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Abstract. In multi physics computations where a compressible fluid is coupled with
a linearly elastic solid, it is standard to enforce continuity of the normal velocities and
of the normal stresses at the interface between the fluid and the solid. In a numerical
scheme, there are many ways that velocity- and stress-continuity can be enforced in
the discrete approximation. This paper performs a normal mode stability analysis of
the linearized problem to investigate the stability of different numerical interface con-
ditions for a model problem approximated by upwind type finite difference schemes.
The analysis shows that depending on the ratio of densities between the solid and
the fluid, some numerical interface conditions are stable up to the maximal CFL-limit,
while other numerical interface conditions suffer from a severe reduction of the stable
CFL-limit. The paper also presents a new interface condition, obtained as a simplified
characteristic boundary condition, that is proved to not suffer from any reduction of
the stable CFL-limit. Numerical experiments in one space dimension show that the
new interface condition is stable also for computations with the non-linear Euler equa-
tions of compressible fluid flow coupled with a linearly elastic solid.

AMS subject classifications: 65M12, 35L60, 35L65

Key words: Finite difference method, normal mode analysis, fluid/structure interaction, com-
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1 Introduction

The subject of this article is the stability of numerical approximations of fluid-structure
interaction problems with particular emphasis on high-speed flow applications. This
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type of fluid-structure interaction occurs in many application areas including aeroelas-
ticity, modeling of explosives, and others. Numerous previous works have developed
numerical methods for this type of problem (for example [1, 2]).

Although many large scale computations of fluid-structure interaction have been per-
formed to date, see, e.g., [3, 4], the theory of stability and convergence of numerical
schemes for such problems is less developed. The aim of this paper is to improve the
understanding of the underlying mathematical properties of approximations for fluid-
structure interaction problems, and thereby facilitate improvements in accuracy and effi-
ciency of the numerical methods.

We introduce a one dimensional linear problem, obtained by linearizing the equations
of inviscid compressible fluid flow coupled with a linear elasticity model. This simple
model, which consists of two coupled wave equations, gives insight into the different
numerical behaviors that occur at the interface between the materials. It turns out that
for explicit time stepping schemes, one critical parameter affecting the numerical stability
is the ratio of the densities on either side of the interface. For problems in aeroelasticity,
the density of the solid material is usually several orders of magnitude larger than the
density of the fluid. However, in other fluid-structure interaction applications, such as
explosives modeling, the density ratio can be very close to one. Although standard nu-
merical methods often can be tuned to a specific density ratio, a coupling method that
performs well regardless of the density ratio between the solid and fluid would be more
convenient. This is especially true for non-linear problems where the density ratio can
vary widely from point to point along the interface and also in time. One remedy for in-
stabilities is to switch to implicit coupling. However, when the objective is to resolve all
time scales (as if often the case in high-speed compressible applications), explicit meth-
ods are preferable because of their lower computational cost. This paper shows that by
choosing appropriate numerical interface conditions it is possible to have a stable explicit
method for any density ratio, that does not suffer from any CFL restriction other than that
of the numerical schemes in the respective solid and fluid parts of the domain.

Section 2 introduces a one dimensional fluid-structure example problem, where a few
standard methods with explicit time stepping are shown to be stable or unstable depend-
ing on the density ratio. A simplified model problem is then derived via linearization.
The explanation for the unstable behavior is captured in the analysis of the model prob-
lem presented in Section 3. Section 3 also introduces a new numerical interface condition
that is proved to be stable with explicit time stepping for any density ratio. Numerical
experiments with the model problem in Section 4 compare the performance of the dif-
ferent interface conditions, confirming the analytical results. Finally, in Section 4.1, the
generalization of the new stable interface condition to the fluid/structure example from
Section 2, shows stable behavior in numerical experiments with both small and large
density ratios.
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2 Introductory example

A fluid, described by the inviscid Euler equations of compressible gas dynamics, interacts
with an elastic body, described by the equations of structural mechanics for a linearly
elastic material. Assume a one-dimensional problem with a single interface between the
solid and the fluid located at x=xI(t). The fluid domain is x>xI(t) and the solid domain
is x< xI(t). The equations of the model in the Lagrangian (material) coordinate X are
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The unknowns are functions of the Lagrangian coordinate X, and time t. The Eulerian
(physical) coordinate is a function x=x(X,t) that traces the material points, defined such
that x(X,0)=X. The interface location in the Eulerian coordinate is xI(t)= x(0,t). The
density of the solid is given by ρ(X,t) = ρ(s)/xX(X,t), where the initial density is as-
sumed to be the constant ρ(s). E is the constant Young’s modulus. The fluid equations
are formulated in a rigid coordinate system that moves with the velocity of the inter-
face, s = s(t) = dxI(t)/dt. This is a natural extension of the Lagrangian coordinate to
the fluid domain. The dependent variables in the fluid are the density, ρ, the velocity
u, and the total energy e. The pressure is given by the gamma law equation of state
p=(γ−1)(e−ρu2/2), where γ=1.4. The dependent variables in the solid are the velocity
u, the stress σ, and the coordinate x. Superscripts will indicate whether a variable belongs
to the fluid or to the solid, e.g., u(s) is the velocity in the solid and u( f ) is the velocity in the
fluid. Superscripts will be omitted when it is clear from the context if a variable belongs
to the fluid or to the solid.

At a continuous level, the interface conditions are continuity of velocity and stress

u(s)(0,t)=u( f )(0,t), (2.2a)

σ(0,t)=−p(0,t). (2.2b)

The numerical approximation of the fluid/structure system (2.1a), (2.1b) is done on a

computational domain [−1,1] with the grid X
(s)
i =∆x(i−1/2), i=−N,−N+1,··· ,0, for the

solid, and X
( f )
i =∆x(i+1/2), i=0,1,··· ,N, for the fluid. The grid points X

(s)
1 and X

( f )
−1 are

ghost points that facilitate imposing the interface condition. The number of grid points
in each domain N−1, and the grid spacing ∆x, are related by 1=∆x(N−1). The interface

is located between the last point in the solid and the first point in the fluid, X
(s)
0 =−∆x/2

and X
( f )
0 =∆x/2 respectively. This computational setup is shown schematically in Fig. 1.
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Figure 1: Schematic of the solid (left) and fluid (right) grids for the model fluid structure discretization.

A dependent variable, q(X,t), approximated at time level tn = n∆t and grid point
i is denoted qn

i . In the description of the interface conditions below, the time super-
script n will often be left out. Eqs. (2.1a) and (2.1b) are approximated by the Godunov
scheme (see [5] for example). Eq. (2.1b) is a linear hyperbolic problem, and the Go-
dunov scheme is identical to the upwind scheme. The numerical schemes are explicit
three point schemes, and thus advance the solution from time tn to tn+1 at all points

except at the ghost points X
(s)
1 and X

( f )
−1 . Extrapolation with first order accuracy gives

the density of the fluid at the ghost point, (ρ( f ))n+1
−1 =(ρ( f ))n+1

0 . Updates to the Eulerian

coordinates are defined in the solid by (x(s))n+1
i =(x(s))n

i +∆t(u(s))n
i , and in the fluid as

(x( f ))n+1
i = (x( f ))n

i +∆t(u(s))n
0 . Thus the fluid solution is computed on a rigid grid that

moves with the interface. In 1-D with outflow boundary conditions on the right, this is
trivial to implement as simple uniform rigid motion. However, in two or higher dimen-
sions, or with more complex boundary conditions at the right of the fluid domain, a grid
generation procedure would have to be used.

The stress and velocity interface conditions (2.2a), (2.2b) can be enforced in different
ways. For example, setting the interface stress to the stress of the solid and the interface
velocity to the velocity of the fluid,

u
( f )
−1 =u

( f )
0 , u

(s)
1 =u

( f )
0 , (2.3a)

p−1=−σ0, σ1=σ0, (2.3b)

where the fluid velocity and solid stress are obtained by extrapolation from the interior.
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Figure 2: Solution of the Riemann problem showing velocity (left) and stress (right) as functions of the Eulerian
(physical) coordinate x. Red x-symbols represent the solid, blue o-symbols the fluid, and the black line is the
exact solution. The approximations use N=100 points in each domain.
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Other possibilities are to reverse the order of (2.3a), (2.3b) and set

u
( f )
−1 =u

(s)
0 , u

(s)
1 =u

(s)
0 , (2.4a)

p−1= p0, σ1=−p0, (2.4b)

or to use an average of the above two conditions,

u
( f )
−1 =

u
(s)
0 +u

( f )
0

2
, u

(s)
1 =

u
(s)
0 +u

( f )
0

2
, (2.5a)

p−1=
p0−σ0

2
, σ1=

−p0+σ0

2
. (2.5b)

A-priori, there is no reason to expect one condition to perform better than another, and
all three conditions approximate (2.2a), (2.2b) with first order accuracy.

The Riemann problem with initial data

ρ( f )(X,0)=1, u( f )(X,0)=0, p(X,0)=1, X>0,

for the fluid, and

u(s)(X,0)=1, σ(X,0)=−1, X<0,

for the solid is used to demonstrate the performance of the different numerical interface
conditions. The initial solid density, ρ(s), will be a problem parameter and we choose
E=3ρ(s) giving the wave speed

√
3 in the solid. Fig. 2 displays a representative numer-

ical approximation as well as the exact solution at time 0.4. This example employs the
numerical interface conditions of (2.4a) and (2.4b), CFL number 0.9, 100 grid points in
each domain, and sets ρ(s)=2. The solutions computed with (2.3a), (2.3b) or (2.5a), (2.5b)
are similar (not shown). However, for larger or smaller values of ρ(s) some numerical in-
terface conditions lead to unstable methods and the computed solution blows up. Notice
here that because (2.1a) becomes ill-posed for p<0, the computation is stopped when p
becomes negative.

Table 1 summarizes the behavior of the three different numerical interface conditions
for a few different values of ρ(s) with CFL 0.9. For these numerical experiments (2.3a),
(2.3b) are unstable for large ρ(s) values, while (2.4a), (2.4b) are unstable for small ρ(s).
The average condition (2.5a), (2.5b) combines, in some sense, the behavior of the two
other conditions and is stable only when ρ(s) is not too small or too large. The first order
Godunov method is usually thought to be very robust as a result of its significant nu-
merical dissipation. Nevertheless, as Table 1 shows, when the density ρ(s) becomes very
large or very small, the computation will break down for certain interface approximation
techniques.
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2.1 Linearization

In order to analyze the coupled problem, we linearize the systems (2.1a) and (2.1b). This
technique is commonly used in numerical analysis of partial differential equations and is
a useful concept for a number of reasons. Firstly, instabilities are more clearly understood
if they can be found in a linearized problem. In addition, most available mathematical
tools only work for linearized problems, and stability of a linearized problem is often a
necessary condition for stability of the full non-linear problem.

Before linearizing, we rewrite (2.1a) with density, velocity, and pressure as dependent
variables. The resulting system is

ρt+(u−s)ρx+ρux =0, (2.6a)

ut+(u−s)ux+
1

ρ
px =0, (2.6b)

pt+(u−s)px+γpux =0. (2.6c)

We write the dependent variables (ρ,u,p) and the interface velocity s in (2.6) as the sum of
a small perturbation ρ′,u′,p′,s′ and a linearization solution ρ̂,û, p̂, ŝ. Inserting this decom-
position into (2.6), and neglecting all terms that are quadratic in the small perturbations
gives the linearized system

ρ′t+(û− ŝ)ρ′x+ ρ̂u′
x+(u′−s′)ρ̂x+ρ′ûx =0,

u′
t+(û− ŝ)u′

x+
1

ρ̂
px+(u′−s′)ûx−

ρ′

ρ̂2
p̂x =0,

p′t+(û− ŝ)p′x+γ p̂ux+(u′−s′) p̂x+γp′ûx =0.

Next, we obtain a constant coefficient problem by freezing the coefficients at a constant
state that moves with the interface, i.e., û− ŝ = 0. For the constant coefficient problem,
spatial derivatives of ρ̂,û, p̂, and ŝ are all zero and we arrive at the system

ρ′t+ ρ̂u′
x =0, (2.7a)

u′
t+

1

ρ̂
p′x =0, (2.7b)

p′t+γ p̂u′
x =0. (2.7c)

The density is clearly decoupled from the velocity and pressure, and can be determined
independently after (u′,p′) has been found. Therefore, we do not consider the density

Table 1: Behavior of interface conditions for different values of the initial density of the solid.

ρ(s)

Interface conditions 0.005 0.04 0.125 2 20 50
(2.3a), (2.3b) Stable Stable Stable Stable Unstable Unstable
(2.4a), (2.4b) Unstable Unstable Unstable Stable Stable Stable
(2.5a), (2.5b) Unstable Stable Stable Stable Stable Unstable
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equation in the stability analysis that follows below. By dropping the prime on u and
using the notation κ( f )=γ p̂ and σ( f )= p′, we can write (2.7) as the wave equation

u
( f )
t +

1

ρ̂( f )
σ
( f )
x =0,

σ
( f )
t +κ( f )u

( f )
x =0.

Notice that we have included a superscript ( f ) to clearly indicate the variables corre-
spond to the fluid. Similarly, by denoting κ(s)= E, the system in (2.1b) is seen to be the
wave equation

u
(s)
t − 1

ρ(s)
σ
(s)
x =0,

σ
(s)
t −κ(s)u

(s)
x =0.

Therefore, the fluid/structure problem (2.1a), (2.1b) can, to a first approximation (lin-
earized, constant coefficients), be written as two coupled wave equations. As a result, the
stability analysis to follow will consider two coupled wave equations. In Section (4.1) we
will demonstrate that the behavior predicted by this stability analysis is indeed present
in numerical simulations of the full non-linear problem.

3 Analysis of interface conditions for the simple model

In order to understand the stability of various interface treatments, consider the problem
of coupling two domains whose governing equations are linear elasticity with different
densities and elastic parameters. Formally

[

uL

σL

]

t

−
[ σL

ρL

κLuL

]

x

=

[

uL

σL

]

t

−
[

0 1
ρL

κL 0

]

[

uL

σL

]

x

=0, for x<0,

[

uR

σR

]

t

−
[ σR

ρR

κRuR

]

x

=

[

uR

σR

]

t

−
[

0 1
ρR

κR 0

]

[

uR

σR

]

x

=0, for x>0,

and

uL(0,t)=uR(0,t),

σL(0,t)=σR(0,t).

Here uL, uR, σL, and σR are functions of space and time and so the last equations are
simply a statement that the velocities and stresses agree at the material interface x = 0.
The quantities ρL, κL, ρR and κR are given constants. An analysis of the eigenstructure of
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the flux Jacobian of the governing equations reveals

[

0 1
ρk

κk 0

]

=RkΛkR−1
k =

[

ck −ck

κk κk

][ −ck 0
0 ck

]

[

1
2ck

1
2κk

− 1
2ck

1
2κk

]

,

where the wave speed is ck =
√

κk/ρk and k = L or R. For simplicity and clarity we
make the assumption that c = cL = cR. This assumption can be relaxed, but at the cost
of significantly increasing the complexity of the analysis with very little change in the
result. Our interest is in analyzing various treatments of the interface conditions in the
context of simple numerical methods and so we introduce the first order upwind interior
discretizations

[
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σk
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i

=
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RkΛ

−
k R−1
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−
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, (3.1)

where k= L,R and

Λ
−
k =

[ −c 0
0 0

]

, Λ
+
k =

[

0 0
0 c

]

.

These discretizations are stable under the CFL condition c∆t/∆x≤1 and we assume this
constraint in the analysis to follow where applicable. The interior discretizations are
applied on the computational domain x̂i =∆x(i−1/2), for i = ··· ,−1,0, and x̃i =∆x(i+
1/2), for i= 0,1,··· , to the left and right of the interface. The superscript n indicates the
time step where tn=t0+n∆t. The interface conditions are applied by making use of ghost
cells whose centers are located at x̂1 and x̃−1 (similar to Fig. 1). In this way, the choice of
interface conditions for any three point scheme, including the first order upwind scheme,
boils down to a determination of [uL,σL]

n
1 and [uR,σR]

n
−1. For a first order implementation

of the interface conditions it is sufficient to determine an interface velocity un
I and stress

σn
I and use

[

uL

σL

]n

1

=

[

uI

σI

]n

=

[

uR

σR

]n

−1

(3.2)

to determine the unknown quantities in the ghost cells.
We will use a normal mode analysis [6] to investigate the stability properties of vari-

ous interface treatments. Many of the steps of the proofs are common to all the methods
and we describe those steps here. We seek solutions to the coupled discrete system (3.1)
of the form

[

uk

σk

]n

i

= zn

[

ũk

σ̃k

]

i

,
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where ũk,i and σ̃k,i are bounded functions of space and z is a complex scalar. Denoting the
characteristic normal modes by

[

ak

bk

]

=R−1
k

[

ũk

σ̃k

]

, (3.3)

and using the interior discretization from (3.1), we find

z

[

ak

bk

]

i

=

[

ak

bk

]

i

+
c∆t

∆x

[

ak,i+1−ak,i

bk,i−1−bk,i

]

. (3.4)

Using the assumption that ũk,i and σ̃k,i are bounded functions of space, the normal mode
solutions are found as

[

ũ
σ̃

]

L,i

=

[

c
κL

]

ri−1aL,1 for i≤0, (3.5a)

[

ũ
σ̃

]

R,i

=

[

−c
κR

]

r−(i+1)bR,−1 for i≥0, (3.5b)

where

r=
z−1+ c∆t

∆x
c∆t
∆x

.

Note that |z|> 1 implies |r|> 1 under the CFL constraint 0< c∆t/∆x< 1. We will insert
these solutions into the interface condition, and obtain a system of two equations for
the two unknowns aL,1 and bR,−1. According to the Gustafsson, Kreiss, Sundstöm (GKS)
normal mode stability theory [6], the approximation is stable if and only if no non-trivial
solutions of this system exists for |z|>1 and if there are no non-trivial solutions for |z|=1
that are generalized eigenvalues, see [6] for details.

3.1 The traditional option

The most common interface condition found in the fluid structure literature sets the in-
terface velocity to the solid velocity and the interface stress to the fluid stress. The current
example investigates two domains of linear elasticity and so an equivalent condition sets
the interface velocity to the velocity from the left and the interface stress to the stress
from the right domain. Use the first order approximations un

I =un
L,0 and σn

I =σn
R,0. From

Eq. (3.2), we then obtain

un
L,1=un

L,0, σn
L,1=σn

R,0, un
R,−1=un

L,0, and σn
R,−1=σn

R,0.

Theorem 3.1. Let the interior discretization be given by (3.1) and the interface conditions by
(3.2) with

[

uI

σI

]n

=

[

uL

σR

]n

0

. (3.6)
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Then the discretization is stable for

λ=
c∆t

∆x
<min

{

1,
4

1+ ρL

ρR

}

.

Thus, for ρL/ρR < 3, the discretization is stable under the standard CFL-limit λ < 1. When
ρL/ρR>3, the stable CFL-limit decreases with increasing density ratio and λ→0, when ρL/ρR→
∞.

Proof. By definition (3.3)

aL,1=
1

2c
ũL,1+

1

2κL
σ̃L,1 , (3.7a)

bR,−1=− 1

2c
ũR,−1+

1

2κR
σ̃R,−1. (3.7b)

The interface conditions (3.2) and (3.6), along with the normal mode solutions (3.5a) and
(3.5b) give

aL,1=
1

2c
ũL,0+

1

2κL
σ̃R,0= r−1 1

2
aL,1+

κR

2κL
r−1bR,−1 , (3.8a)

bR,−1=− 1

2c
ũL,0+

1

2κR
σ̃R,0=−r−1 1

2
aL,1+

1

2
r−1bR,−1 , (3.8b)

and the system for aL,1 and bR,−1 becomes

[

1− 1
2r − κR

2rκL

1
2r 1− 1

2r

]

[

aL,1

bR,−1

]

=

[

0
0

]

.

Non-zero aL,1 and bR,−1 exist if the determinant is zero, i.e., if

(

1− 1

2r

)2
+

κR

4κLr2
=0,

which has solutions

r=
1

2
± i

2

√

κL

κR
.

Substituting the definition of r we find

z=± ic∆t

2∆x

√

κL

κR
+1− c∆t

2∆x

from which

|z|2 = c2
∆t2

4∆x2

( κL

κR
+1

)

+1− c∆t

∆x
. (3.9)
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Recall that we are seeking unstable normal modes with |z|>1 and so the interface treat-
ment is unstable for

κL

κR
>

4∆x

c∆t
−1.

As a result of the assumption of uniform wave speeds this is equivalent to the constraint
on the mass ratios

ρL

ρR
>

4∆x

c∆t
−1.

The proof is completed.

3.2 The implicit option

The instability discussed in Section 3.1 is well known in practice and one method used to
avoid the instability is to move to an implicit treatment. Although this works in practice,
the stability of the method is not immediately clear and so we perform a normal mode
analysis much as was done in Section 3.1. In order to achieve an implicit method, we
introduce the implicit upwind method

[

uk

σk

]n+1

i

=

[

uk

σk

]n

i

− ∆t

∆x
RkΛ

−
k R−1

k

([

uk

σk

]n+1

i+1

−
[

uk

σk

]n+1

i

)

− ∆t

∆x
RkΛ

+
k R−1

k

([

uk

σk

]n+1

i

−
[

uk

σk

]n+1

i−1

)

, k= L,R. (3.10)

We again seek normal mode solutions and similar reasoning leads to the normal mode
solutions

[

ũ
σ̃

]

L,i

=

[

c
κL

]

si−1aL,1 for i≤0, (3.11a)

[

ũ
σ̃

]

R,i

=

[

−c
κR

]

s−(i+1)bR,−1 for i≥0, (3.11b)

where

s=
z−1+ c∆t

∆x
zc∆t
∆x

=
∆x

c∆t

(

1− 1

z

)

+1.

Notice that |z|>1 implies |s|>1 for c∆t/∆x>0.

Theorem 3.2. Let the interior discretization be given by (3.10) and the interface conditions by
(3.2) with

[

uI

σI

]n+1

=

[

uL

σR

]n+1

0

. (3.12)

The resulting discretization is stable for c∆t/∆x>0.
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Proof. The analysis follows an identical path to that in the proof of Theorem 3.1 with r
being replaced by s. We therefore arrive at the solution

s=
1

2
± i

2

√

κL

κR
.

Substitution of the definition for s leads to

z=
2

2+λ(1±i
√

α)
=

4−2λ(−1±i
√

α)

4+2λ+λ2(1+α)
, (3.13)

where λ= c∆t/∆x and α=κL/κR. Simple algebra shows

|z|2 = (4+2λ)2+4λ2α

(4+2λ)2+2λ2(4+2λ)(1+α)+λ4(1+α)2
=

D

N
.

(Notice that both D and N are real with D > 0, N > 0). Any unstable modes will have
|z|2 >1 which is equivalent to the condition D>N. This easily reduces to

2α> (4+2λ)(1+α)+
λ2

2
(1+α)2

and subsequently to

α2 λ2

2
+α(2+2λ+λ2)+4+2λ+

λ2

2
<0. (3.14)

Clearly (3.14) can never be true, because λ> 0 and α> 0, and so there are no roots with
|z|>1 which completes the proof.

3.3 A stable alternate

For strictly hyperbolic problems, such as the current example under consideration, an
explicit treatment of the interface conditions which is stable whenever the interior dis-
cretizations are stable would be extremely advantageous. To motivate such a treatment
we investigate a ”characteristic” interface condition. The coupling interface condition
(3.2) is applied and gives two constraints on the four ghost values. The remaining two
constraints are obtained by extrapolating the outgoing characteristic from each domain.
Extrapolation of the outgoing characteristics at first order gives

1

c
(un

L,1−un
L,0)=

1

κL
(σn

L,1−σn
L,0), (3.15a)

− 1

c
(un

R,0−un
R,−1)=

1

κR
(σn

R,0−σn
R,−1). (3.15b)

Using (3.2) to eliminate uR,−1 from (3.15b) gives

−1

c
(un

R,0−un
L,1)=

1

κR
(σn

R,0−σn
R,−1). (3.16)
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Solving (3.15a) for uL,1 and substituting back into (3.16) yields the condition

σn
I =

ǫLσn
L,0+ǫRσn

R,0+un
R,0−un

L,0

ǫL+ǫR
, (3.17)

where ǫL =1/cρL and ǫR =1/cρR. It is then trivial to determine the interface velocity

un
I =

ǫRun
L,0+ǫLun

R,0+ǫLǫR(σ
n
R,0−σn

L,0)

ǫL+ǫR
. (3.18)

Eqs. (3.17) and (3.18) represent a first order characteristic implementation of the interface
conditions, but we move one step further. In the condition we analyze (and later show
results from), the term un

R,0−un
L,0 from (3.17) and the term ǫLǫR(σ

n
R,0−σn

L,0) from (3.18) are
dropped because they are approximations to the interface coupling conditions of no jump
in stress or velocity. The analysis to follow concerns the condition after their elimination
although it seems likely, and computational experiment verifies, that they could be kept
if one desired.

Theorem 3.3. Let the interior discretization be given by (3.1) and the interface conditions by
(3.2) with

[

uI

σI

]n

=
1

ǫL+ǫR

[

ǫRuL+ǫLuR

ǫLσL+ǫRσR

]n

0

, (3.19)

where ǫL = 1/(cρL) and ǫR = 1/(cρR). The resulting discrete system is stable under the CFL
condition 0< c∆t/∆x≤1 independent of the density jump across the material interface.

Proof. Much as before, the definition of aL,1 and bR,−1 along with the interface conditions
(3.2) and (3.19) can be combined to give

aL,1=
ǫRũL,0+ǫLũR,0

2c(ǫL+ǫR)
+

ǫLσ̃L,1+ǫRσ̃R,0

2κL(ǫL+ǫR)
, (3.20a)

bR,−1=−ǫRũL,0+ǫLũR,0

2c(ǫL+ǫR)
+

ǫLσ̃L,0+ǫRσ̃R,0

2κR(ǫL+ǫR)
. (3.20b)

Substitution of the normal mode solution (3.5a) and (3.5b), and some slight rearrange-
ment then leads to

(ǫL+ǫR)aL,1=
ǫRaL,1−ǫLbR,−1

2r
+

ǫLκLaL,1+ǫRκRbR,−1

2κLr
, (3.21a)

(ǫL+ǫR)bR,−1=−ǫRaL,1−ǫLbR,−1

2r
+

ǫLκLaL,1+ǫRκRbR,−1

2κRr
. (3.21b)

The system for aL,1 and bR,−1 can then be written as

[

(2r−1)(ǫL+ǫR) ǫL−ǫR
κR
κL

ǫR−ǫL
κL
κR

(2r−1)(ǫL+ǫR)

]

[

aL,1

bR,−1

]

=

[

0
0

]

.
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Non-zero aL,1 and bR,−1 may exist when the determinant is zero, i.e., if

(2r−1)2(ǫL+ǫR)
2−

(

ǫL−ǫR
κR

κL

)(

ǫR−ǫL
κL

κR

)

=0.

The last term in this equation is seen to be zero by substituting the definitions ǫL = c/κL

and ǫR = c/κR. The determinant condition then yields the solution r=1/2. Substituting
back into the definition of r we find

z=1− c∆t

2∆x

from which it is clear that |z|<1 for 0<c∆t/∆x<4. Recall that the interior discretizations
are stable for c∆t/∆x≤1 and this completes the proof.

An interesting note concerning the interface condition in Theorem 3.3 is that the ex-
tension of the analysis to the case of variable characteristic speeds cL 6=cR is rather trivial.
For this case the weights are defined as ǫL = 1/(cLρL) and ǫR = 1/(cRρR). Recall that
λL = cL∆t/∆x and λR = cR∆t/∆x. Define rL = (z−1+λL)/λL and rR = (z−1+λR)/λR.
The normal mode analysis yields rL =1/2 or rR =1/2 from whence

z=1−λL or z=1−λR.

It is then easy to verify that |z|<1 for 0<max{λL,λR}≤1.

3.4 Extensions to second order discretizations

Extension of the analysis to second order (or higher) discretizations is, in principle,
straightforward. However, we have found the resulting recurrence relations, polynomi-
als, and the eventual solutions to be quite complicated and difficult to deal with. In fact
we have only been able to solve these systems for restricted cases and we now present
some results.

In order to treat the interface conditions to second order we must modify the discrete
interface conditions (3.2). A straightforward second order treatment uses

1

2

([

uL

σL

]n

l

+

[

uL

σL

]n

1−l

)

=

[

uI

σI

]n

=
1

2

([

uR

σR

]n

−l

+

[

uR

σR

]n

l−1

)

, (3.22)

where l takes values 1,··· ,Ng, and Ng is the number of ghost cells required by the interior
discretization. Given values for the interface velocity and stress one can use (3.22) to solve
for the unknown ghost quantities in both domains. At this point it is convenient to in-
troduce some additional notation. Second order interface conditions will require second
order approximations to the interface velocity and stress from each domain. For instance,
a second order approximation to the interface velocity according to the left domain is

un
I,L =

3

2
un

L,0−
1

2
un

L,−1
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Figure 3: Stability bound for the second order interface condition with the first order upwind discretization.
Shown is the maximum stable CFL number as a function of the mass ratio α=ρL/ρR.

while for the right domain is

un
I,R =

3

2
un

R,0−
1

2
un

R,1.

Similar formulas are used to determine σn
I,L and σn

I,R.
Let us examine the stability properties of the traditional and the new interface condi-

tions using the first order upwind method (3.1) and the second order interface conditions
(3.22).

Theorem 3.4. Let the interior discretization be given by (3.1) and the interface conditions by
(3.22) with

[

uI

σI

]n

=

[

uI,L

σI,R

]n

. (3.23)

Then the discretization is stable for

λ=
c∆t

∆x
<min

{

1,
3

2
−
√

2

4

√

−7+2α+9α2+
√

(49+81α)(α+1)3

(α+1)2

}

,

where α=ρL/ρR. Thus, for ρL/ρR < (−8+2
√

17)/2≈0.123, the discretization is stable under
the standard CFL-limit λ< 1. When ρL/ρR > (−8+2

√
17)/2, the stable CFL-limit decreases

with increasing density ratio and λ→0 when ρL/ρR →∞. This stability bound is shown graph-
ically in Fig. 3.

Proof. As in the proof of Theorem 3.1 we begin with the definition of aL,1 and bR,−1. Using
the second order interface condition (3.22) and the definitions of the interface quantities
in (3.23) we arrive at

aL,1=
1

2c
(2ũL,0−ũL,−1)+

1

2κL
(3σ̃R,0−σ̃R,1−σ̃L,0), (3.24a)

bR,−1=
1

2c
(3ũL,0−ũL,−1−ũR,0)+

1

2κR
(2σ̃R,0−σ̃R,1). (3.24b)
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The normal mode solutions (3.5a) and (3.5b) are then used to give the system of equations
for aL,1 and bR,−1

[

1
2r − 1

2r2 −1 3κR
2rκL

− κR

2r2κL

3
2r − 1

2r2 1+ 1
2r2 − 1

2r

]

[

aL,1

bR,−1

]

=

[

0
0

]

. (3.25)

The determinant condition leads to the equation

(2r2+1−r)2+
κR

κL
(3r−1)2 =0, (3.26)

which has roots

r=
1+3iβ±

√

−7−9β2−2iβ

4
, r=

1−3iβ±
√

−7−9β2+2iβ

4
, (3.27)

where β=
√

κR/κL. By definition, z= rλ−λ+1, where λ is the CFL number c∆t/∆x, and
we must determine conditions when |z|<1 (or equivalently |z|2 <1). Define f as the real
part and g as the imaginary part of

√

−7−9β2±2iβ. It follows that f satisfies

f 4+(7+9β2) f 2 =β2, (3.28)

and consequently

f =
1

2

√

−14−18β2+2
√

49+130β2+81β4, g=
±β

f
.

The four roots (3.27) consist of two complex conjugate pairs. Because |z| does not depend
on the sign of the imaginary part of r, there are only two cases to consider. These are

r=
1

4

(

1± f +i
(

3β∓ β

f

))

.

From here it is straightforward to see

|z|2 =
(

− 3λ

4
± λ f

4
+1

)2
+
(3λβ

4
∓ λβ

4 f

)2
. (3.29)

By substitution of β in terms of f from (3.28), the condition |z|2 > 1 is straightforwardly
transformed into a polynomial relation in f and λ. The resulting condition is

(

λ− 3

2

)

(1− f 2)±4 f >0,

where we note that f is monotonically increasing with β, and satisfies 0< f <1/3. There-
fore, there are no roots with |z|>1 when

λ<
3

2
∓ 4 f

1− f 2
.
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Only the minus sign gives a restriction over the CFL condition of the interior scheme.
Substitution of f in terms of β and further straightforward formula manipulations give
the final condition

λ<
3

2
−
√

2

4

√

−7+2β+9β2+
√

(49+81β)(β+1)3

(β+1)2
,

which completes the proof.

We turn now to the stability properties of the new interface coupling technique imple-
mented at second order but again restrict ourselves to the first order interior discretiza-
tion.

Theorem 3.5. Let the interior discretization be given by (3.1) and the interface conditions by
(3.22) with

[

uI

σI

]n

=
1

ǫL+ǫR

[

ǫRuI,L+ǫLuI,R

ǫLσI,L+ǫRσI,R

]n

0

, (3.30)

where ǫL = 1/(cρL) and ǫR = 1/(cρR). The resulting discrete system is stable under the CFL
condition 0< c∆t/∆x≤1 independent of the density jump across the material interface.

Proof. The proof follows now familiar lines beginning with the definition of aL,1 and bR,−1.
Using the second order interface condition (3.22) and the definitions of the interface quan-
tities in (3.30) we arrive at the equations for aL,1 and bR,−1

[ r−1
2r2 −1 0

0 r−1
2r2 −1

][

aL,1

bR,−1

]

=

[

0
0

]

. (3.31)

The solution is found as

r=
1±i

√
7

4
,

from which it is trivial to show that |z|<1 for 0<λ≤1.

Note that much as the case for Theorem 3.3, the stability of the interface condition
in Theorem 3.5 for cL 6= cR is easy to analyze. As before, the roots of the determinant
condition separate and one obtains rL =(1±i

√
7)/4 or rR =(1±i

√
7)/4. Thus

|z|2 =1+λL

(

λL−
3

2

)

or |z|2 =1+λR

(

λR−
3

2

)

.

In either case it is clear that |z|<1 for 0<max{λL,λR}≤1.
We make a few additional observations concerning the stability of the second order

implementation of the interface conditions. Although we have used the first order up-
wind interior discretization, the analysis is directly applicable to higher order interior dis-
cretizations in certain limiting conditions. Take for instance the case when λ=1. Here the
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first order discretization is exact as are many second order space-time coupled schemes.
As a result, the analysis we have presented is applicable in this limit. As one relaxes
from λ=1, to λ=0.9 for instance, the effect is an increase in numerical dissipation. As a
result the bound for λ= 1 is a worst case. The quantitative decay from that bound will
obviously vary depending on the interior discretization, but the qualitative behavior will
remain unchanged. On the other hand, for λ< 1 it is common that the move from first
to second order interior discretizations has the effect of reducing numerical dissipation.
For such cases the limits for the first order interior discretization with the second order
interface condition provides a best case bound. That is to say that if a density ratio is un-
stable with a first order interior discretization we expect it will be unstable with a similar
second order interior discretization, however, if it is stable with the first order scheme it
may be unstable as one moves to a second order scheme.

One final observation concerns density ratios near 1. Our analysis shows that one
sided interface conditions, that is using stress from one side and velocity from the other,
introduce possible stability limitations. Use of our new technique enables the stability
constraints to be lifted. However, instead of implementing the new interface condition,
one could argue that it would be simpler to instead determine which side has the denser
material and apply the appropriate one sided conditions based on that test. The analy-
sis of the second order conditions shows that this will not always eliminate the stability
constraints introduced as a result of the one sided approach. Take for instance the ratio
ρL/ρR=1. The stability constraint of the one sided approximations at second order (The-
orem 3.5) gives a maximum time step with λ≈ 0.4397 regardless of which side donates
stress and velocity. In fact, for the second order one sided interface conditions, a time
step restriction exists for

ρL

ρR
∈
(−8+2

√
17

2
,

2

−8+2
√

17

)

≈ (0.1231,8.123)

regardless of which side donates the velocity and stress. This is a fairly harsh restric-
tion and is likely to be worse with higher order approximations of both the governing
equations and interface conditions.

4 Numerical examples

We demonstrate the practical implications of our stability analysis using a number of
numerical experiments. To produce a problem with known exact solution we use the
method of characteristics [7]. Because the model problem is linear with uniform wave
speed, the characteristics are straight lines whose slopes are the wave speed. For the 1-D
problem under consideration each point (x,t) is intersected by two characteristic curves
each carrying information about the solution at that point. The characteristic equations
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tell us that

u

2c
+

σ

2κ
=constant, for

x

t
=−c, (4.1a)

− u

2c
+

σ

2κ
=constant, for

x

t
= c. (4.1b)

To simplify the construction we assume that the initial condition has

u

2c
+

σ

2κ
=0 and − u

2c
+

σ

2κ
= f (x),

which implies that the initial conditions set u(x,0) =−c f (x) and σ(x,0) = κ f (x). The
solution at the interface (x=0) is easily determined as

u(0,t)=
−2c f (−ct)

1+ κR
κL

, σ(0,t)=
2 f (−ct)

1
κR
+ 1

κL

. (4.2)

Using Eqs. (4.1a) and (4.1b), the initial conditions, and the solution at the interface (4.2),
the solution for any point (x,t) away from the interface can be found as

u(x,t)=























−c f (−ct), for x<−ct,
(

2 f (−ct)+ u(0,tI )
c + σ(0,tI)

κL

)

c
2 , for −ct≤ x<0,

( u(0,tI)
c − σ(0,tI)

κR

)

c
2 , for 0≤ x< ct,

0, for x≥ ct,

and

σ(x,t)=























κL f (−ct), for x<−ct,
(

2 f (−ct)+ u(0,tI )
c + σ(0,tI)

κL

)

κL
2 , for −ct≤ x<0,

(−u(0,tI)
c + σ(0,tI)

κR

)

κR
2 , for 0≤ x< ct,

0, for x≥ ct,

where tI = t−|x|/c.
As a test case let the initial condition be given by

f (x)= e−100(x− 1
2 )

2
.

The evolution of the exact solution is shown in Fig. 4 with the representative density ratio
ρL/ρR =4∆x/c∆t−1, c∆t/∆x=0.9, and c=

√
3. Initially we see the Gaussian pulse mov-

ing from left to right. At time t=0.375 the pulse is in the latter stages of interacting with
the interface at x=0. Some portion of the wave pulse is transmitted through the interface
and some portion is reflected. The final plot at t=0.75 is slightly before the reflected and
transmitted pulses exit the domain to the left and right. We perform computations on the
finite domain x∈ [−1,1] with the interface located at x= 0. On the far left and far right
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boundaries, which are not considered in our analysis, we implement a first order char-
acteristic non-reflecting boundary condition. At the interface we apply the appropriate
interface condition for the given test case. Simulations are run using ∆x=1/50 (51 grid
cells in each domain), and a fixed CFL of c∆t/∆x=0.9. Time integration is carried out to
the final time t=5.0 which is well after the pulses have left the domain.

Fig. 5 shows the results when the traditional condition of Theorem 3.1 is used. In
the figure, blue indicates the maximum error using the unstable density ratio ρL/ρR =
4∆x/c∆t−1+0.01, and the red using the stable ratio ρL/ρR = 4∆x/c∆t−1−0.01. The
growth or decay rate for the admissible normal modes can be computed from (3.9) as
|z|≈1.001012, and |z|≈0.9989870 respectively. The black lines in the figures are reference
lines with those slopes and show the agreement of the simulation results to the theory.
The alternate interface condition of Theorem 3.3 is applied to the same problem and com-
putational setup and the results plotted in Fig. 6. The behavior for both density ratios is
remarkably similar and the stability of the scheme for either ratio is apparent.

In order to further demonstrate the efficacy of the condition in Theorem 3.3, the same
Gaussian initial condition is used but now with the density ratios set to ρL/ρR=1010 and
10−10. For the later, the traditional interface condition is stable and gives nearly identical
results to the new interface condition. For the former the traditional scheme experiences
rapid numerical blowup and by the second step the max error is already ≈ 108. On the
other hand, the new condition is stable for either ratio and produces roughly the same
response for both cases. In fact the results for these extreme density ratios are roughly
the same as the results found for the more modest ratios of Figs. 5 and 6. Fig. 7 shows
these results.

We now move to numerical examples using the second order interface conditions.
Fig. 8 shows results obtained for the test problem with the first order interior discretiza-
tion and the second order interface condition using both the traditional and new cou-
pling techniques. For CFL λ = 0.9, the neutrally stable density ratio for the traditional
technique is found to be ρL/ρR ≈ 0.1876. We perform simulations on either side of this
limit with ρL/ρR = 0.1876+0.01 chosen as an unstable case and ρL/ρR = 0.1876−0.01 as
a stable case. The corresponding values for |z| are found to be approximately 0.9893 and
1.0104 respectively and the plot includes reference lines associated with those growth
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Figure 4: Exact solution to the test problem with ρL/ρR =4∆x/c∆t−1 at t=0 (left), t=0.375 (center), and
t=0.75 (right).



J. W. Banks and B. Sjögreen / Commun. Comput. Phys., 10 (2011), pp. 279-304 299

0 1 2 3 4 5
10

−3

10
−2

10
−1

10
0

time

m
ax

im
um

 v
el

oc
ity

 e
rr

or

0 1 2 3 4 5
10

−3

10
−2

10
−1

10
0

time

m
ax

im
um

 s
tr

es
s 

er
ro

r

Figure 5: Errors in the velocity (left) and stress (right) using the traditional coupling technique of Theorem 3.1.
In the plot the blue indicates the unstable density ratio ρL/ρR=4∆x/c∆t−1+0.01, and the red the stable ratio
ρL/ρR = 4∆x/c∆t−1−0.01. The black lines indicate the theoretical growth or decay rate of the admissible
normal mode solutions.
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Figure 6: Errors in the velocity (left) and stress (right) using the new coupling technique of Theorem 3.3.
In the plot the blue indicates the density ratio ρL/ρR = 4∆x/c∆t−1+0.01, and the red the ratio ρL/ρR =
4∆x/c∆t−1−0.01. The black lines indicate the theoretical decay rate of the admissible normal mode solutions.
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Figure 7: Errors in the velocity (left) and stress (right) using the new coupling technique of Theorem 3.3. In

the plot the blue indicates the density ratio ρL/ρR=1010, and the red the ratio ρL/ρR=10−10. The black lines
indicate the theoretical decay rate of the admissible normal mode solutions.
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Figure 8: Errors in the velocity using the second order boundary conditions. On the left is the traditional option
of Theorem 3.4, and on the right is our new coupling technique of Theorem 3.5. In the plot the blue indicates
the density ratio ρL/ρR=0.1876+0.01, and the red the ratio ρL/ρR=0.1876−0.01. The black lines indicate the
theoretical growth or decay rate of the admissible normal mode solutions. Note that the vertical scales differ
between the two plots.

0 0.1 0.2 0.3 0.4 0.5

10
−5

10
0

10
5

time

m
ax

im
um

 v
el

oc
ity

 e
rr

or

0 0.1 0.2 0.3 0.4 0.5
10

−6

10
−4

10
−2

time

m
ax

im
um

 v
el

oc
ity

 e
rr

or

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

10
0

∆ x

m
ax

im
um

 e
rr

or
 (

t =
 0

.5
)

 

 
traditional
new
2nd order

Figure 9: Errors in the velocity using a
fully second order algorithm. At upper
left are results using the traditional op-
tion of Theorem 3.4, while the top right
shows our new coupling technique of The-
orem 3.5. Here we use the fixed density
ratio ρL/ρR = 0.25 and perform simula-
tions at fixed CFL with the five resolutions
∆x = .02 (red), .01 (blue), .005 (green),
.0025 (magenta), and .00125 (black). The
bottom plot shows the convergence of the
error as ∆x→0 at the fixed time 0.5 using
both methods.

rates. The theoretical growth rates are shown to be well captured by the simulation. The
same computations are carried out using the new coupling technique at second order
and the results are as expected. The error decays rapidly after the pulse exits the com-
putational domain. Note that the stress is not shown in either figure but the behavior is
qualitatively similar to that of the velocity. Also note that the new coupling technique at
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second order gives qualitatively similar results for the larger density ratios ρL/ρR =1010

and ρL/ρR =10−10.
As a final test we use the same Gaussian initial condition but now implement a second

order upwind discretization along with the second order boundary condition to yield a
fully second order scheme in both space and time. We no longer have a theoretical result
in hand to indicate the stability limit and so instead we choose to illustrate the potential
hazards via a convergence study. We use CFL λ = 0.9 and ρL/ρR = 0.25, and integrate
in time to t f = 0.5. Fig. 9 shows results for this convergence study. The maximum er-
ror in velocity is displayed as a function of time for the five resolutions ∆x = .02, .01,
.005, .0025, and .00125 for both the traditional interface treatment and the new proposed
technique. For the traditional method the first resolution doubling gives reasonable re-
sults but upon the second doubling the instability begins to dominate the error. For the
two finest resolutions the instability completely dominates the error. The unstable mode
will also dominate the solution on the coarser grids if these computations are run longer
in time. We can also notice that because instability growth depends on the number of
time steps, the growth rate in physical time doubles as the time step is halved. For the
new coupling technique, the instability is apparently not present and second order con-
vergence is achieved at any fixed time. To demonstrate this fact, Fig. 9 also presents a
grid convergence study for the maximum velocity error at t=0.5. Second order conver-
gence in the maximum norm is demonstrated for the new coupling technique, and the
convergence rate over the final grid doubling is calculated as 1.99. The traditional cou-
pling technique shows rapid nonconvergence as the instability dominates. As a further
test that the fully second order method with the new coupling condition is in fact stable,
the simulation is allowed to run further in time so that the pulses leave the domain. As
expected the errors decay off to ≈ 10−60 by t= 5 in much the same way as the previous
results indicate. Furthermore, the behavior for the new coupling is unaltered for the large
density jumps ρL/ρR =10−10 and 1010.

4.1 Introductory example with new interface condition

The analysis of the previous sections resulted in the interface condition (3.19), which is
stable for the model problem, for all density ratios. It is here generalized and applied to
the coupled Euler/linear elastic problem (2.1a), (2.1b) presented in Section 2.

The generalization of the stable interface condition (3.19) to the Euler/linear elastic
problem is

u
( f )
−1 =

ǫsu
(s)
0 +ǫ f u

(0)
1

ǫs+ǫ f
, u

(s)
1 =

ǫsu
(s)
0 +ǫ f u

( f )
0

ǫs+ǫ f
, (4.3a)

p−1=
−ǫsσ0+ǫ f p0

ǫs+ǫ f
, σ1=

ǫsσ0−ǫ f p0

ǫs+ǫ f
. (4.3b)

This condition is the same as (2.5a), (2.5b) but with weighted averages. The weights are
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Figure 10: Solution of Riemann problem showing velocity (left) and stress (right) as functions of the Eulerian
(physical) coordinate x. Red x-symbols represent the solid, blue o-symbols the fluid, and the black line is the

exact solution. The approximations use N=100 points in each domain and ρ(s)=0.001 with the new interface
conditions.
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Figure 11: Solution of Riemann problem showing velocity (left) and stress (right) as functions of the Eulerian
(physical) coordinate x. Red x-symbols represent the solid, blue o-symbols the fluid, and the black line is the

exact solution. The approximations use N=100 points in each domain and ρ(s)=1000 with the new interface
conditions.

generalized from (3.19) to be

ǫs =(ρ(s)cs)
−1, ǫ f =(ρ

( f )
I c f )

−1,

where

cs =
√

E/ρ(s), c f =

√

γpI /ρ
( f )
I ,

and where first order extrapolation,

ρ
( f )
I =ρ

( f )
1 , pI = p1,

determines the interface values. The extrapolation is, of course, easy to generalize to
higher orders of accuracy if needed. Notice that the continuous problem has no interface
condition for the density of the fluid. In the numerical computation, we use extrapolation
of the density to the ghost points for numerical boundary conditions.

Figs. 10 and 11 show the computed solution of the Riemann problem in Section 2,
computed in the same way as described there, but with the interface condition (4.3a),
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(4.3b). In Fig. 10, ρ(s)=0.001, and in Fig. 11, ρ(s)=1000. Both computations use CFL num-
ber 0.9 and are stable. Additional numerical experiments show that the new interface
conditions lead to a method that is stable for CFL numbers up to 1 for arbitrary values
of ρ(s). For example all cases investigate in Table 1 as well as the rather extreme cases
of ρ(s)=10±10 are stable with (4.3a), (4.3b). Furthermore, extension of the new technique
to second order in both space and time yields the same stability characteristics while the
more traditional techniques suffer even more restrictive constraints than their first order
counterparts.

5 Conclusions

In this paper we have discussed the stability of various discrete treatments of the interface
coupling conditions for fluid-structure problems. The need to understand the stability
properties of a given scheme was motivated by a numerical example which coupled an
inviscid and compressible ideal gas with a linearly elastic solid in 1-D. It was seen that
some of the most natural discretizations are unstable as the ratio of densities becomes
too large or too small. This problem was subsequently simplified to a coupling between
two linearly elastic materials. A normal mode analysis showed the conditional stability
of the simplest explicit treatment and the stability of an implicit treatment. A simplified
characteristic interface condition was then derived and was proved to be stable up to the
maximum stable CFL limit of the interior discretizations. We also extended the analysis
to second order discretizations in certain limits and showed that the restriction on the
traditional methods is even more severe with increasing order, but that the new condition
remains stable for any density jump. A series of numerical examples explored these
results and confirmed the conclusions. Finally the new coupling condition was applied to
the original example and numerical examples demonstrated the stability of the resulting
scheme for arbitrary jumps in density.

The specific results of this paper concern the stability of the fluid/structure interface
for an inviscid and compressible ideal gas with a linearly elastic solid, but the methods
are much more widely applicable. For example, we have begun to pursue these tech-
niques to investigate the numerical stability of interface treatments for the linearized Eu-
ler equations coupled with the equations of linear elasticity in two space dimensions, as
well as the linearized Navier-Stokes equations with elastic and visco-elastic solids. For
these cases, the solution to the Riemann problem can again be used to motivate coupling
conditions, but more advanced analysis techniques may be required to prove stability.
For instance it would be possible to use the same analysis technique as used here for
the two dimensional problem with periodic boundary conditions in the second direction.
Linearization and Fourier transformation of the second space dimension will lead to a
problem of similar structure, but algebraically more involved, due to the dependence of
the tangential Fourier mode. It is not clear whether a closed analytic condition for nu-
merical stability would be obtained, but a detailed numerical investigation of the normal
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mode stability condition is certainly possible. Furthermore, the added possibility of sur-
face waves traveling on the interface will make it interesting to also examine the stability
of the interface in the continuous problem.
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