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Abstract. We propose a deterministic solver for the time-dependent multi-subband
Boltzmann transport equation (MSBTE) for the two dimensional (2D) electron gas in
double gate metal oxide semiconductor field effect transistors (MOSFETs) with flared
out source/drain contacts. A realistic model with six-valleys of the conduction band
of silicon and both intra-valley and inter-valley phonon-electron scattering is solved.
We propose a second order finite volume method based on the positive and flux con-
servative (PFC) method to discretize the Boltzmann transport equations (BTEs). The
transport part of the BTEs is split into two problems. One is a 1D transport problem in
the position space, and the other is a 2D transport problem in the wavevector space. In
order to reduce the splitting error, the 2D transport problem in the wavevector space
is solved directly by using the PFC method instead of splitting into two 1D problems.
The solver is applied to a nanoscale double gate MOSFET and the current-voltage char-
acteristic is investigated. Comparison of the numerical results with ballistic solutions
show that the scattering influence is not ignorable even when the size of a nanoscale
semiconductor device goes to the scale of the electron mean free path.

AMS subject classifications: 35Q20, 35Q40, 65Z05
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1 Introduction

The down-scaling is an important engine in the semiconductor industry. With the size
of the semiconductor enters the deep sub-micro range, the conventional bulk MOSFET
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faces great challenge to be scaled down to 40 nm because of the short channel effects
(SCEs) [3]. The SCEs modify the threshold voltage and the electron drift characteristics
in the channel, so cause considerable distress for the device designers. The double gate
(DG) MOSFET is a promising structure for next generation semiconductors because it
provides an extra gate to suppress the SCEs. So its simulation has drawn the interest of
many researchers, e.g., [1, 6, 15, 19].

The double gate MOSFETs with a channel length greater than the mean free path of
electrons can still use the semi-classical transport equation in the transport direction. But
when the thickness of the Si body between the two gate stacks becomes thin, the quantum
confinement results in energy quantization. The quantization’s influence to the electron
transport can not be disregarded. The quantum models like the nonequilibrium Green
function (NEGF) method [7], the density matrix method and the Wigner transport equa-
tion are not mature enough for the devices with a channel length greater than the mean
free path of electrons. These quantum-mechanical methods can be applied to the RTD
and quantum dots, wires and wells and molecular devices where the electron scattering
can be neglected [24]. The model under consideration in this paper solves the multi sub-
band Boltzmann transport equation (BTE) self-consistently with the Schrödinger equa-
tion and the Poisson equation. So we can call it the Boltzmann-Schrödinger-Poisson (BSP)
system.

Many deterministic solvers for the BTE have been proposed to solve the Boltzmann-
Poisson system, such as the WENO solver [5], the spherical harmonic expansion (SHE)
method [25], the deterministic particle method [8], the finite-difference scheme [10, 18].
The positive and flux conservative (PFC) method using a splitting approach (which splits
a multi-dimensional problem into many 1D problems) has been proposed in [12] to solve
the transport part of the BTE (the Vlasov equation). The PFC method is not only con-
servative, but also preserves the positivity and the maximum value of the distribution
function. Recently, Ben Abdallah et al. present a deterministic solver of the Boltzmann-
Schrödinger-Poisson system with an effective valley and a very simple scattering term
(relaxation time approximation) [1]. The quantum confinement in the z-direction forms
2D electron gas (2DEG), so the scattering should be considered as 2Dk scattering. How-
ever, the deterministic methods for the Boltzmann-Schrödinger-Poisson system with 2Dk
scattering has not been well investigated.

The relaxation time approximation is questionable when the size of the devices is
comparable with the mean free path of electrons and the system is far away from the
equilibrium (the high source-drain voltage VDS often drives the system far away from
the equilibrium). High doping density requires the consideration of the Pauli exclusion
principle. In this paper, we present a deterministic solver for a more complete time-
dependent Boltzmann-Schrödinger-Poisson system. Here ”more complete” means in two
aspects: (1) the six valleys of ∆-band instead of an effective valley of silicon are consid-
ered; and (2) the intra-valley and inter-valley phonon-electron 2Dk scattering including
the Pauli exclusion principle is considered, instead of only a relaxation time approxima-
tion of scattering. We include an acoustic phonon and an optical phonon for the intra-
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valley scattering and both f -type and g-type scattering for the inter-valley scattering.

For the scattering part, we use the coordinate transformation (kx,ky) → (ω,θ), and
the property of δ-function in the scattering operator to integrate the scattering integral
with respect to the energy ω exactly. Then, by integrating over a control volume, we
obtain a numerical scheme for discretization of the scattering integral which preserves
the property that the scattering mechanism only transfers an electron from one state to
another state and does not change the number of electrons in a space mesh.

We use a second order time splitting method [23] to split the time-dependent BTE into
the transport part and the scattering part. Since we have adopted the coordinate trans-
formation (kx,ky)→ (ω,θ) to simplify the integration of the scattering part, the transport
part of the BTE is three dimensional uncoupled problem (x, ω, θ) instead of being a two
dimensional problem (x, kx) where ky can be treated as a parameter. We use the PFC
method to solve the transport part. In order to make use the fact that the force is only
nonzero in the x-direction and to reduce the splitting error, we split the transport part
into two problems (a 1D problem for x-advection and a 2D problem for ω-/θ- advection)
instead of split it into three 1D problems (x-advection, ω-advection, θ-advection).

The initial values (subbands, eigen wavefunctions, etc) are obtained by solving one of
two self-consistent Schrödinger-Poisson systems described in Subsection 2.3. Due to high
doping density, the distribution functions at the source and drain contacts are assume to
be the Fermi-Dirac distributions instead of the Boltzmann distributions. In order to ob-
tain a current-voltage curve, the device under a series of source-drain bias voltages from
low to high needs to be simulated. The potential and distribution functions obtained at a
low voltage are used as the initial values of the next higher voltage. A standard centered
finite difference method is used to discretize the Poisson equation and Schrödinger equa-
tions. The deterministic solver is parallelized with the help of Trilinos [16] to reduce the
computation time.

The paper is organized as follows. In Section 2, we describe the time-dependent
Boltzmann-Schrödinger-Poisson system. In Section 3, the numerical scheme is described,
with emphasis on the finite volume method based on the PFC method for the ballistic
part of the BTE. In Section 4, numerical results of simulating an ultra thin DG MOSFET
are given. A conclusion is provided in the final section.

2 Time-dependent multi-subband BTE model

A double gate (DG) MOSFET with flared out source/drain contacts is illustrated in Fig. 1,
where the real flared out source/drain contacts are not plotted. AB/FG in Fig. 1 are
the ends of the heavily doped region that are connected to the flared out source/drain
(S/D) contacts. We will treat AB and FG as the ”ideal” S/D contacts and apply some
appropriate boundary conditions at AB/FG as in [20]. The silicon layer is doped with
a heavy doping density ND = NSD or a light doping density ND = Nb. The two heavily
doped regions have the same length LSD and we call them the S/D extensions. The
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Figure 1: Schematic of the thin body DG MOSFET structure. The device is assumed to be infinity wide in
the y-direction, and the potential is assumed to be translationally invariant along the width. The silicon layer
is stacked by two oxide layers. The two squares blend oblique lines denote the heavily doped regions (they are
called S/D extensions). AB/FG are connected to the real source/drain contacts through a flared out region (a
contact with a flared out region is called a flared out contact). DE/HI are connected to the lower/upper gate
electrodes. Elsewhere are the Oxide/Air interfaces.

lightly doped region between two heavy doped regions is called the channel region and
its length is LCh. In the channel region, a potential barrier will be formed. DE/IH in
Fig. 1 are connected to the lower/upper gate contacts which are used to modulate the
height and shape of the barrier and further to adjust the current from source to drain IDS.
The total distance between the ”ideal” S/D contacts L = 2LSD+LCh is the length of the
part of the device we simulate. The thickness of the silicon layer is denoted by TSi. In this
paper, we set TSi =3nm. For such a thin silicon channel, the quantum effect resulted from
the quantum size confinement plays an important role in studying the characteristics of
a device. The thickness of each oxide layer is TOx.

We introduce the multi-subband BTE (MSBTE) in this section shortly here. One can
refer to [1, 20, 24] for more information of MSBTE. MSBTE consists of a set of coupled
BTEs describing transport in the subbands

∂ fi

∂t
+vi

∂ fi

∂x
+

Fi

h̄

∂ fi

∂kx
=

∂ fi

∂t

∣

∣

∣

Scat
, x∈ (0,L), (2.1)

where fi(t,x,k) is the probability distribution function of the wavevector k at the position
x in the subband i. Coupling occurs due to inter-subband scattering. The electron trans-
port is along the x direction. We choose the left bottom point C in Fig. 1 as the original
point of the xOz plane. The wave vector k = (kx,ky). The subband index i can be split
into a valley index ν and an index j, which is the index of the eigenvalues of the effective
mass Schrödinger equation for the ν’th valley. We choose the six ellipsoidal parabolic ∆

valleys. vi is the velocity of electrons in the subband i

vi =
1

h̄

∂Ei

∂kx
, (2.2)
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and Fi is the force in the x direction and is equal to

Fi =−∂Ei

∂x
, (2.3)

where Ei is the total energy of the electron at (x,k) in the subband i (see Eqs. (2.6) and
(2.7)).

The electrons in the real S/D contacts (electron reservoirs) are in equilibrium char-
acterized by a Fermi level EF1/EF2. The source Fermi level EF1 will be set to be 0 in
this paper. The Fermi level offset between the source and drain contacts is equal to the
applied S/D bias voltage VDS times −qe, i.e., EF2−EF1 =−qeVDS, where qe denotes the
positive electron charge. AB/FG in Fig. 1 are contacted to the S/D contacts through a
flared out region. The potential at the AB/FG may not equal to the potential at the real
source contact, but the electrons at the AB/FG injected from the real flared out contacts
are assumed to have the same the Fermi level as that in the real contacts which are ex-
ternal to the region being simulated [20]. That is why we use EF1 and EF2 in Eq. (2.4) to
express the probability distribution density of the injected electrons. The potential at the
AB/FG is allowed to float to some value in order to fulfill the charge neutrality at the
AB/FG. More about this will be explained when we discuss the boundary conditions for
the Poisson equation. Therefore we set the inflow distribution function at AB/FG to be

fi(t,0,k)=
[

1+exp
(Ei(0)−EF1

kBT

)]−1
, if kx >0, (2.4a)

fi(t,L,k)=
[

1+exp
(Ei(L)−EF2

kBT

)]−1
, if kx <0, (2.4b)

where kB is the Boltzmann constant, and T is the lattice temperature. We use Vt =kBT/qe

to denote the thermal voltage. In this paper, T =300 K and the values of Vt at T =300K is
given in Table 1. The initial distribution fi(0,x,k) will be given by solving a Schrödinger-
Poisson system described in Subsection 2.3.

The device cross-section is partitioned into Nx sections along the channel direction x.
At each section, the Schödinger equation

[

− h̄2

2mz,ν

∂2

∂z2
−qeV(t,x,z)

]

ϕν,j,x(z)=Eν,j,x(t)ϕν,j,x(t,z), z∈ (TOx,TOx+TSi) (2.5)

is solved in the z direction (the confinement direction). Here x is the position of one of
the slices illustrated in Fig. 1, V(t,x,z) is the electrostatic potential and mz,ν is the effective
mass in the z-direction for the electrons in the ν’th valley. mz,ν is either equal to the
transverse effective mass mt = 0.19m0 or the longitudinal effective mass ml = 0.916m0,
where m0 is the free electron rest mass. The wavefunction at the Si/Oxide interface is
assumed to be zero, i.e., the boundary condition is ϕ(TOx)= ϕ(TOx+TSi)= 0. The eigen
energy Eν,j,x(t) and the eigen wavefunction ϕν,j,x(t,z) are obtained at each position x. The
t variable in V(t,x,z), Eν,j,x(t) and ϕν,j,x(t,z) will be omitted for brevity. We then regard
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Eν,j,x as a function of x and write it into Eν,j(x). It is easily seen that Eν,j(x) consists of
two parts. One is from the quantum confinement in the z direction, and the other is from
the electrostatic potential energy −qeV(x,z). The total energy of the electron at (x,k) in
the subband (ν, j) is

Eν,j(t,x,k)=Eν,j(t,x)+ων(k), (2.6)

where ων(k) is the dispersion relation. In this paper, we approximate the dispersion
relation with the parabolic approximation

ων(k)=
h̄2k2

x

2mx,ν
+

h̄2k2
y

2my,ν
, (2.7)

where mx,ν/my,ν are the effective mass in the x/y direction of the ν’th valley.
To include the change of the potential due to the redistribution of electrons, we solve

the Poisson equation

−∇x,z ·
(

ǫ(x,z)∇x,zV(x,z)
)

=Q, (x,z)∈ (0,L)×(0,Lz), (2.8)

in both the silicon layer and two oxide layers, where Lz =2TOx+TSi is the total thickness
of the device, V(x,z) is the electrostatic potential, and ǫ(x,z) is the permittivity of the
material and ǫ(x,z)=ǫSi =3.9ǫ0 in the silicon layer, and ǫ(x,z)=ǫSiO2

=11.7ǫ0 in the oxide
layer. Q is the charge density

Q=

{

qe

(

ND(x)−n(x,z)
)

, if z∈ (TOx,TOx+TSi),

0, else,
(2.9)

where the doping density is only nonzero in the silicon layer and is either equal to the
heavy doping density NSD in the S/D extensions or Nb in the channel region. The electron
density n(x,z) in the silicon layer is calculated by

n(x,z)=
1

2π2 ∑
i

∫∫

R2
fidkxdky

∣

∣ϕi,x(z)
∣

∣

2
, (2.10)

which means the electron density at each slice x in the subband i is proportional to the
square modulus of the corresponding eigen wavefunction in the z-direction. The electro-
static potential V, the charge density Q and the electron density n are all time-dependent,
while we have omitted t variable for brevity.

For the Poisson equation, the boundary conditions at the gate electrodes (Dirichlet)
and at the Oxide/Air interfaces (Neumann) are standard. At the Oxide/Gate interface
DE/HI in Fig. 1, the potential is equal to the upper/lower gate voltage VGu,S/VGd,s. At the
Oxide/Air interfaces, the natural boundary condition ∂V(x,z)/∂n=0 is applied, where n

is the unit outward norm of the boundary. Boundary conditions at the interface between
the S/D extensions and the flared out contacts are dealt with a simple effective method
proposed in [20]. Instead of including the flared out region to explore the resistive drops
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that may occur at the wide/narrow transition, the authors of [20] use the natural bound-
ary condition at AB/FG in Fig. 1. In [20], an argument is given why such a boundary
condition works. One important assumption in [20] is that the Fermi levels at the flared
out S/D contacts are fixed because the S/D contacts are electron reservoirs and the elec-
trons flying in/out of the device do not influence the electron distribution in the S/D
contacts. When the source-drain voltage VDS is large, the electrons at the S/D extensions
is far from the equilibrium. We take the source extension as an example to explain this
point. The distribution function at kx <0 is much less than the distribution at kx >0 due
to few electrons are reflected by the build-in barrier lowered by the high VDS. But at AB
in Fig. 1, the electrons with kx > 0 are injected from the real flared out source contact,
and have the same Fermi level as the source contact (see (2.4)). So the neutrality at the
AB can not be fulfilled if a fixed potential is used here. Therefore the authors of [20] use
a floating boundary condition to allow the potential to float to an appropriate value to
fulfill the neutrality and thus define their ”ideal” contacts. Scattering occurs much fewer
in nanoscale devices (excluding the flared out contacts) than in the traditional scattering-
dominated long channel devices, so the scattering can not scatter enough electrons to
kx <0 in the source extensions. Therefore the floating boundary conditions are also used
even when the scattering exists.

Up till now we have introduced a set of BTEs in many subbands, and Schrödinger
equations at all slices, and a two dimensional Poisson equations. Next, we will introduce
the scattering term (∂ fi/∂t)|Scat including the intra-valley scattering and the inter-valley
scattering of the 2DEG [2].

2.1 Scattering of the 2DEG

Lattice vibrations are an inevitable source of scattering and can dominate the scatter-
ing near room temperature. We consider three types of scattering by lattice vibrations,
i.e., the intra-valley acoustic phonon-electron (AP) scattering, the intra-valley optical
phonon-electron (OP) scattering and the inter-valley optical phonon-electron (IOP) scat-
tering.

The right hand side of the BTE (2.1) can be written into the sum of different scattering
terms

∂ fi

∂t

∣

∣

∣

Scat
=∑

χ

∂ fi

∂t

∣

∣

∣

χ
, (2.11)

where the index χ is used to denote different kinds of scattering. One kind of scattering
(∂ fi/∂t)|χ in (2.11) can be written into

∂ fi

∂t

∣

∣

∣

χ
=∑

i′

1

(2π)2

∫∫

R2
S

Absp
χ (k′,i′;k,i) fi′(t,x,k′)

(

1− fi(t,x,k)
)

d2k′

−∑
i′

1

(2π)2

∫∫

R2
SEmss

χ (k,i;k′,i′) fi(t,x,k)
(

1− fi′(t,x,k′)
)

d2k′, (2.12)
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where S
Absp
χ (k′,i′;k,i) is the scattering rate of the electron transition from the state (k′,i′)

to the state (k,i) (in short (k′,i′)→(k,i)) due to the absorption of a phonon with an energy
Eχ, and SEmss

χ (k,i;k′,i′) is the scattering rate of the electron transition (k,i)→(k′,i′) due to
the emission of a phonon with an energy Eχ. In short, we can express the meaning of

S
Absp
χ (k′,i′;k,i) by

S
Absp
χ (k′,i′;k,i)= rate of (k′,i′)

Absorption Eχ−−−−−−−→ (k,i),

and SEmss
χ (k,i;k′,i′) by

SEmss
χ (k,i;k′,i′)= rate of (k′,i′)

Emission Eχ−−−−−−→ (k,i).

Note that S
Absp
χ (k′,i′;k,i) and SEmss

χ (k,i;k′,i′) are only nonzero when Ei′(x,k′)+Eχ =

Ei(x,k) due to the requirement of the energy conservation (see (2.14a)). The S
Absp
χ part of

(2.12) denotes the electrons at the state (k,i) are increased due to the electrons at the state
(k′,i′) absorbing a phonon (Eχ). We allow Eχ < 0 to include the case that the electrons
at the state (k,i) are increased due to the electrons at the state (k′,i′) emitting a phonon.
The same way is done to the SEmtt

χ part of (2.12). We take an example to explain this. For
example, there are two kinds of scattering with χ=1 and χ=2 in (2.11) corresponding to
the OP scattering with a phonon energy h̄ωop (given in Table 1). First, we set Eχ=1= h̄ωop,
for the first kind of scattering, so we have

S
Absp
χ=1 (k′,i′;k,i)= rate of (k′,i′)

Absorption h̄ωop−−−−−−−−→ (k,i),

SEmiss
χ=1 (k,i;k′,i′)= rate of (k,i)

Emission h̄ωop−−−−−−−→ (k′,i′).

Then we set Eχ=2 =−h̄ωop, for the second kind of scattering. From the physical meaning
of the scattering rate, we can obtain

S
Absp
χ=2 (k′,i′;k,i)=SEmss

χ=1 (k,i;k′,i′), SEmss
χ=2 (k,i;k′,i′)=S

Absp
χ=1 (k′,i′;k,i) (2.13)

for the second kind of scattering. The relation (2.13) describes that ”absorbing” an imag-
inary phonon with a negative energy is equivalent to emitting a real phonon with a pos-
itive energy. Since we can make use of the relation (2.13) to get the scattering rates for
Eχ < 0 using the scattering rates for Eχ > 0, we only need to give the formulas of the
scattering rates for Eχ >0.

The OP scattering rates for Eχ >0 can be expressed into

S
Absp
χ (k′,i′;k,i)=Kχδ

(

Ei′(x,k′)+Eχ−Ei(x,k)
)

Nχ Iii′(x), (2.14a)

SEmss
χ (k,i;k′,i′)=S

Absp
χ (k′,i′;k,i)(Nχ+1)Nχ

−1, (2.14b)



T. Lu, G. Du, X. Liu and P. Zhang / Commun. Comput. Phys., 10 (2011), pp. 305-338 313

where

Kχ =
πD2

χ

ρ0ωχ
, (2.15a)

Iii′(x)=
∫ TSi

0
|ϕi,x(z)ϕi′,x(z)|2dz, (2.15b)

Nχ =
(

eEχ/kBT−1
)−1

is the occupation number of phonons, and Dχ = Dop is the deforma-
tion potential parameter for the OP scattering whose value used in this paper is given in
Table 1.

Table 1: The physical constants and some parameters.

m0 =5.69×10−16eVs2cm−2 qe =1.602177×10−19C ǫ0 =8.854188×10−14Fcm −1

kBT =0.02586eV Vt =kBT/qe =0.02586V h̄=6.582122×10−16eVs

Eac =9eV us =9.04×105cms−1 ρ0 =1.4547×1012 eVs2cm−5

Dop =1.556×109eVcm−1 h̄ωop =0.062eV xref =10−7cm

Table 2: Parameters for the inter-vallay X-X scattering rate of Silicon [22].

D
g1
XX 0.5×108eVcm−1 D

g2
XX 0.8×108eVcm−1 D

g3
XX 1.1×109eVcm−1

h̄ω
g1
XX 0.01206eV h̄ω

g2

XX 0.01853eV h̄ω
g3

XX 0.06204eV

D
f1
XX 0.3×108eVcm−1 D

f2
XX 2.0×108eVcm−1 D

f3
XX 2.0×108eVcm−1

h̄ω
f1
XX 0.01896eV h̄ω

f2
XX 0.04739eV h̄ω

f3
XX 0.05903eV

The inter-valley scattering process can be classified into f -type and g-type processes.
A process is referred to as f-type, if the initial and final orientations are different, other-
wise as g-type. The parameters of both f -type and g-type scattering processes are listed
in Table 2. The formulas (2.14a), (2.14b) and (2.15a) are still applicable for the IOP scatter-
ing. But the values of Eχ and Dχ are different. We use six pairs of parameters in Table 2.
For example, the inter-valley optical phonon with a pair of parameters (h̄ω

g1

XX,D
g1

XX) corre-
sponds to two kinds of scattering χ=3 and χ=4. Plugging Eχ=3= h̄ω

g1

XX and Dχ=3=D
g1

XX

into (2.14a) and (2.14b) yields the scattering rate S
Absp
χ=3 (k′,i′;k,i) and SEmss

χ=3 (k,i;k′,i′) used

in (2.12). As did in (2.13), we can derive the scattering rates for Eχ=4 =−h̄ω
g1

XX by using
the relation

S
Absp
χ=4 (k′,i′;k,i)=SEmss

χ=3 (k,i;k′,i′), SEmss
χ=4 (k,i;k′,i′)=S

Absp
χ=3 (k′,i′;k,i).

Unlike an optical phonon, the energy of an acoustic phonon is assume to small enough
to be ignored. So the AP scattering is regarded as elastic, i.e., the energy of an acoustic
phonon is assumed to be Eχ =Eac =0. The scattering rates due to absorbing/emitting an
acoustic phonon can be combined into one formula. As a result, the AP scattering only
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corresponds to one kind of scattering with S
Absp
χ (k′,i′;k,i) and SEmss

χ (k,i;k′,i′) given as

S
Absp
χ (k′,i′;k,i)=SEmss

χ (k,i;k′,i′)=Kχδ
(

Ei′(x,k′)−Ei(x,k)
)

Iii′(x), (2.16)

where

Kχ =
2πE2

ackBT

h̄ρ0u2
s

, (2.17)

Iii′(x) is given in Eq. (2.15b), the deformation potential Eac, the density of crystal lattice
ρ0 and the acoustic velocity us given in Table 1.

As a summary, we have listed 15 kinds of scattering in this paper with χ=0,1,2,··· ,14
in (2.11). First, χ=0 denotes the AP scattering and the scattering rate is given in Eq. (2.16).
Then we can use (2.14a) and (2.14b) to calculate the scattering rates of the OP scattering
rates and the IOP scattering rates for Eχ >0. Finally we can use the relation (2.13) to give
the scattering rates for Eχ <0.

Remark 2.1. From Eqs. (2.14a), (2.14b), (2.16) and (2.15b), it can be seen that S
Absp
χ and

SEmss
χ are functions of the position x. However, the x variable dependence has been

dropped for brevity.

2.2 Nondimensionalization

First we list the physical constants and some numerical values involved in Table 1. Then
we introduce the following change of variables to nondimensionalize all the equations
and parameters. All the real space length is scaled by xref (given in Table 1), i.e.,

x̃=
x

xref
, z̃=

z

xref
. (2.18)

And the sizes of the device such as L, Lz, LSD, LCh, TOx and TSi are also scaled by xref. The

|ϕi,x(z)|2 has a unit of cm−1 and satisfies
∫ TSi

0
|ϕi,x(z)|2dz = 1, so the adimensional eigen

wavefunctions ϕ̃i,x̃(z̃) is related to ϕi,x(z) through

ϕ̃i,x̃(z̃)=
√

xref ϕi,x(z). (2.19)

All the energy quantities are scaled by the thermal energy kBT, i.e.,

Ẽi(t̃, x̃,k̃)=
Ei(t,x,k)

kBT
, Ẽi(t̃, x̃)=

Ei(t,x)

kBT
, Ẽχ =

Eχ

kBT
, (2.20)

and the potential is scaled by the thermal voltage Vt

Ṽ(t̃, x̃, z̃)=
V(t,x,z)

Vt
. (2.21)
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The wave vector in the subband i is scaled by

k̃x =
h̄kx

√

mx,ikBT
, k̃y =

h̄ky
√

my,ikBT
. (2.22)

The time is scaled by tref =
√

(m0/kBT)xref≈1.483344×10−14s,

t̃=
t

tref
. (2.23)

The effective masses are scaled by the electron rest mass m0,

m̃x,i =
mx,i

m0
, m̃y,i =

my,i

m0
, m̃z,i =

mz,i

m0
. (2.24)

The electron density and the doping density are scaled by x3
ref,

ñ(x̃, z̃)=n(x,z)x3
ref, Ñd = Ndx3

ref. (2.25)

The scattering parameter Kχ in (2.15a) for the optical phonons and in (2.17) for the acous-

tic phonons are scaled by Kref = h̄2√kBT/m3/2
0 ≈5.14258×10−9eVcm−3s−1,

K̃χ =
Kχ

Kref
. (2.26)

The electric permittivity is scaled with

ǫ̃(x̃, z̃)=
xrefVt

qe
ǫ(x,z). (2.27)

For simplicity, the tilde over the adimensional quantities will be dropped henceforth.
Applying the change of variables (2.18), (2.20), (2.19) and (2.21) to Eq. (2.5), we obtain the
nondimensionalized Schrödinger equations

[

−Csch
1

mz,ν

∂2

∂z2
−V(x,z)

]

ϕν,j,x(z)=Eν,j,x ϕν,j,x(z), z∈ (TOx,TOx+TSi), (2.28)

where Csch = h̄2/2m0Vtx
2
ref. The total energy (2.6) is written into a nondimensionalized

form

Eν,j(t,x,k)=Eν,j(t,x)+ων(k), (2.29)

where the dispersion relation (2.7) is reduced into

ων(k)=
1

2
(k2

x +k2
y). (2.30)
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Plugging (2.18), (2.21), (2.25) and (2.27) into (2.8) and (2.9), we obtain the nondimension-
alized Poisson equation

−∇x,z ·
(

ǫ(x,z)∇x,zV(t,x,z)
)

=

{

ND(x)−n(x,z), if (x,z)∈ (0,L)×(TOx,TOx+TSi),

0, else,
(2.31)

where the adimensional electron density n(x,z) is calculated with

n(x,z)=∑
i

ni(x,z)=
Cn

2π2 ∑
i

√

mx,imy,i

∫∫

R2
fidkxdky|ϕi(x,z)|2, (2.32)

with an adimensional constant Cn = m0kBTx2
ref/h̄2 ≈ 0.339005. Plugging (2.18)-(2.25)

into Eqs. (2.1), (2.11) and (2.12), and multiplying tref =
√

(m0/kBT)xref on both sides of
Eq. (2.1), we obtain the nondimensionalized BTE in the subband i

∂ fi

∂t
+vi

∂ fi

∂x
+Fi

∂ fi

∂kx
=

∂

∂t
fi

∣

∣

∣

Scat
, x∈ (0,L), (2.33)

where

vi =
1√
mx,i

∂Ei

∂kx
, (2.34a)

Fi =− 1√
mx,i

∂Ei

∂x
=− 1√

mx,i

∂Ei

∂x
, (2.34b)

with the total energy Ei given in (2.29). The adimensional scattering term in (2.33) has the
same form as (2.11). One typical scattering term (2.12) will be written in the nondimen-
sionalized form

∂ fi

∂t

∣

∣

∣

χ
=∑

i′

1

(2π)2

√

mx,i′my,i′

∫∫

R2
S

Absp
χ (k′,i′;k,i) fi′(t,x,k′)

(

1− fi(t,x,k)
)

d2k′

−∑
i′

1

(2π)2

√

mx,i′my,i′

∫∫

R2
SEmss

χ (k,i;k′,i′) fi(t,x,k)
(

1− fi′(t,x,k′)
)

d2k′, (2.35)

where the scattering rates for OP and IOP scattering have the same form as (2.14a), (2.14b)
and (2.15b), and for the AP scattering the same form as (2.16), (2.14b) and (2.15b). But
their scattering parameters Kχ in (2.15a) and (2.17) need to be nondimensionalized by
using (2.26). The adimensional Kχ for the OP/IOP scattering is calculated with

Kχ =
πD2

χ

ρ0ωχ

1

Kref
, (2.36)

where (Dχ,ωχ)= (Dop,ωop) in Table 1 or a pair of values listed in Table 2. And the adi-
mensional Kχ for the AP scattering

Kχ =
2πE2

ackBT

h̄ρ0u2
s

1

Kref
, (2.37)

where Eac, ρ0, us are listed in Table 1.
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2.3 The initial value for the time dependent BTE

The Schrödinger equations (2.28) and the Poisson equation (2.31) can be also closed and
form a self-consistent Schrödinger-Poisson system if fi in the electron density n(x,z) in
(2.32) is given using a simple method instead of solving the time-dependent BTE (2.33).

The first method to determine fi in (2.32) is by assuming the electrons in the whole
device are in equilibrium with a given Fermi level EF(x), which varies along the transport
direction x,

fi(x,k)=
1

1+exp
(

Ei(x,k)−EF(x)
) .

When the voltage drop is very slow in the source/drain extension (where the resistivity
is low because of high doping density) and the VDS drop is almost all in the channel
region [19], the Fermi level in the device could be approximated with

EF(x)=















EF1, if 0≤x < LSD ,

(EF2−EF1)
x−LSD

LCh
, if LSD ≤x≤LSD +LCh,

EF2, if LSD+LCh ≤x≤L.

The second method to determine fi in (2.32) is to solve a steady ballistic BTE in each sub-
band analytically. The probability distribution function fi(x,k) is determined by using

the characteristic method [21]. fi(x,k)=
(

1+exp(Ei(x,k)−EF1)
)−1

if the electron at (x,k)

in the subband i comes from the source drain, else fi(x,k) =
(

1+exp(Ei(x,k)−EF2)
)−1

.
When VGS is very low and VDS is small, a potential well maybe exists in the channel re-
gion. In that case, we can not determine the electrons in the well whether coming from
the source contact or the drain contact, so the second method will not work.

The Newton-Raphson method is used to solve the nonlinear Schrödinger-Poisson sys-
tem [17] with a Jacobian to be determined. A good approximation of the Jacobian (e.g.,
described in [9]) is used. The Jacobian is estimated by fitting the electron density resulting
from Eq. (2.32) with the electron density expression

n(x,z)= NcF1
2

(

(−V(x,z)−µ(x))
)

,

where Nc = 12
√

0.916×0.192
(

m0Vtx
2
ref/2πh̄2)3/2

is the adimensional effective density of
states, F1/2 is the Fermi-Dirac integral of order 1/2, and µ(x) is a fitting parameter (whose
value need not to be truly evaluated when finding the approximation of ∂n/∂V). Readers
who are interested in using an exact Jacobian in the Newton-Raphson iteration refer to [1].

After the iteration for the self-consistent Schrödinger-Poisson system converges, the
subband Ei(x) and the eigen wavefunction ϕi,x(z) are used as the initial values for the
time dependent BTEs (2.33). The fi obtained either by the first method or by the second
method provides the initial probability distribution function for the time dependent BTEs
(2.33).
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3 Numerical schemes

The Boltzmann-Schrödinger-Poisson system consists of Eqs. (2.33) (2.28) and (2.31). Our
solver for the complete model contains two blocks. One is the SP-block (Schrödinger-
Poisson) by Newton-Raphson iterations. The other is the BTE-block (Boltzmann trans-
port equation). The SP-block is almost the same as the Schrödinger-Poisson solver in
Subsection 2.3. The only difference is that when we update electron density during solv-
ing the self-consist Schrödinger-Poisson system, we fix fi in (2.32) to be the solution of
the BTEs (2.33) at some time t. A central finite difference method is applied to the Poisson
equation and Schrödinger equations. The linear system resulted from the discretization
of the Poisson equation is solved by the parallel GMRES method in AztecOO, which
provides an object-oriented interface for the well-known Aztec solver library. The eigen
problems obtained from Schrödinger equations are solved by STEQR in LAPACK. Trili-
nos provides a friendly interface for both AztecOO and LAPACK [16].

Henceforth we focus on the BTE-block.

3.1 Reformulate the BTE

Observing the nondimensionalized dispersion relation (2.30), we introduce the coordi-
nate transformation

kx =
√

2ωcosθ, ky =
√

2ωsinθ, (3.1)

whose Jacobian is 1. So the variable ω =(k2
x+k2

y)/2 is the adimensional kinetic energy of
the electron with a wave vector k=(kx,ky). Comparing (3.1) and the dispersion relation
(2.30), we find that ωv =ω for all the valleys. So the total energy (2.29) is simplified into

Ei(x,ω,θ)=Ei(x)+ω, (3.2)

and henceforth the θ will be omitted since the total energy does not really depend on θ.
Applying the coordinate transformation (3.1), we rewrite the Boltzmann transport

equation (2.33) into

∂

∂t
fi+vi

∂ fi

∂x
+Fi

(√
2ωcosθ

∂ fi

∂ω
− sinθ√

2ω

∂ fi

∂θ

)

=
∂ fi

∂t

∣

∣

∣

Scat
, (3.3)

where the adimensional vi in (2.34a) is expressed with the variables ω and θ

vi =

√
2ωcosθ√

mx,i
, (3.4)

and Fi is the same as (2.34b). By applying the coordinate transformation (3.1) to (2.35),
one kind of scattering in the scattering part of Eq. (3.3) is rewritten into

∂ fi

∂t

∣

∣

∣

χ
=∑

i′

1

(2π)2

√

mx,i′my,i′

∫∫

R2
S

Absp
χ (ω′,i′;ω,i) fi′(t,x,ω′,θ′)

(

1− fi(t,x,ω,θ)
)

dω′dθ′

−∑
i′

1

(2π)2

√

mx,i′my,i′

∫∫

R2
SEmss

χ (ω,i;ω′,i′) fi(t,x,ω,θ)
(

1− fi′(t,x,ω′,θ′)
)

dω′dθ′, (3.5)
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where the scattering rates do not change with respect to θ, so the θ variable has been

omitted. When we apply the coordinate transformation (3.1) to the scattering rates S
Absp
χ ,

we only need to use the total energy (2.29) and rewrite the δ-function in (2.14a) and (2.16)
into

δ
(

Ei′(x,k′)+Eχ−Ei(x,k)
) (3.1)−→ δ(ω′−ω−∆Eii′χ), (3.6)

where ∆Eii′χ(x) = −Eχ−Ei′(x)+Ei(x). The coordinate transformation (3.1) does not

change the relation between SEmss
χ and S

Absp
χ expressed in (2.14b).

The computational domain is discretized into a tensor product mesh, and a uniform
mesh is taken in the x-/θ-directions and a nonuniform mesh in the ω-direction:

[0,L]=
Nx−1
⋃

j=0

[

xj− 1
2
,xj+ 1

2

]

, xj− 1
2
= j∆x, (3.7)

[θmin,θmin+2π]=
Nθ−1
⋃

l=0

[

θl− 1
2
,θl+ 1

2

]

, θl =−π+l∆θ, (3.8)

[0,ωmax]=
Nω−1
⋃

k=0

[

ωk− 1
2
,ωk+ 1

2

]

, ωk− 1
2
=

1

2
r2

k− 1
2
, rk− 1

2
=

k
√

2ωmax

Nω
, (3.9)

where ∆x = L/Nx, ∆θ = 2π/Nθ , and we choose θmin = θ−1/2 =−π−∆θ/2. The size of
the k’th ω-cell ∆ωk = ωk+1/2−ωk−1/2. In this way the θ-domain is [−π,π] with a shift
−∆θ/2, but it does not make a difference from choosing the domain [0,2π] because of the
periodicity in the θ-domain with a period 2π. We use [0,ωmax] to replace [0,∞] and the
choice of ωmax depends on the doping density and the bias voltages. In this paper, we
choose ωmax=150. Observing Eq. (3.1), we find r=

√
2ω is proportional to the magnitude

of the electron momentum. So the ω-mesh (3.9) is actually obtained from a uniform r-
mesh on [0,

√
2ωmax].

3.2 The splitting technique

As in [1], we use the splitting technique at two levels:

• Time Splitting (TS), in order to separate the Boltzmann transport equation from
scattering, i.e., we split Eq. (3.3) into

∂

∂t
fi+vi

∂ fi

∂x
+Fi

(√
2ωcosθ

∂ fi

∂ω
− sinθ√

2ω

∂ fi

∂θ

)

=0 (3.10)

and
∂

∂t
fi =

∂ fi

∂t

∣

∣

∣

Scat
. (3.11)
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• Dimensional splitting (DS), in order to split the (x,ω,θ)-space, i.e., we split Eq. (3.10)
into

∂

∂t
fi+vi

∂ fi

∂x
=0 (3.12)

and
∂

∂t
fi+Fi

(√
2ωcosθ

∂ fi

∂ω
− sinθ√

2ω

∂ fi

∂θ

)

=0. (3.13)

The multi-subband BTE is solved by using the splitting technique and is described as
follows: Let us suppose that the distribution functions fi(tn,x,ω,θ) and the subbands
Ei(x) are known at time tn =n∆t.

Step 1. Integrate the transport part (3.10) from tn to tn+∆t/2:

I Integration of the x-advection (3.12) with the initial value (IV) fi(tn,x,ω,θ) from tn to

tn+∆t/4 yields f
(1)
i (x,ω,θ). x-advection: ∆t/4.

II Update the electron density by plugging f
(1)
i (x,ω,θ) into (2.32). Solve the SP-block to

evaluate the subbands E∗
i (x).

III Integration of the k-advection (3.13) with IV f
(1)
i (x,ω,θ) and E∗

i (x) from tn to tn+∆t/2

yields f (2)(x,ω,θ). k-advection: ∆t/2.

IV Integration of the x-advection (3.10) with IV f (2)(x,ω,θ) from tn+∆t/4 to tn+∆t/2

yields f
(3)
i (x,ω,θ). x-advection: ∆t/4.

Step 2. Update the electron density by plugging f
(3)
i (x,ω,θ) into (2.32). Solve the SP-block to evaluate

the subbands E∗∗
i (x) and Iii′(x) in Eq. (2.15b).

Step 3. Integration of the scattering part (3.11) from tn to tn+∆t with E∗∗
i (x) and Iii′(x) obtained

in Step 2 and fi(t,x,ω,θ)≈ f
(3)
i (x,ω,θ). Scattering: ∆t.

Step 4. Integrate the transport part (3.10) from tn+∆t/2 to tn+∆t the same way as in Step 1.

The scattering part considered in [1] is a simple relaxation time approximation, so it is not
necessary to change (kx ,ky) into (ω,θ). When the electron-phonon scattering is consid-
ered, the coordinate transformation (3.1) can facilitate the discretization of the scattering
part, but makes the transport part in the wave vector direction complicated. Splitting the
(ω,θ)-space into two 1D problems can produce extra dimensional splitting error since
Eq. (3.13) is actually a set of 1D problems (ky can be regarded as a parameter)

∂

∂t
fi+Fi

∂ fi

∂kx
=0.

Thus we do not split the transport in (ω,θ) into two 1D problems but design a numerical
scheme for Eq. (3.13) directly using the idea of the PFC method.
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3.3 Discretization of the transport part in the position space

First, we replace vi in (3.12) with the average over the control volume Ωkl =
[ωk−1/2,ωk+1/2]×[θl−1/2,θl+1/2],

vi(ω,θ)≈vikl =
1

∆ωk∆θ

∫ ω
k+ 1

2

ω
k− 1

2

∫ θ
l+ 1

2

θ
l− 1

2

√
2ωcosθ√

mx,i
dωdθ.

Then we integrate (3.12) over the control volume Ωkl and obtain a series of 1D equations

∂ fi,kl(t,x)

∂t
+vikl

∂ fi,kl(t,x)

∂x
=0, (3.14)

where fi,kl(t,x) is the volume average of fi(t,x,ω,θ) over Ωkl,

fi,kl(t,x)=
1

∆ωk∆θ

∫ ω
k+ 1

2

ω
k− 1

2

∫ θ
l+ 1

2

θ
l− 1

2

fi(t,x,ω,θ)dωdθ.

Remark that |vikl | ranges from 0.08432235 to 37.81871 when we use the θ-mesh (3.8) with
Nθ = 6 and the ω-mesh (3.9) with Nω = 150 and ωmax = 150. Integration of the ballistic
part of the BTE (3.12) from tn to tn+∆t/4 requires us to integrate (3.14) with different
velocities up to the same time tn+∆t/4. We use multiple sub-steps with a time step δt
to march time from tn to tn+∆t/4 for (3.14). We determine δt for Eq. (3.14) with the
following rule

δt=
∆x

[ |vikl|∆t
4∆x

]

+1
, (3.15)

where [a] denotes largest integer that is less than or equal to a. This could help us to get
a better accuracy result for Eq. (3.14) with a large velocity, while still allow us to use a
big time step δt for (3.14) with a small velocity to reduce the computational cost. Using
the time step (3.15), we allow the electron to only move within a distance shorter than
∆x in δt, so we can allocate fewer storage space for the exchange of information between
different CPUs.

We solve Eq. (3.14) with the PFC method [13,14]. Here we describe how to implement
the second order PFC method briefly to a simple transport equation with a constant ve-
locity v

∂ f

∂t
+v

∂ f

∂x
=0, x∈ [0,L] (3.16)

under the condition that the electron moves shorter than ∆x in one time step ∆t. We can
define the characteristic curves solution of the differential system corresponding to the
transport equation







dX(s)

dx
=v,

X(t)= x.
(3.17)
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Let us denote by X(s,t,x) the solution of (3.17) and define the Jacobian

J(s,t,x)=
∂X(s,t,x)

∂x
.

In [4], it is proved that if J(s,t,x) is positive for all (s,t,x)∈R
+×R

+×R then the solution
of the transport equation (3.16) can be expressed as

f (t,x)= f
(

s,X(s,t,x)
)

J(s,t,x), (3.18)

which describes the conservation of particles along the characteristic curves

∀K⊂R,
∫

K
f (t,x)dx=

∫

X(s,t,K)
f (s,x)dx, (3.19)

where

X(s,t,K)=
{

y∈R : y=X(s,t,z); z∈K
}

.

This property remains true for higher dimensions than 1. Using the x-mesh (3.7) and as-
suming the values of the distribution function are known at time tn=n∆t, we find the new
values at time tn+1 by integration of the distribution function on each cell [xj−1/2,xj+1/2].
Thus, using the conservation of particles (3.19) and recalling that the solution of (3.17) is
X(s,t,x)=v(s−t)+x, and the Jacobian function x 7→ J(tn ,tn+1,x) is 1, we have

∫ x
j+ 1

2

x
j− 1

2

f (tn+1,x)dx=
∫ X

(

tn,tn+1,x
j+ 1

2

)

X
(

tn,tn+1,x
j− 1

2

) f (tn,x)dx.

Then, we set

Φj+ 1
2
(tn)=

∫ x
j+ 1

2

X
(

tn,tn+1,x
j+ 1

2

) f (tn,x)dx

to finally obtain the conservative scheme

∫ x
j+ 1

2

x
j− 1

2

f (tn+1,x)dx=Φj− 1
2
(tn)+

∫ x
j+ 1

2

x
j− 1

2

f (tn,x)dx−Φj+ 1
2
(tn). (3.20)

The main step is now to choose an efficient method to reconstruct the distribution func-
tion from the values f n

j , j=0,··· ,Nx−1, which have been obtained. We use f n
j to denote the

average of the solution f (tn,x) over [xj−1/2,xj+1/2]. We take v>0 as an example to show
how to do the reconstruction. The second-order approximation is obtained by using a
linear interpolation to approximate the distribution function f (tn,x) in [xj−1/2,xj+1/2]

fh(tn,x)= f n
j +ǫn

j (x−xj)
f n
j+1− f n

j

∆x
, ∀x∈

[

xj− 1
2
,xj+ 1

2
], (3.21)
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where the slope corrector is introduced to ensure the preservation of positivity and the
maximum principle [14]

ǫn
j =











min
{

1,
2 f n

j

( f n
j+1− f n

j )

}

, if f n
j+1 > f n

j ,

min
{

1,− 2( f n
∞− f n

j )

( f n
j+1− f n

j )

}

, if f n
j+1 < f n

j .
(3.22)

Here we denote f n
∞ = max{ f n

j : j = 0,··· ,Nx−1}. It is easy to verify that with the slope

corrector (3.22), the reconstructed fh(tn,x), (3.21) satisfies that 0≤ fh(tn,x)≤ f∞, x∈ [0,L].
Then we can define an approximation of Φj(tn)

Φj+ 1
2
(tn)=v∆t

[

f n
j +

ǫn
j

2

(

1− v∆t

∆x

)

( f n
j+1− f n

j )
]

.

For v > 0, we use an inflow boundary condition, i.e., f (t,x = 0) is a given function of t.
So the boundary condition at x = 0 is clear. But f (t,x), x = L is not given. When we use
the linear interpolation (3.21) at [xNx−3/2,xNx−1/2], we need to use f n

Nx
. So we set f n

Nx
by a

linear interpolation

f n
Nx

=2 f n
Nx−1− f n

Nx−2.

3.4 Discretization of the transport part in the wave vector space

With the help of the dimensional splitting, the transport equation (3.13) in the (ω,θ)-
space in different cells [xj−1/2,xj+1/2] can be solved independently. We approximate Fi in
[xj−1/2,xj+1/2] by

Fi,j =−Ei(xj+1)−Ei(xj−1)

2∆x
√

mx,i

using a central finite difference scheme to discretize (2.34b). The integration of Eq. (3.13)
over [xj−1/2,xj+1/2] yields a series of simple 2D transport equations

∂ fi,j(t,ω,θ)

∂t
+Fi,j

(√
2ωcosθ

∂ fi,j(t,ω,θ)

∂ω
− sinθ√

2ω

∂ fi,j(t,ω,θ)

∂θ

)

=0, (3.23)

where fi,j(t,ω,θ) is the average of the distribution function fi(t,x,ω,θ) over
[xj−1/2,xj+1/2],

fi,j(t,ω,θ)=
1

∆x

∫ x
j+ 1

2

x
j− 1

2

fi(t,x,ω,θ)dx. (3.24)

The integration of Eq. (3.13) from tn to tn+∆t/2 requires us to integrate (3.23) in each cell
[xj−1/2,xj+1/2] up to tn+∆t/2. We use multiple sub-steps with a time step δt for (3.23) to
march from tn to tn+∆t/2. δt maybe be very small in a cell [xj−1/2,xj+1/2] if the force Fi,j
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is very big. Using the meshes given in (3.8) and (3.9), we determine δt for Eq. (3.23) with
a force Fi,j by

δt<min
{

√

2ω1/2tan∆θ

|Fi,j|
,

√
2ωmax

Nω|Fi,j|
,

∆t

2

}

. (3.25)

In order to show how to solve (3.23), we just need to give the numerical scheme for a
simple 2D equation

∂ f (t,ω,θ)

∂t
+F

(√
2ωcosθ

∂ f (t,ω,θ)

∂ω
− sinθ√

2ω

∂ f (t,ω,θ)

∂θ

)

=0, (3.26)

or its equivalent form in (kx,ky)

∂ f (t,kx ,ky)

∂t
+F

∂ f (t,kx ,ky)

∂kx
=0, (3.27)

where F is a constant positive force. We give a numerical scheme for (3.26) with a time
step ∆t which satisfies

∆t<min
{

√

2ω1/2tan∆θ

F
,

√
2ωmax

NωF

}

. (3.28)

As done for (3.16), we can define the characteristic curves of (3.27) the solution of







dK(s)

ds
=(F, 0),

K(t)=(kx , ky),
(3.29)

where K = (Kx,Ky). Let us denote K(s,t,(kx,ky)) the solution of (3.29) and define the
Jacobian

J
(

s,t,(kx,ky)
)

=

∣

∣

∣

∣

∣

∣

∂Kx
∂kx

∂Kx
∂ky

∂Ky

∂kx

∂Ky

∂ky

∣

∣

∣

∣

∣

∣

.

It is easy to see that Kx(s,t,(kx,ky))=kx +F(s−t), Ky =ky and J(s,t,(kx ,ky))=1. The char-
acteristic curves of (3.26) can be obtained by using the characteristics of (3.27) through
the coordinate transformation (3.1) which can be written into

(kx,ky)=G(ω,θ). (3.30)

But we do not really need to write out the expression of the characteristic curves of (3.26).
Using the 2D counterpart of the conservation of particles (3.19), we have

∫∫

Ωkl

f (tn+1,ω,θ)dωdθ =
∫∫

Ω̃(tn,tn+1,Ωkl)
f (tn,ω,θ)dωdθ, (3.31)
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where we use the ω-mesh (3.9) and the θ-mesh (3.8) and denote Ωkl =[ωk−1/2,ωk+1/2]×
[θl−1/2,θl+1/2] and

Ω̃(tn,tn+1,Ωkl)=
{

G−1
(

K(tn,tn+1,G(ω,θ))
)

: (ω,θ)∈Ωkl

}

. (3.32)

We will denote Ω̃(tn,tn+1,Ωkl) by Ω̃kl. Recalling that the Jacobian of the coordinate trans-
formation (3.30) is 1, we have

∫∫

Ωkl

f (tn+1,ω,θ)dωdθ =
∫∫

G(Ωkl)
f (tn+1,kx,ky)dkxdky, (3.33)

where we denote

G(Ωkl)=
{

G(ω,θ) : (ω,θ)∈Ωkl

}

,

and

f (tn+1,kx,ky), f
(

tn+1,ω(kx,ky),θ(kx,ky)
)

.

We plot G(Ωkl) and G(Ω̃kl) in Fig. 2. Using the notations in Fig. 2, we can set

Φk,l+ 1
2
(tn)=

∫∫

G−1
(

A′
(k−1/2)(l+1/2)

A(k−1/2)(l+1/2)A(k+1/2)(l+1/2)A
′
(k+1/2)(l+1/2)

) f (tn,ω,θ)dωdθ (3.34a)

and

Φk+ 1
2 ,l(tn)=

∫∫

G−1
(

A′
(k+1/2)(l−1/2)

A(k+1/2)(l−1/2)A(k+1/2)(l+1/2)A
′
(k+1/2)(l+1/2)

) f (tn,ω,θ)dωdθ. (3.34b)

Thus, we finally obtain the conservative scheme for (3.26)
∫∫

Ωkl

f (tn+1,ω,θ)dωdθ =
∫∫

Ωkl

f (tn,ω,θ)dωdθ+Φk,l− 1
2
(tn)−Φk,l+ 1

2
(tn)

+Φk− 1
2 ,l(tn)−Φk+ 1

2 ,l(tn). (3.35)

Figure 2: A(k−1/2)(l−1/2)= G(ωk−1/2,θl−1/2). A′
(k−1/2)(l−1/2)= K(tn,tn+1,A(k−1/2)(l−1/2)). A(k−1/2)(l−1/2)

A(k+1/2)(l−1/2)A(k+1/2)(l+1/2) A(k−1/2)(l+1/2) is G(Ωkl), and A′
(k−1/2)(l−1/2)A

′
(k+1/2)(l−1/2)A

′
(k+1/2)(l+1/2)

A′
(k−1/2)(l+1/2) is G(Ω̃kl).
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We denote

f n
kl =

1

∆ωk∆θ

∫∫

Ωkl

f (tn,ω,θ)dωdθ.

Up to now, the last step to complete the numerical scheme is to reconstruct a piecewise
linear distribution function from the values f n

kl , k = 0,··· ,Nω−1, l = 0,··· ,Nθ−1, which
have been obtained at time tn. The ENO reconstruction seems to be useful in solving the
Vlasov equation because though it does not develop any shock, stiff gradients appear
in the phase space [14]. We choose the stencil like the ENO reconstruction. In order to
reconstruct the linear function in Ωkl , we add Ωk+1,l to the stencil if

∣

∣ f n
(k+1)l

− f n
kl

∣

∣

∆ωk+1+∆ωk
<

∣

∣ f n
kl− f n

(k−1)l

∣

∣

∆ωk+∆ωk−1
,

otherwise Ω(k−1)l. We use the same way to add either Ωk(l+1) or Ωk(l−1) to the stencil. In
the sequel, we suppose that {Ωkl ,Ω(k+1)l,Ωk(l+1)} is the chosen stencil. tn and n will be
dropped henceforth for brevity since all will be done at time tn. First, a linear interpola-
tion reconstruction in Ωkl can be given as

fh(ω,θ)= fkl +
2( f(k+1)l− fkl)

∆ωk+1+∆ωk
(ω−ωk)+

fk(l+1)− fkl

∆θ
(θ−θl), (ω,θ)∈Ωkl . (3.36)

But this approximation may not ensure the maximum principle: 0≤ fh(ω,θ)< f∞, where

f∞ =max
{

fkl : k=0,··· ,Nω−1, l =0,··· ,Nθ−1
}

.

We introduce the two slope correctors ǫω,kl and ǫθ,kl with a two step method. The first
step is to set

ǫ
(1)
ω,kl =



















min
{

1,
fkl

f(k+1)l− fkl

∆ωk+∆ωk+1

∆ωk

}

, if f(k+1)l > fkl ,

min
{

1,− f∞− fkl

f(k+1)l− fkl

∆ωk+∆ωk+1

∆ωk

}

, if f(k+1)l < fkl ,

ǫ
(1)
θ,kl =



















min
{

1,
2 fkl

fk(l+1)− fkl

}

, if fk(l+1)> fkl ,

min
{

1,− 2( f∞− fkl)

fk(l+1)− fkl

}

, if fk(l+1)< fkl .

And in the second step we set

ǫ
(2)
kl =























min
{

1,
2 fkl

ǫ
(1)
θ,kl | fk(l+1)− fkl | 2∆ωk

∆ωk+∆ωk+1
+ǫ

(1)
θ,kl | fk(l+1)− fkl |

}

, if 2 fkl < f∞,

min
{

1,
2( f∞− fkl)

ǫ
(1)
θ,kl | fk(l+1)− fkl | 2∆ωk

∆ωk+∆ωk+1
+ǫ

(1)
θ,kl | fk(l+1)− fkl |

}

, if 2 fkl ≥ f∞.
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Using these two steps, we obtain two slope correctors

ǫω,kl =ǫ
(1)
ω,klǫ

(2)
kl , ǫθ,kl =ǫ

(1)
θ,klǫ

(2)
kl . (3.37)

By applying the two slope correctors (3.37), we have modified the linear approximation
(3.36) into a reconstruction that ensures the maximum principle

fh(ω,θ)= fkl +(∂ω f )kl(ω−ωk)+(∂θ f )kl(θ−θl), (ω,θ)∈Ωkl , (3.38)

where

(∂ω f )kl =ǫω,kl

2( f(k+1)l− fkl)

∆ωk+1+∆ωk
, (∂θ f )kl =ǫθ,kl

fk(l+1)− fkl

∆θ
.

The evaluation of the conservation scheme (3.35) by plugging (3.38) into (3.34a) and
(3.34b). The calculation of the fluxes (3.34a) and (3.34b) is more complicated than 1D
fluxes. But the fact that the force is only nonzero in the x-direction makes this task easier
than it looks. In addition, the computational cost can be reduced by using symmetry of
the θ-mesh (3.8). We take a boundary of the control volume Ωkl in Fig. 2 as an example
to show how to calculate the numerical flux. Since the time step is small (see (3.28)) and
we have assumed that the force F is positive,

A′
(k−1/2)(l+1/2)A(k−1/2)(l+1/2)A(k+1/2)(l+1/2)A′

(k+1/2)(l+1/2)

in (3.34a) can only have a nonempty intersection with Ω(k−1)(l+1) and Ωk(l+1). Then the
flux Φk,l+1/2 defined in (3.34a) can be calculated by

Φk,l+ 1
2
=−

(

Φ
(k−1)(l+1)

k,l+ 1
2

+Φ
k(l+1)

k,l+ 1
2

)

, (3.39)

where ”−” comes from the sign of −Fsin(θl+1/2)/
√

2ω (θl+1/2 in Fig. 2 is in the first
quadrant) in (3.26), and

Φ
(k−1)(l+1)

k,l+ 1
2

= f(k−1)(l+1)

∫∫

A′
(k−1/2)(l+1/2)

A(k−1/2)(l+1/2)B(k−1/2)(l+1/2)

dkxdky

+(∂ω f )(k−1)(l+1)

∫∫

A′
(k−1/2)(l+1/2)

A(k−1/2)(l+1/2)B(k−1/2)(l+1/2)

(ω(kx,ky)−ωk−1)dkxdky

+(∂θ f )(k−1)(l+1)

∫∫

A′
(k−1/2)(l+1/2)

A(k−1/2)(l+1/2)B(k−1/2)(l+1/2)

(θ(kx,ky)−θl)dkxdky, (3.40a)

Φ
k(l+1)

k,l+ 1
2

= fk(l+1)

∫∫

B(k−1/2)(l+1/2)A(k−1/2)(l+1/2)A(k+1/2)(l+1/2)A
′
(k+1/2)(l+1/2)

dkxdky

+(∂ω f )k(l+1)

∫∫

B(k−1/2)(l+1/2)A(k−1/2)(l+1/2)A(k+1/2)(l+1/2)A
′
(k+1/2)(l+1/2)

(ω(kx,ky)−ωk)dkxdky

+(∂θ f )k(l+1)

∫∫

B(k−1/2)(l+1/2)A(k−1/2)(l+1/2)A(k+1/2)(l+1/2)A
′
(k+1/2)(l+1/2)

(θ(kx,ky)−θl)dkxdky. (3.40b)
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It is convenient for some integrals to be obtained if we introduce the following coordinate
transformation

kx = rcosθ, ky = rsinθ (3.41)

which transforms the rectangular coordinate (kx,ky) to the polar coordinate (r,θ). Com-
paring the coordinate transform (3.1) and (3.41), we know that for given (kx,ky), θ in (3.1)
and in (3.41) have the same value and

r(kx ,ky)=
√

2ω(kx,ky).

The given ω-mesh (3.9) is a uniform r-mesh with an r-mesh size ∆r=
√

2ωmax/Nω . In the
polar coordinate, the equation for the line A′

(k−1/2)(l+1/2)A(k−1/2)(l+1/2) is

r(θ)=
rk− 1

2
sinθl+ 1

2

sinθ
,

for the line A′
(k−1/2)(l+1/2)A′

(k+1/2)(l+1/2)

r(θ)=
F∆tsinθl+ 1

2

sin
(

θ−θl+ 1
2

) ,

and for the shifted circle containing A′
(k−1/2)(l−1/2)A′

(k−1/2)(l+1/2)

r(θ)=
√

ω2
k− 1

2

−(F∆tsinθ)2−F∆tcosθ.

Using the fact that
∣

∣A′
(p−1/2)(q+1/2)A(p−1/2)(q+1/2)

∣

∣= F∆t, 0≤ p≤Nω , 0≤q< Nθ ,

we have
∫∫

A′
(k−1/2)(l+1/2)

A(k−1/2)(l+1/2)A(k+1/2)(l+1/2)A
′
(k+1/2)(l+1/2)

dkxdky = F∆t∆rsin
(

θl+ 1
2

)

,

∫∫

A′
(k+1/2)(l−1/2)

A(k+1/2)(l−1/2)A(k+1/2)(l+1/2)A
′
(k+1/2)(l+1/2)

dkxdy = F∆trk+ 1
2

(

sin(θl+ 1
2

)

−sin(θl− 1
2
)).

The other integrals involved can be obtained analytically or numerically. For example,
we give the following two integrals:

∫∫

A′
(k−1/2)(l+1/2)

A(k−1/2)(l+1/2)B(k−1/2)(l+1/2)

dkxdky

=ωk− 1
2

(

arcsin(Fk− 1
2 ,∆tsin(θl+ 1

2
))+G0(θl+ 1

2
,Fk− 1

2 ,∆t)−Fk− 1
2 ,∆tsin(θl+ 1

2
))

)

,
∫∫

A′
(k+1/2)(l+1/2)

C(k+1/2)(l+1/2)A(k+1/2)(l+1/2)

dkxdky

=ωk− 1
2

(

arcsin(Fk+ 1
2 ,∆tsin(θl+ 1

2
))+G1(θl+ 1

2
,Fk− 1

2 ,∆t)−G1(θ̄(k+ 1
2 )(l+ 1

2 ),Fk− 1
2 ,∆t)

)

,
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where

Fk− 1
2 ,∆t =

F∆t
√

2ωk− 1
2

, θ̄(k+ 1
2 )(l+ 1

2 ) =arctan
( sinθl+ 1

2

cosθl+ 1
2
−Fk− 1

2 ,∆t

)

,

and

G0(θ,ξ)= ξsinθ
(

1−ξcosθ−
√

1−(ξsinθ)2
)

,

G1(θ,ξ)= ξ2θ+
1

2
ξ2sin(2θ)−arcsin(ξθ)−ξarcsin(θ)

√

1−(ξsinθ)2.

We have shown how to calculate the numerical flux flowing through one of the bound-
aries of a control volume Ωkl in the first quadrant. The other numerical flux can be done
in the same way. But we need pay a little more attention to the control volume Ωkl , when
k = 0 or θl±1/2 =±π/2, because the calculation of the flux may involve more than two
control volumes.

ωmax is assumed to be big enough, so we set fkl = 0, if k≥ Nω . When we reconstruct
a linear function for a control volume Ω0l , we need to use f(−1)l, the average of the dis-
tribution function over Ω(−1)l. This is related to the boundary conditions at ω =0, which
is not really a physical boundary. A ”ghost point” (ω,θ) for a negative ω is actually a
physical point at (−ω,θ+π). So we set

f(−1)l = f0(l+Nθ/2).

We use the periodic boundary condition in the θ-space, i.e.,

fkl = fk(l+Nθ).

3.5 Discretization of the scattering part

Observing Eqs. (3.5), (2.14a) and (3.6), we know that all the discretization of the scattering
integrals can be done in the same way as for

∫ ωmax

0

∫ θmin+2π

θmin

δ(ω′−ω−∆Eii′χ) fi′(x,ω′,θ′)(1− fi(x,ω,θ))dω′dθ′, (3.42)

where fi(x,ω,θ) is the distribution function obtained at some time t. First we obtain the
average of (3.42) over a cell [xj−1/2,xj+1/2]

∫ ωmax

0

∫ θmin+2π

θmin

δ(ω′−ω−∆Eii′χ) fi′ j(ω′,θ′)(1− fij(ω,θ))dω′dθ′, (3.43)

where

fij(ω,θ)=
1

∆x

∫ x
j+ 1

2

x
j− 1

2

fi(x,ω,θ),
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ωmax in (3.9) and θmin in (3.8). Then we integrate (3.43) over a control volume Ωkl =
[ωk−1/2,ωk+1/2]×[θl−1/2,θl+1/2], then divide it by |Ωjkl |=∆ωk∆θ, finally we obtain

1

|Ωkl |
∫∫

Ωkl

dωdθ
∫ ωmax

0

∫ θmin+2π

θmin

δ(ω′−ω−∆Eii′χ) fi′ j(ω′,θ′)(1− fij(ω,θ))dω′dθ′. (3.44)

Using the property of δ-function, we approximate (3.44) with

∑
k′

∑
i′

ξ
ii′χ
k′k ∑

l′
fi′ j,k′ l′(1− fij,kl)∆θ, (3.45)

where

fi′ j,kl =
1

∆ωk∆θ

∫∫

Ωkl

fi′ j(ω,θ)dωdθ (3.46)

and

ξ
ii′χ
k′k =

∣

∣[ωk′−1/2,ωk′+1/2]∩[ωk−1/2+∆Eii′χ,ωk+1/2+∆Eii′χ]∩[0,ωmax]
∣

∣

∆ωk
. (3.47)

Here |[ωa,ωb]| is the measure of the set [ωa,ωb]. We use ∩[0,ωmax] in (3.47) to restrict
the electron can only have an energy in the range of [0,ωmax]. That is, we assume the
probability that an electron absorbs a phonon to gain an energy higher than ωmax is zero.
When ωmax is set to be big enough, this assumption is reasonable. It is easy to see that
the numerical scheme (3.45) preserves the conservation of electrons.

4 Numerical results and discussion

In this section, we use physical units for a better understanding of the numerical results.
We simulate a LCh =9nm gate length DG MOSFET with a body thickness TSi =3nm and
source/drain doping of NSD = 1020cm−3. The channel region is intrinsic silicon with
Nb=1010cm−3. The channel junctions are abrupt and no Gate-to-S/D overlap is assumed.
The effective oxide thickness (EOT) is TOx =0.5nm. And the length of the source/drain is
LSD =9.9nm. The number of the eigenvalues for Schrödinger equation with mz =0.916m0

is chosen to be 2, and for mz =0.19m0 is chose to be 1. So the number of all subbands we
calculate is Nsubband=2×2+1×4=8. When the lower/upper gates of a DG MOSFET have
the same bias voltage, i.e., VGuS = VGdS, the device is called a symmetric DG MOSFET,
otherwise asymmetric. In our code, Nscat = 0 denotes the ballistic case, and Nscat = 15
denotes the transport with both the intra-valley and the inter-valley scattering. We use
the meshes with ∆x=0.3nm, ∆z=0.1nm, and Nω =150. The ωmax is chosen to be 3.879eV,
which is big enough for the bias voltage VDS≤0.5V.

We solve the time-dependent BSP until the stationary state. We use two stopping
criteria. The first stopping criteria is on the current oscillation

max0<j<Nx
Ij+ 1

2
−min0<j<Nx

Ij+ 1
2

max1<j<Nx

∣

∣Ij+ 1
2

∣

∣

<10−3,
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where Ij+1/2 is the current at the interface xj+1/2. When the source-drain current is small
because of low VDS/VGS, the first stopping criteria may not be met. In this case, we use
the second stopping criteria that checks the difference of the potential between two time
steps

∣

∣Vn+1(x,z)−Vn(x,z)
∣

∣

∞
<10−8V.

4.1 Distribution function in the first subband and surface charge density
along the channel direction

In this subsection, we study a symmetric DG MOSFET with VGuS=VGdS=0.3V. We discuss
the shape of the probability distribution function (pdf) of the lowest subband f0(x,kx,ky)
of the stationary state at different locations along the channel under high drain bias VDS=
0.5V. We choose four locations to represent substantial changes: the source extension
x = 3nm, the peak position of the first subband xtop = 10.5nm, the middle point of the
channel x=14.4nm, and the drain extension x=25.4nm.

Fig. 3 shows f0(x,kx,ky) with Nscat =0, which means ballistic transport. Fig. 4 shows
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Figure 3: The pdf in the 1st subband f0(x,kx ,ky). The S/D bias voltage VDS = 0.5V. The gate voltage
VGuS =VGdS =0.3V. Nscat =0.
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Figure 4: The pdf in the 1st subband f0(x,kx ,ky). The S/D bias voltage VDS = 0.5V. The gate voltage
VGuS =VGdS =0.3V. Nscat =15.

f0(x,kx,ky) with Nscat =15. The first subband reaches the peak value at the same location
xtop = 10.5nm in both cases. Comparison of Fig. 3 and Fig. 4 shows more electrons are
scattered to the negative kx state. Besides that, we can observe the following facts from
the two figures:

• Near the source/drain, electrons injected from the source/drain are reflected by
the barrier, and build up a symmetric, thermal distribution. While a second peak
is formed in the source extension due the accelerating electrons injected from the
source. So the height of the pdf in the drain extension is a bit shorter than that in
the drain.

• At the peak xtop, the pdf f0 changes abruptly along the kx.

• In the channel, the electrons are accelerated to higher kx.

Fig. 5, a plot of the electron density within the device under VDS=0.5V and Nscat =15,
shows the quantum confinement of electrons in the z-direction. The ballistic simulation
and the simulation with scattering are compared in Fig. 6, which shows the integrated
electron density versus position along the channel direction. It can be observed that more
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Figure 5: Total 3D electron density n(x,z). The bias voltage VDS =0.5V. Nscat =15. VGuS =VGdS =0.3V. The
electron density goes to zero at the top and bottom Oxide/Silicon interface x = 0.5nm and x = 3.5nm due to
quantum confinement.
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Figure 6: The 2D surface electron density n2D(x)(cm−2) along the channel direction is plotted. VGuS =VGdS =
0.3V. The bias voltage VDS =0.05, 0.5V. Both the ballistic case (Nscat =0) and the scattering case (Nscat =15)
are plotted.

electrons move into the channel due to scattering under high bias voltage. We can also
see that the electron neutrality is obtained at the S/D region.

4.2 Scattering influence

In this subsection, we show the numerical results for asymmetric DG MSOFETs by chang-
ing the low gate voltage VGdS while fixing the upper gate voltage VGuS =0.3V. The poten-
tial influences the current greatly and it is modulated by the gate bias voltage VGuS/VGdS

and the S/D bias voltage VDS. We plot a potential in Fig. 7 to show this modulation.
Because of the natural boundary condition at the source/drain contact, the potential at
the source/drain contact is not equal to the source/drain voltage. V = VGuS/VGdS at the
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Figure 7: The potential of the stationary sate of an asymmetric DG MOSFET. Two gate voltages are VGuS=0.3V
and VGdS =−0.2V. The S/D bias voltage VDS =0.5V. Nscat =15.
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gate reflects the gate modulation of the potential clearly. Comparing the 1st subbands
with/without scattering in Fig. 10, we find the scattering raises the subband a little higher
in the channel which reflects the deformation of the barrier height due to scattering. We
plot a series current-voltage curves IDS−VDS in Fig. 11. Comparison of the IDS−VDS

curves in Fig. 11 shows the scattering lowers IDS by about 10%−30%. From Fig. 11, we
can also observe the IDS−VDS can be modulated by the lower gate bias voltage VGdS. The
subbands reflect the variation of the potential, so we plot the first subband in Fig. 8 to
see the deformation of the potential due to the S/D bias voltage VDS. We can observe the
modulation of the potential due to VGdS in Fig. 9, where the 1st subband for each VGdS at
a fixed VDS is plotted. Finally, we plot the drift velocity of electrons in Fig. 12 where we
can see scattering slows down electrons. Besides raising the barrier, Fig. 12 tells us that
slowing the electron velocity is another aspect to explain why scattering lowers the S/D
current IDS.

5 Conclusions

We have developed a deterministic solver for the time-dependent Boltzmann-
Schrödinger-Poisson system to simulate the nanoscale semiconductors. Complicated
scattering mechanisms are considered in our deterministic solver. First, several types
of scattering including intra-valley/inter-valley phonon-electron scattering are included.
Second, the 2Dk scattering of the 2D electron gas due to the quantization in the con-
finement direction and the Pauli exclusion principle are used. We provide a second or-
der solver for the BTE based on the PFC method, which is a flexible and powerful tool
for simulating nanoscale devices, and allows variable time steps and positive and flux
conservative approximation and convenient parallelization. As an example, a DG MOS-
FET with flared out source/drain contacts is simulated. Numerical results show that the
scattering does influence the source-drain current unignorably. And the deformation of
subbands due to gate voltage and drain voltage is also investigated. This provides an
alternative possibility to investigate the detail of the nanoscale MOSFETs. We are using
the solver to investigate the different effect of intra-valley phonon-electron scattering and
inter-valley phonon-electron scattering.
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