in the
stencil, the resulting bottom value from (3.15) can be higher than the free surface in the
wet cells. Using the approximate evolution operators (3.11a) and (3.12a), it is easy to see
that in the lake at rest case the evolved water height is also positive, leading to an even
higher free surface at the quadrature point.

In this case the combined flux and source term S
∗ from (4.13) does not vanish any-

more and introduces unphysical waves starting from the dry boundary.
To avoid the creation of these waves, we modify the data used for the predictor step

at the interface. First, we replace the stencil Sk by S∗
k defined as

S∗
k :=

{
Ci|Ci∈Sk∧hi >0

}
, (4.15)

which allows us to determine the maximal free surface level at ~xk as

H̄k =max
S∗

k

(Hi). (4.16)

Now in (3.14) and for the evaluation of the evolution operators, we set

(H,b,~v)i =(H̄k,H̄k,0), if Ci /∈S∗
k ∧bi > H̄k. (4.17)
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x

H
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x

Figure 8: Lake at rest with dry boundaries. Solid line: free surface, dashed line: bottom topography, filled
circles: H at evolution points, empty circles: B at evolution points. Left: Real situation. Right: Numerical
Representation with evolution values.

In all other cases, we leave the values unchanged. The modification, which is illustrated
in Fig. 9, ensures that the free surface is correctly represented in the source term com-
putation (4.13). We also avoid an unphysical flooding of mounting slopes. In [7, 26], a
similar technique is used on triangles.

H

B

x

Figure 9: Lake at rest with dry boundaries, modification (4.17) for computation of evolution values. Symbols
like in Fig. 8.

Finally, even in the presence of wet, but nearly dry cells in the stencil, the expressions
for h(P) in (3.11a) and (3.12a) can become negative if hi is small in the surrounding cells.
This cannot necessarily be cured by a smaller time step, as substantial parts of the ex-
pressions do not depend on ∆t. With this restriction in mind, we propose the simplest
solution: whenever we have h(P)<0, we set

h(P)=v1(P)=v2(P)=0.

4.4 Treatment of nearly dry cells

In our schemes, we consider a cell Ci to be dry when hi < εH, where we have chosen
εh = 10−8. In dry cells, we set hi = ui = vi = 0. A well known problem occurs when hi

is close to that value: the velocity v= hv/h can become singular due to small numerical
errors in the conserved variables. This leads to very small time steps which in the end can
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basically stop the computation. This problem has been discussed e.g., in [13, 26], where
different strategies have been proposed. In [13], Kurganov and Petrova propose to de-
singularise v by multiplying it with a certain factor f <1 whenever h falls below a certain
threshold εv. In [26], the authors just set v=0 whenever h< εv.

In this work, we use a different approach. As the solution at the dry boundary is
always a rarefaction wave, the flow velocity will grow smoothly when water floods for-
merly dry areas. We will therefore limit the velocity in nearly dry regions depending on
the velocity in flooded areas. We define the reference speed

vre f := max
i:hi>εv

‖~v‖2, (4.18)

where

εv =
∆x

Lre f
and Lre f :=max

i,j
‖~xi−~xj‖∞. (4.19)

Whenever we have hi < εv and ‖~vi‖>vre f , we set the new velocity to

v∗i =vre f

(
2− vre f

‖~vi‖
)

, (4.20)

such that ‖~v‖ is smoothly limited to a value between vre f and 2vre f . The velocity compo-
nents in Ci are then defined as

~vi =v∗i ~d, (4.21)

with ~d the unit vector pointing in the same direction as the vector of discharge (hv1,hv2)T.
This approach appears us to be a better representation of the physics of the flow, as the
velocity at the front is not necessarily vanishing.

4.5 The FVEG algorithm

Before summarizing the whole FVEG algorithm, we will spend a few words on the re-
construction needed to evaluate the evolution operators for piecewise linear data (3.12a)-
(3.12c). As the operators are computed from the primitive variables w, these are a natural
choice for the reconstruction R∆x. Thus in each cell we need the linear function

R∆x(wi)(~x)|Ci
:= w̃i+∇wi ·(~x−~xi)+(wi)x1x2(~x−~xi)1(~x−~xi)2. (4.22)

The derivatives (wi)x1
,(wi)x2 and (wi)x1x2 are computed from the slopes between cell

averages, cf. [20]. In this paper, we use the continuous, piecewise bilinear recovery de-
scribed in [19] without any limiters. The piecewise bilinear functions are uniquely de-
fined by the averages at the cell corners, which are already computed for the evaluation
of the evolution operators, see (3.14). Then the w̃ from (4.22) is exactly the average of the
averages at the cell corners, thus the resulting reconstruction is not necessarily conserva-
tive. We will therefore use the combined evolution operator

E(W) :=Ebilin
(

R∆x(W)
)
+Econst(W−W̃), (4.23)
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where the first order correction Econst(W−W̃) is necessary for stability, see [18] for an
in-depth discussion of this issue.

Although the conservative correction introduces some oscillations at steep fronts, the
piecewise bilinear reconstruction has a clear advantage in the vicinity of dry areas. As
the averaged water height at the cell corners is non-negative via Eqs. (4.15)-(4.17), the
reconstruction is also non-negative by design. In dry cells, we set

wx1
=wx2 =wx1x2 =0, if hi =0. (4.24)

We refer to [19, 20] for further details concerning the reconstruction strategy.
The complete algorithm now reads as follows:

1. From given conservative data un
i and bi at time tn, compute the nonconservative variables

Hn
i ,vn

1,i,v
n
2,i,

2. apply the reconstruction operator R∆x to Hn
i ,vn

1,i,v
n
2,i and bi,

3. compute the evolution operators,

4. evaluate the advection fluxes F
∗
E from (4.12),

5. compute the gravity driven flux and source terms S
∗
i from (4.13),

6. perform the finite volume update (4.14).

We will finish the section by a proof of the well-balancing property of the scheme.

Theorem 4.2. Suppose that we have a numerical solution respecting the lake at rest solution (4.1)
with dry boundaries. Then the FVEG scheme (4.14) together with the modifications described in
Section 4.3 preserves this state.

Proof. For the lake at rest state with~v=(0,0)T , the advective parts of the fluxes F defined
in (2.2) and F

∗ defined in (4.12) are all zero. Thus for all edges we have ∆tE = ∆t and
the original finite volume update (3.6) and the modified update (4.14) are the same. Then
Theorem 2.1 from [19] states that the scheme is well-balanced provided that the predicted
point values used for the flux evaluation also satisfy the lake at rest situation.

We will now show that all data used for the reconstruction and for the evaluation of
the predictor step satisfies the requirements of Theorem 3.1 from [19]. From definitions
(4.15) and (4.16), we see that for all evolution points the averaged free surface is computed
as H0, which is the free surface level in all flooded cells. As all velocities are zero by (4.1)
respectively (4.17), the averaging also returns zero. Finally, the reconstruction procedure
is based on the averaged point values and therefore in all flooded cells, we have

wx1
=wx2 =wx1x2 =0.

In dry cells we have the same result by definition (4.24). Thus we can apply Theorem 3.1
from [19] and this concludes our proof.
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5 Numerical results

5.1 Dam break over dry bed

This is a classical test case where we simulate the complete break of a circular dam sep-
arating a basin filled with water from a dry area. The computational domain is [0,100]2

and we set ∆x = 1, the water filled basin is located at r = ‖~x‖≤ 60. In the basin we set
H0 =10 and elsewhere H0 =0 and the initial velocity is ~v0 =(0,0)tr in the whole domain.
Reference solutions can be found in [1, 26, 28].

Figure 10: Circular dam break over dry bed, solution at t=1.75s. Left: 3D view. Right: 30 contour lines
between H =10.2 and H =0.2.

Figure 11: Circular dam break over dry bed, solution at t=1.75s with r = ‖~x‖2. Left: free surface. Right:
velocity.

In Fig. 10, we see a 3D view and contour lines of the water height, Fig. 11 shows the
water height and velocity at different lines through the domain. The resulting rarefaction
wave is almost perfectly symmetric, the oscillation due to the reconstruction strategy
is restricted to three percent of the water height (we have maxi Hi = 10.269). We see a
small bump at the drying wetting front, but the front position and velocities are well
represented. Thanks to the new entropy fix, there is no unphysical shock visible in the
transcritical region.
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5.2 Wetting/drying on a sloping shore

This test case was proposed by Synolakis in [30] and computed in e.g., [23,26]. It describes
the run-up and reflection of a wave on a mounting slope, with the initial solution given
as

H0(~x)=max{ f ,b(~x)}, ~v0(~x)=
(√

g

D
H0(~x), 0

)T
, (5.1)

where

f (~x)= D+δsech2(γ(x1−xa)). (5.2)

As in [23, 26], we set D=1, δ=0.019 and

γ=

√
3δ

4D
, xa =

√
4D

3δ
arcosh

√
20. (5.3)

For the bottom topography we have

b(~x)=b(x1)=





0, x1 <2xa,

x1−2xa

19.85
, else.

(5.4)

The computational domain is Ω =[0,80]×[0,2] and the grid size ∆x=0.04. We prescribe
open boundary conditions in x1 direction and periodic ones in x2 direction.

In Fig. 12, we present the water height during the run-up and drying process together
with the analytical solution. Details on how to obtain the analytical solution can be found
in [29, Section 3.5.2]. At time t=9, the wave has almost reached the shoreline, and shortly
after, at t = 17, the wave reaches the maximal run-up on the shore and the drying pro-
cess starts. During the run-up, the agreement with the analytical solution is excellent.
The drying process is reproduced very accurate, too, although compared to the run-up
process, there are small deviations between numerical and analytical solution with re-
spect to the minimum of the water height at t = 23. At t = 28, where the reflected wave
starts leaving the domain, these deviations persist, but stay very small. During the whole
simulation, no oscillations or other perturbations at the wetting/drying front are visible,
demonstrating the well-balancing capabilities of the scheme. The scheme also returns
quickly to the lake at rest solution presented in the last picture (t =80). where the water
surface is almost flat. All in all, the results are very satisfying and compare well to the
other numerical solutions presented in [23, 26].

5.3 Vacuum occurrence by a double rarefaction wave over a step

To test how the scheme handles the drying of formerly flooded areas, we compute a test
case proposed in [10]. It describes two separating waves over a non-flat bottom. The
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Figure 12: Drying/wetting on a sloping shore, free surface. Solid line: numerical results. Dashed-dotted line:
Analytical result described in [30]. Dashed line: bottom height. From top left to bottom right: Solutions at
times t=0, t=9, t=17, t=23, t=28 and t=80.

computational domain is a pseudo-1D channel given as Ω = [0,25]×[0,0.5]. We set the
initial free surface height to H0 =10 and the discharge and bottom topography to

hv1(~x,0)=

{
350, if x1 >50/3,
−350, else,

b(~x)=

{
1, if 25/3< x1 <25/2,
0, else.

(5.5)

Like in [10], the computation is performed on a grid with 300 grid cells in x1 direction.

In Fig. 13, we show the free surface and the discharge of the solution at different times
t. At time t = 0.5, several waves have arisen from the interaction of the supersonic flow
with the bottom topography. Due to the reconstruction strategy described in Section 4.5,
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Figure 13: Vacuum occurrence, solution at different times. Left: free surface. Right: discharge.

the rarefaction waves are smoothed out at the bottom and show small oscillations at the
top. However, for the following times we see an accurate representation of the waves
flowing over the hump (t = 0.25) and leaving the domain (t = 0.45,0.65). No spurious
modes are introduced during the drying process, neither in the flat region nor at the
edges of the hump.

5.4 Thacker’s periodic solutions

We present two exact solutions of (2.1) proposed by Thacker in [32]. They both describe
oscillations of a free surface in a parabolic basin with a free shoreline. The basin is defined
as

b(~x)=b(rc)=−H0

(
1− r2

c

a2

)
. (5.6)

rc defines the distance from the basin’s centre, H0 the height of the centre and a is a
parameter. We will define two functions f (~x,t) that describe solutions of (2.1) with

h(~x,t)=max
{

f (~x,t)−b(~x), 0
}

.

Both test cases will be computed on the domain Ω=[−2,2]2. The presented results have
been performed with a grid size of ∆x =0.4. Reference solutions can be found in [23, 25,
26].

5.4.1 Thacker’s curved solution

The first function results in a curved oscillation over b, it reads

f (rc,t)= H0

{
−1+

√
1−A2

1−Acos(ωt)
− r2

c

a2

[
1− 1−A2

(1−Acos(ωt))2

]}
. (5.7)

Here, ω =
√

8gH0/a2 is the frequency and for a given r0 >0, A is the shape parameter

A=
a2−r2

0

a2+r2
0

.
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For the computation we set a = 1, H0 = 0.1 and r0 = 0.8, which results in an oscillating
period of T≈2.22. The initial velocity is set to ~v0 =(0,0)tr.

5.4.2 Thacker’s planar solution

The second solution is a planar surface rotating around the basin. The corresponding
function is

f (~x,t)=
ηH0

a2

(
−η+2(~x−~xC)·(cos(ωt),sin(ωt))tr

)
, (5.8)

with ω =
√

2gH0/a2 the frequency and η another parameter. Here, we set a=1, H0 =0.1
and η=0.5. The resulting period is then T≈4.44. The initial velocity in the wetted domain
is given as ~v0 =(0,ηω)tr.

Figure 14: Thackers curved solutions. Left: t= T. Right: t=3T.

Figure 15: Thackers planar solutions. Left: t= T. Right: t=3T.

We present the water height after one and three oscillations along the line x2 = 0 in
Fig. 14 for the curved solution and in Fig. 15 for the planar solution. The exact solution is
very well reproduced, independent of the shape of the initial solution. We can see a slight
smearing after three periods for the curved solution, where the maximum value at the
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centre is reduced and the drying/wetting interface has been pushed outward. Similarly,
the interface of the planar solution has also moved a little bit inwards at t = 3T. Again,
for both solutions there is no production of spurious waves at the dry boundary.

Table 1: Experimental order of convergence (EOC) for Thackers curved solution. Error in water height in
different norms.

# cells L∞ EOC L1 EOC L2 EOC
25 × 25 9.8038e-03 1.4526e-02 9.2884e-03
50 ×50 3.6191e-03 1.44 3.9038e-03 1.90 2.7762e-03 1.74

100 ×100 1.5252e-03 1.25 1.3127e-03 1.57 9.5937e-04 1.53
200 ×200 1.1820e-03 0.37 4.6649e-04 1.49 3.8549e-04 1.32
400 ×400 5.3221e-04 1.15 1.7806e-04 1.39 1.4907e-04 1.37

Table 2: Experimental order of convergence (EOC) for Thackers planar solution. Error in water height in
different norms.

# cells L∞ EOC L1 EOC L2 EOC
25 × 25 3.3855e-02 4.6507e-02 2.7148e-02
50 ×50 1.7455e-02 0.96 1.8179e-02 1.36 1.1660e-02 1.22

100 ×100 1.0543e-02 0.73 1.0486e-02 0.79 6.6938e-03 0.80
200 ×200 8.2376e-03 0.36 8.3640e-03 0.33 5.4658e-03 0.29
400 ×400 7.1238e-03 0.21 7.8559e-03 0.09 5.1747e-03 0.08

In Tables 1 and 2 we present a convergence study for the two test cases. The experi-
mental order of convergence for the curved solution is well better than one, which meets
our expectations. The errors are slightly better than in [25].

For the planar solution, however, the order quickly drops to zero. The problem seems
to raise from the boundary of the wetted domain, where we have supersonic velocities
tangential to the bottom slope. So the problem might be related to the evolution oper-
ators, as they produce inexact solutions in other supersonic situations as well, see the
discussion in Sections 3.4 and 6.

5.5 Wave run-up on a conical island

In this case we simulate the run-up of a solitary wave over a conical island. It has been
performed experimentally at the U.S. Army Engineer Waterways Experiment Station,
see [5,6]. The computational domain is Ω=[0,25]×[0,30] and we set ∆x=0.2. The centre
of the island is located at ~xC =(12.5,15) and with r=‖~x−~xC‖ its shape is given by

b(r)=





0.625, r≤1.1,
3.6−r

4 , r≤3.6,

0, else.

(5.9)

The initial free surface is given by H0 =0.32. We start by giving an example of the well-
balancing capabilities of the scheme and compute the lake at rest situation until t=5. The
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Figure 16: Circular island, lake at rest situation at t=5. Left: whole domain. Right: zoom on island.

results are shown in Fig. 16. The lake at rest is perfectly preserved, which is confirmed
by the errors given in Table 3. For all the 3D views of this example, the vertical axis
representing the free surface was scaled by a factor of 25 to emphasize the results.

Table 3: Lake at rest around a conical island. Errors at t=5.

L∞ L1 L2

eH 4.44089e-16 6.50361e-14 3.14147e-15
ev1 2.69215e-15 2.53222e-13 1.24917e-14
ev2 2.92617e-15 2.73056e-13 1.33148e-14

We now compute the actual wave where at time t=0 a wave enters the computational
domain at x1 =0. The height of the wave is given by

H(0,y,t)= H0+αH0

( 1

cosh(ξ
√

gH0/L(t−3.5)

)2
,

with

L=15, α=0.1 and ξ =
√

3α(1+α)L2/(4H2
0),

cf. [12, 23].
We present 3D views of the solution in Figs. 17, 18 and 19. Fig. 17 shows the wave ap-

proaching the island and the instant of its maximal run-up. Here, as in all the following
figures, the region in front of the wave remains completely unaffected, once again con-
firming the well-balancing of the scheme. Due to the run-up, the wave is slowed down at
the island, finally resulting in a reflection of the wave presented in Fig. 18. This leads to
the formation of two symmetric waves surrounding the island with a noticeable run-up
also on the sides of the island. Away from the island, we observe the circular reflected
wave approaching the boundaries of the computational domain. Behind the island, the
lateral waves reunite and produce a second peak in the run-up on the lee side of the is-
land, see Fig. 19. Finally, the wave leaves the domain and the surface returns to the lake
at rest, as shown in the last picture.
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Figure 17: Run-up on a circular island. Left: wave approaching island, t = 7.9. Right: run-up at front of the
island, t=9.1.

Figure 18: Run-up on a circular island. Left: lateral run-up, t=10.7. Right: symmetric waves around the island,
t=12.1.

Figure 19: Run-up on a circular island. Left: run-up behind the island, t = 13.7. Right: reestablished lake at
rest at t=40.

Moreover we show the evolution of the free surface at chosen points in Fig. 20. The
position of the gages is given by ~x3 = (6.36,14.25), ~x6 = (8.9,15), ~x9 = (9.9,15), ~x16 =
(12.5,12.42) and ~x22 =(15.1,15). For comparison we also display the measured data ob-
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Figure 20: Run-up on a circular island. Time variation of the free surface η=H−H0 at wave gages 6, 9, 16, and
22 of experiment from [6]. Dotted line: experimental data from [5]. Solid line: FVEG scheme. Dashed-dotted
line: RD scheme from [26].
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Figure 21: Run-up on a circular island. Time variation of the free surface η = H−H0 at wave gages 6, 9,
16, and 22 of experiment from [6], convergence of FVEG scheme. Dashed-dotted line: ∆x = 1/8 Dotted line:
∆x=1/16 Solid line: ∆x=1/32.
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tained from [5] as well as the results from the residual distribution (RD) scheme presented
in [26], which have been computed on a comparable grid†. Both numerical schemes pro-
duce steeper wave fronts than the experiment, which results from the lack of dissipation
in the shallow water model. The FVEG scheme shows a stronger steepening than the
RD scheme, and also predicts slightly higher waves at all gages. At gages 3 and 6, the
run-down process is pretty similar with both schemes, while the FVEG scheme returns
quicker to a constant water height. Both schemes produce less accurate results at gage 9.
The FVEG line is shifted to the upper left, thus resulting in a less pronounced run-down
and again it returns quickly to a constant height. The RD scheme provides smoother re-
sults with a better approximation of the maximal run-down, but stays below the original
water height for a longer period. At gage 16, the FVEG scheme gives a quite accurate
representation of the wave, where the RD scheme introduces an undershoot after the
first wave. At the last gage, the graph of the FVEG scheme is similar to the measurement,
but somewhat shifted to the upper right. This is probably due to the over-prediction of
the maximal wave height. The RD schemes gives a better approximation of the maximal
height, but the following graph is smoothed out stronger. Finally, in Fig. 21, we present
solutions at the gages for different grid resolutions, computed with the FVEG scheme.
We can clearly see that the scheme converges. The steepening of the fronts becomes more
pronounced and the perturbations during the run-down vanish on the finer grids. The
bump which is visible during the rundown at gage 22 on the finest grid is no numeri-
cal issue. It is a wave that results from the run-up at the front of the island which then
surrounds the island slightly slower than the initial wave and is not resolved on coarser
meshes. However, the main features are already captured on the relatively coarse grid
used for the simulation in Fig. 20. All in all, the FVEG scheme produces a good repro-
duction of the wave, and the results are clearly competitive to other numerical schemes
like the ones presented in [12, 26].

6 Conclusions and outlook

We presented an approach to ensure positivity of the water height for general finite vol-
ume schemes without affecting the global time step. This was achieved by limiting the
outgoing fluxes of a cell whenever they would create negative water height. Physically,
this corresponds to the absence of fluxes in the presence of vacuum. A splitting of advec-
tive and gravity driven parts of the flux preserved the well-balancing. In the context of
FVEG schemes, we applied these techniques to develop a positivity preserving scheme
which is well-balanced in the presence of dry areas. The scheme can also properly handle
sonic rarefaction waves, thanks to a new entropy correction based on the evolution oper-
ators. We tested the scheme on a number of problems and in general obtained satisfying
results.

†The unstructured triangulation used in [26] consists of 19824 elements, whereas the grid used here has
18750 cells.
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However, the discussion of the entropy fix (see Section 3.4) revealed that in supersonic
or transonic regimes the linearised wave cones used in the EG operator do not reflect
the physical domain of dependence adequately. We conjecture that this is the origin of
the loss of convergence for Thacker’s planar solution (see Section 5.4.2), since here the
velocities tangential to the boundary are larger than the (vanishing) gravitational speeds.
Two issues should be analyzed further. As mentioned above, the first is the linearisation
strategy used in (3.8). With the entropy fix from 3.4, we made a first step towards a
more sophisticated strategy adapted to the state of flow. The other issue is related to
the approximation of the resulting linearised evolution operators. The approximations
used here and in [19] are based on the approximations from [18], where they have been
developed for the wave equations. Now for this system the second eigenvalue is always
zero, so the sonic cone is never shifted in space with respect to the prediction point. An
approximation taking this shift into account should give more accurate results in the
critical regime.

Another possibility to improve the results is the introduction of friction terms. This
could be helpful to control the velocities at the dry boundary by slowing down the waves
near the shoreline. Finally we will combine the new scheme with the adaptation tech-
niques presented in [4].
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