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Abstract. The symmetric energy-conserved splitting FDTD scheme developed in [1] is
a very new and efficient scheme for computing the Maxwell’s equations. It is based on
splitting the whole Maxwell’s equations and matching the x-direction and y-direction
electric fields associated to the magnetic field symmetrically. In this paper, we make
further study on the scheme for the 2D Maxwell’s equations with the PEC boundary
condition. Two new energy-conserved identities of the symmetric EC-S-FDTD scheme
in the discrete H!-norm are derived. It is then proved that the scheme is uncondi-
tionally stable in the discrete H!-norm. By the new energy-conserved identities, the
super-convergence of the symmetric EC-S-FDTD scheme is further proved that it is
of second order convergence in both time and space steps in the discrete H'-norm.
Numerical experiments are carried out and confirm our theoretical results.
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1 Introduction

The finite-difference time-domain (FDTD) method, which was firstly introduced by Yee
[18] in 1966, is a very popular and efficient numerical method in computational electro-
magnetics and is applicable to a broad range of problems (see, for example [16]). FDTD
uses the central difference on the staggered grid points, second order accurate and easy to
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be implemented. However, FDTD is (conditionally) stable when the Courant-Friedrichs-
Lewy (CFL) condition in the 2D case

At< % (AiszrAiyz)_m,

is satisfied, where
c=1/\/eu

is the wave velocity. In 1999, the alternating direction implicit FDTD (ADI-FDTD) meth-
ods were proposed in [13, 20] by Zheng, Chen, Zhang for the 3D case and Namiki for
the 2D case and were proved to be unconditionally stable. Different from the ADI-FDTD
schemes, the splitting FDTD schemes (S-FDTD) were proposed by Gao, Zhang and Liang
in [6,7], which firstly use the techniques of splitting the whole Maxwell’s equations and
reducing the perturbation errors by additional terms. It was proved that the splitting
schemes are unconditionally stable, and the S-FDTDII scheme is of second order accu-
racy and has good merit in simulating a kind of scattering problems [6]. On the other
hand, the electromagnetic energy of the wave keeps constant at different time in a lossless
medium without sources. It is important to study the energy conservations of numerical
schemes for the Maxwell’s equations. Recently, in 2009, Chen, Li and Liang [1] proposed
a new splitting finite difference method, called the symmetric energy-conserved splitting
FDTD scheme (i.e. symmetric EC-S-FDTD), which reduces the perturbation errors due
to the splitting of equations by the symmetry in the combination of the x-direction and
y-direction electric fields and the magnetic field. It was proved in [1] that this method is
unconditionally stable and of second order convergence in both time and space steps in
the discrete L>-norm, and specially, it is energy-conserved in the two energy identities in
the discrete L2-norm.

In this paper, we make further study on the energy conservation, stability and er-
ror estimates of the symmetric EC-S-FDTD scheme. We firstly give two new energy-
conserved identities (in the H! norm) of the 2D Maxwell’s equations with the PEC bound-
ary conditions. These energy identities physically explain energy conservations of the
variation of the electric and magnetic fields in a lossless medium without sources under
the H! norm. Then, we strictly prove that the symmetric EC-S-FDTD scheme satisfies
these two new energy-conserved identities in the discrete forms. By these new identi-
ties, it is proved that the symmetric EC-5-FDTD scheme is unconditionally stable in the
discrete H'-norm. Moreover, we prove the super-convergence of the symmetric EC-S-
FDTD scheme that the scheme is of second order accuracy in the discrete H'-norm. With
the help of the super convergence result, it is easily proved that the divergence of the
electric field of the symmetric ES-S-FDTD scheme is second order accurate. Numerical
experiments are presented and numerical results confirm the theoretical results.

The remaining of this paper is organized as follows. In Section 2, new energy-
conserved identities of the 2D Maxwell’s equations in the H! norm are derived. In Section
3, we prove the symmetric EC-S-FDTD scheme to satisfy new energy-conserved identi-
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ties and to be stable in the discrete H' norm. Section 4 gives the proof of the super-
convergence of the scheme in the discrete H'-norm and the divergence error of the elec-
tric field of the scheme. Numerical experiments and conclusions are given in Section 5
and Section 6.

2 Energy-conserved identities of Maxwell’s equations

Consider the Maxwell’s equations in two dimensions:

9E; 1 0H,

ot e oy’ @1)
9E, 1 0H.

e ox @2
OH, 1 (JE, OE,

T (ay X 23)

in a lossless and isotropic medium with electric permittivity € and magnetic permeability
u, where E = (Ex(t,x,y),E,(t,x,y)) and H, = H,(t,x,y) denote the electric and magnetic
fields, (x,y) €Q), t€(0,T].

We assume that the domain Q) is a rectangle, )=[0,a] x [0,b], where a and b are positive
numbers, and the medium is covered by perfectly electric conductors. So, the perfectly
electric conducting (PEC) boundary condition is satisfied:

(#1,0) x (E,0)=0, on (0,T] xaQ, (2.4)

where 0Q) denotes the boundary of (), 7i is the outward norm to d(). By the cross product
of vectors, this PEC boundary condition can be written as

Ex(t,x,0)=Ey(t,x,b)=E,(t,0,y) =E,(t,a,y) =0, Vxe€l0,a], Vy€[0,b], Vt (0,T]. (2.5)
The initial conditions are given as
Eo=E(0,x,y) = (Exo(x,¥),Eyo(x,y)) and H,o=Hx(x,y). (2.6)

We first give two new energy-conserved identities for the Maxwell’s equations in two
dimensions in the following Theorems 2.1 and 2.2.

Theorem 2.1. Let E=(E,(t,x,y),E,(t,x,y)) and H,=H,(t,x,y) be the solution of the Maxwell’s
equations (2.1)-(2.3) with (2.4) and (2.6). Suppose that E and H, are smooth enough, e.g.
Ec C([0,T];[C?(Q)]>)NC ([0, T];[CH(Q)]?), H, € C([0,T);C*(Q2))NC([0,T);CH(QY)). Then,
for w=x ory, the following energy identities hold

S ) el ) () Yants

:/Q {g(aExo)2+g(@)2+‘u<aHzo)2}dxdyEConstant. (2.7)

ow ow ow
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Proof. The proof of (2.7) with w = x is the same as that of (2.7) with w=y. Thus, we
only derive (2.7) with w=x. Differentiating each of the equations from (2.1) to (2.3) with
respect to x leads to

0’E, 1 9*H,

oxof ¢ oxdy’ (28)
*E, 1 0%°H,
oxot & ox2’ @)
?H, 1 (0*E, O°E,
ot <8x8y ~ ) (210)
By using the integration by parts and the PEC boundary condition (2.5), we have
0%E, 0H, OEy 0*H,
/Q oxdy ox dxdy=— 0 ox axaydxdy, (2.11)
0’E, 0H, oE, 9%H,
| o ey = /Q S dady+ Ty~ T, (2.12)
where
boE, oH, JE, oH,
= [ S SEtayndy, To= [ SLE0y)SE0y)y.
From Eq. (2.2) and the boundary condition (2.5), it holds that
(b, OE,0E, (b, OE,0E,
T]—— 0 %%Ewgdy—o, Tz—— 0 }(ll)r(l)gwgdy—o (213)

Then, multiplying Eqs. (2.8)-(2.10) by %, eaa% and p %% respectively, integrating both

sides of the equations over ()=10,a] x [0,b], and using (2.11)-(2.13), we have that

1d A{E[(aEX)ZJF(aEV)Z]+y(%)2}dxdy=0- (2.14)

24t ox ox
So, the energy identity (2.7) with w=x is obtained by integrating (2.14) over [0,t]. O

If we further differentiate Egs. (2.1)-(2.5) with respect to t and repeat all the arguments
above, we can obtain the following theorem.

Theorem 2.2. Assume that E = (Ey,E,) and H, are the solution of the Maxwell’s equa-
tions (2.1)-(2.3) with (2.4) and (2.6) and smooth enough, e.g. E € C}([0,T];[C*(0))]*)N
C%([0,T);[CY(D)]?), H, € C'([0,T];C3(Q2))NC?([0,T);C(Q)). Then, for w=x or y, the fol-
lowing energy identities hold

/Q{e(%)z—l—s(%)z—l—y<%)2}dxdyEConstant. (2.15)
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Reduction of these two theorems to the case of % =1 (the identity operator) leads to
the following two important energy identities (the detailed proof see [2]).

Corollary 2.1. Let {E,H,} be the solution of the Maxwell's equations (2.1)-(2.4) and (2.6).
If E and H, are smooth enough, eg. E € C([0,T];[C'(Q0)]2)nC([0,T];[C(Q)]?), H, €
C([0,T);CHQY))NCL([0,T];[C(Q)]?), then
/{S(Ex)z+8(Ey)2+y(Hz)2}dxdyEConstant; (2.16)
0

if E € CH([0, TL[CH())NC*([0, TL[C(V)]?), H: € CY([0,T];CHQ))NC*([0, T[C(Q)]?),

then
/Q{E(aaEtx>2+ <a£> +V(agz)2}dxdyEConstunt. (2.17)

Now, we give some notations and the Yee’s staggered meshes in two dimensions. Let
Ax=a/I and Ay=>b/] be the mesh sizes along the x and y directions respectively, and let
At=T/(2N) be the time step size, I, ] and N are positive integers. Define

1 1 1 1
50% Y=yt T =oAL

xi+%:xi+2 5

1 1 1
. B e L
Uy =U(t", xa,Yp), m—n,n+§, a=iits, B=jj+z

g = (U s g = Uy ) /A%, Sy U= (U = U 1)/ Ay,

Sl = (umgl—um 1)/2At 8uboUy s =06, (8,UY), u,0=xy,

wherei=0,1,---,1-1;j=0,1,---,] =1, n=0,1,---,2N. The Yee’s staggered meshes associ-
ated with the fields E= (Ey,E,) and H, can be written as

Qp, = {(x, 1Y) 1120121 ) (2.18a)

Qe, = {(xiyj, )0 ) (2.18b)
-1

QHZ = {<'x1+% ) ’11 (%/]]‘:0 } (218C)

Similarly, the meshes corresponding to the differences of the electric and magnetic fields,
dwEx, 0wEy and 6, H,(w=x,y), and the boundary meshes to the boundary values Ey; 110

and Ey, where i'=1,I—1,j=1,] —1, are denoted by

+1/
-1 J-1 -1 J-2
s,k = Qo ={ ()25 Y Qoge = {(xiy v )20 /2 )
-2 7J-1 -1 J-1
e, = { (x5 0 ) Q. ={(xiyp ) 0 )

1
Qp,, = (i )|/ =T -1}, Qg ={(xy, )L =1,1-1);
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the meshes Q(;yEy and Qész can be similarly defined. For a grid function U, g, where
a=i,i+3, B=j,j+ 3, define the following norms:

—1J-1 -1]-1
||u||E _228 H— ] ZAXAy/ HuHEy 228 1]+ AXAy'
i=0j=1 i=1j=0
—-1J-1 2 ) I-1]-1 )
Iulf?, = ZZH i1 je1) Bxdy, (UG g, =) ) e(Us))*AxAy,
i= O] i=1j=1
1 I—
2 _ 2
|u’Exj/__lZ:4);8 H-Z] Ax AylZ:E{( ) (ui—&-%,]—l) }Ax

In the norms above, the subscripts imply that the summations are done over the
meshes on which the subscript fields are defined. Other norms, such as || LIH% e U3 £,/

HUH%yEy, [Ul|s 1., [Ul[6,1. and [U[E,, can be similarly defined.

3 Symmetric EC-S-FDTD and new discrete energy conservation

In this section, we firstly introduce the symmetric EC-S-FDTD scheme. Then, we prove
that the scheme satisfies four new discrete energy-conserved identities corresponding to
those of the Maxwell’s equations.

The symmetric EC-S-FDTD scheme [1] for the 2D Maxwell’s equations (2.1)-(2.3) is

E 2k+1 1 2k
y1]+2 yi,]'+2 .

Stage 1: Al (S {HZZ]+] +H21]+1 } (3.1)
sz+ 1 Hz 1
Jjta A 2k+1
= 2 __2_53({15%,4r ]+1+E%+ ]+1} (3.2)
E 21 _E 2%
Xiyl .
Stage 2: Z*Z’At r2d _—5 {H. f_’;+1]+H Y (3.3)
H 2k+1 I 1
Li+y ity 2k+1
At _ﬂ(sy{ExiJr ]+1+E i+3 ]+1} (34)
Eqip By 1 st
. 2 27 +
Stage 3: Y ——5 yIH: 241 ]—l—H ey (3.5)
Hz** . _HZZk—H
1it3 pits 1 2%k+2 2%k+1
At _2y5y{Exi+%,j+%+E i+3 J+%} (3.6)
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2k+2 _ p 2k+1
Eyz‘H% EyiH%

Stage 4: = 5 {HZIZI;I%—I-HZZH]} (3.7)
22k+2 _ Z**l :
i+3j+3 itajts 1 2k+2 2k+1
A = x{ visy ey T b (3.8)

where the boundary conditions are
Eler 0 —Eler I Ey0]+2 Ey1]+1 =0, m=2k,2k+1, k=0,1,---,N—1, (3.9
and the initial conditions are
E) ;= Eo(alAx,BAY), H.)z=Hao(ahx,BAY). (3.10)

In order to derive the discrete energy-conserved identities, we will use the following
lemma.

Lemma 3.1. Let {E! 1} {E,! i+ } and {Hzﬁlﬁl}, n=2k2k+t1; m=2k2k=+1,*,%x; k>
27 2

0, be the grid functzon values in the symmetric EC-S-FDTD scheme and satisfy the boundary
conditions (3.9). Then, it holds that

~1J-1 —1/-1
ZZ (0x8yEx" -8 H"), i 1 AxAy = — EZ (6xEx"-0,6,H,™); jAxAy (3.11)
i=1j=0 i=1j=1
-1]-1 —2]-1
Y Y (6x0:E," -5, H." )l]+1AxAy— ZZ (0xEy"-0x6xH, )ZJr 1 i+ 1AXAY
i=1j=0 i=1j=0
At .
AXEZ E,"-0H:")y i1 1, (3.12)
J-1
where the summation Y Y means
i j=0

ZZ Eyn -0xH:" )z ]+1Ay Z{Ey1]+1 0 H21]+1+Ey1 1j+3° 0 HZI 1]+1}Ay
i j=0

This lemma is easy to be proved by using summation by parts and the boundary
conditions (3.9). Now, we can derive two new discrete energy-conserved identities in the
following theorems.

Theorem 3.1. For k>0, let E*= {Elerl 7 l]+1 } {HZ it } be the solution of the symmetric
EC-S-FDTD scheme (3.1)-(3.10). Then the following energy _conserved identities hold

16xEx* 13,2, + 110xEy™ |13, + 16+ H=* 13, 1. + | E, 2,
=[10xEx|13, £, +118xEy I3, 2, + 10x H=C 113, 1, +|Ey° ., (3.13)
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18, E 13 5, + 18,2 B, + 16, H2 13, .+ TR,
= 18, E:°1, e, + 18y E 3 5, + 16, H2IR, r, +EL (3.14)

Proof. Taking the difference 6, to the equations in the symmetric EC-S-FDTD scheme
leads to the corresponding scheme of §,-EC-S-FDTD as follows

5 Ey2k+1 —5 EyH_

_ i+3.j+3 bits _
5-Stage 1: die - SOSAHY,  HHZ L), (315)
5tz;k 5 Hzl 1
/] ]""2 _ 2k+1
5 Eka-‘rl ) EXZZk 1
o *
5,-Stage 2: Y N = 5-0y0s {H: +Ha ), (3.17)
(S H 2k+1 (S H *
l]+2:i55 {E 2k+%+E 2k ]} (318)
At 2u ™’ gtz
. ,] L] _ *% 2k+1
5,-Stage 3: N = b0 Hop + B2, (3.19)
S H.™ =8 HZZk+l
J+3 ijry 1 2%+2 | p 2k+14.
At _Zy(syéx{Exiﬁ%JrE"iﬁ% ’ (3:20)
) Eka—‘rZ —6E ‘2k+1‘
. i+3j+3 Vitgjrs 1 2%k+2
5,-Stage 4: SV _—?sx(sx{Hz 2 HHT ) (2))
(S H 2k+2 —(S H.**
Z Zl]+2 — 5 5 {E 2k+2+E 2k+1 (3 22)
A o IR TSN '

Here, the forms and the ranges of mesh points for the new fields 6,E,", d,E," (m=
2k,2k+1) and 5. H,' (I =2k,2k+1,%,+%) in the d,-EC-S-FDTD scheme are changed. For
example, {(xi+%,yj)\i:0,1,~-~,I—1;j: 1,2,---,]—1} for E. % is changed into {(x;,y;)|i=
1,2,---,1—1;j=1,2,---,] =1} for 6,E,*.

Multiplying both sides of (3.15) and (3.16) by ed,(E,* 1 +E,*)AxAy, uéx(H.*+
H,* )AxAy, summing them over i, in their valid ranges and using Lemma 3.1, we have

1-2]-1

ZZE[ (6 Ey2i+1+]) — (6% Eler 1) ]AxAy
i—1j=0
—1/-1
+ZZ#[5H* P (0cH2, )] Axay
i=1j=0

= ZAxZZ Eylzk]f1+Eyz o) (OcHz) 1+ Hzl,]+1)Ay (3.23)
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Noting that from (3.1) withi=i'=1, or [ -1,

At
2%+1 o
Eyz ]-:] _Eyl ]J,-l - 2 5 (HZ +1+HZ/]+1) (3.24)

2k+1 Ay . .
i) -I-Eyl i+ 1) & and taking summation

over O ,={(xp,y.. 1)[i'=1,1-1;j=0,1,---,]—1 wehave
yi ]/]+2 J

multiplying both sides of this equation by E(Ey

Ay

_AtZZ Ey2k+11+Eyl ]+1)(5 H.;, JIR sz']+ )Ax

A
—ZZZ | (B2, )= (B2 5. (3.25)

By the definitions of |-| Eyo/ |-lls,, and ||-[[s,r, in Section 2 and the equation (3.25), the
equation (3.23) becomes
10xEy™ M3, g, + 118 H= |3, .+ |E,* R,
= [10xEy™ |13, + 16 H 13, 11, + |E [, (3.26)

Similarly, from the é,-Stage 2, 6,-Stage 3 and J,-Stage 4, we get that

I B2 g 6 2R gy = [ E P g+ 10 R, B27)
10 B2 6 [, = B 62y, (B28)
16223 16 H2 2By A+ 2R,

=[10xEy™ M3, g, + 110 H= " I3, + 1By E - (3:29)
Combining the four relations (3.26)-(3.29), we have

10xEx™ 213 £, +[16:Ey* 213, g, + |0xH2 2, 1y, + 1B, 22

i

= [10xEx™ |13, £, + 10xEy™ I3, , + 16+ H= 13, 11, + [ Ey I, (3.30)

Summing up both sides of (3.30) over the time levels yields the discrete energy-conserved
identity (3.13).

Similarly, taking the difference J, to the four stages of equations (3.1)-(3.8) and repeat-
ing all the processes above, we can obtain the identity (3.14). O

In the proof of Theorem 3.1, we can see that the summation by parts is independent
of the time levels. Considering the operated scheme (3.1)-(3.8) by operators é,,0; (w=x or
y), we further obtain the following theorem
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Theorem 3.2. Let E* = {Exf_’il j,Ey?’]?Jrl} and {Hzfil il }, k>0, be the solution of the sym-
27 ] T3 27/ 12
metric EC-S-FDTD scheme (3.1)-(3.8). Then, the following energy-conserved identities hold

1000 Ex* I3, + 100k Ey™ T3, g, 110005 H 2|3, + 10 B, R

= 68 B, 1600 Ey 1B, + 100 e B, |60y 3, (331)
168, EP 1R g, + 1000, E PR g, 168, FZH By, + B EZ
= 168, 1B, + 11010y Ey 13,5, 16, He1 3 +IGEL R (3:32)

If regarding 6, and é;J, as I (the identity operator) and é; in Theorems 3.1 and 3.2, the
following two discrete energy-conserved identities are obtained (which were proved by
Chen, Li and Liang in [1]).

Remark 3.1. Let E* = {Exfi%’j,Eyi’]er%} and {Hzﬁ%ﬁ%} be the same as in Theorems 3.1
and 3.2. Then, for k>0, the symmetric EC-S-FDTD scheme satisfies
IE 1%, + 1B 117, + 1 H=2 (17, = | EXC 12, + 1B, 17, + 1H=° 17, (3.33)

16E B, 62 R, + 102 3, = 6E B, + 168, B, + 6By (3.3
Finally, let further define the discrete H L_norms as follows
IE<" 17 = I Ex" 12, + 1< Ex" I3, + 10y Ex™ 13, £, + 1By £,
1B, B =1Ey" I3, +16:E,™ B, +18,E," By, +E<"3,,.
[ H" 13 = [ H" (1, + 16 Ha"113, 11, 118y H=" 113, 1.
for m =2k,2k+1, or 0. Combining the identities in Theorems 3.1 and 3.2 and Remark 3.1,
g

we obtain the forms of the energy-conserved identities in the discrete H!-norm, as shown
in the following theorem.

Theorem 3.3. The solution of the symmetric EC-S-FDTD scheme (3.1)-(3.10), E™ =
{Exﬁ%,j,EyfjJr%} and {Hzﬁ%ﬁ%} with m=2k,2k+1,k >0, satisfies
EIT+ 1B 13+ 1H=21F = | ELIF + 1B, IF + I =11, (3.35)
6,2 B+ B4+ 622 = |G B B [6E B+ 6 H 2. (336)

Thus, the solution of the symmetric EC-S-FDTD scheme and its 6;-difference are energy conserved
and unconditionally stable in the discrete H'-norm.
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4 Super-convergence Analysis in the discrete H!-norm

In this section, we consider the error estimates and super-convergence analysis by using
the new energy-conserved identities. Then we give a simple estimate of the divergence
of the electric field of the symmetric EC-S-FDTD scheme. First, we derive the error equa-
tions and truncation errors of the operated symmetric EC-S-FDTD schemes by J, by the
method used in [1].

From the equations (3.15)-(3.22) in the §,-EC-S-FDTD, we have the following expres-
sions
1

5xH22k+1 ‘j,]‘_t,_% — 25x (HZZk-‘rZ +H22k) ‘

_ At
4p

ij+i

5x{5y<Ex2k+2 . Ex2k) — 5y (Ey2k+2 . Eka) (41)

}‘z‘,ﬁ%/

1
i,j+% — E(SX(I_IZZk—H +H22k) ’
At

K7

*
OcH:| i+

6x {0y (Ex™ '+ E, %) 46, (E,# 1 +E,2) }| 4.2)

ij+3’

e % 5o (HL242 4 241

At

T

Combining (3.15)-(3.22) and using (4.1)-(4.3), we derive the equivalent form of the §,-EC-
S-FDTD which is

ok
oH| ij+3

(Sx{(sy (Ex2k+2 + Ex2k+1) +5x (Ey2k+2 + Ey2k+1 ) } ’ (43)

ity

5, Exzki t_ 5 % 5,05 (HL2 P+ H. 2 + ZA_;E 5:8,85(E, 22— E,2)

F bbby (EF - E2) (44
5xEyzk+Zt_ 5xEy2k - %5x5x{HZZk+2 +H,%Y

— 4A—P;5x(5x5x(Ey2k+2 —E,/*), (4.5)

5xHZZk+2 . 5xH22k B i
At C 2u
— 0y (B2 +4+2E, 21+ E, 7))} (4.6)
The corresponding truncation errors of the three equations in (4.4)-(4.6) are:

2k+2 2k
2k+1_5x€x + —Oxey

(Sx{(sy (EXZk-‘rZ +2Ex2k+1 +Ex2k)

1
5x’§xi,]‘ At ‘i,j_ E(Syéx{hZZk—i_z-i-]’lsz} ’i,j
At 1
_ z—ygéxéy{éx (ey2k+2 _eka) + §5y(€x2k+2 _ex2k)} ’i,j/ (4.7)
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5o 2k  Sa(e T —ey®) 15 S (. 2Kr2 L 2%
il = At iy jed T 00 BT 4 1 g
At %42 2k
+%5x5x5x(ey * —éy )‘i-;—%,j-;—%' (4.8)
5 (I’l 2k+2_h Zk) 1 » -
2%k+1 2+1 2+1
B R

where ex,ey and /., denote the exact solution components of the Maxwell’s equations, and
S fH Tl = fAr2 4 224 2K for f=ey,e,. If ex,e, and h. are smooth enough, then, by the
Taylor’s theorem, the truncation errors are bounded by

10x8x™ Hla, b, + 1628 ™ o, 110272 o, 11, < C{AP + 827+ Ay ). (4.10)

In order to get the system of the error equations, we define some intermediate vari-
ables as follows.

1 At
50, 2K+ ‘i,j — 26, (ex2k+2 te 2 E@(hz%ﬂ _ hZZk)> ’i,j

2
AR ¢ 2kt ¢ k41
_ @(Syéx{éxéfey +5y5t€x }|i,]', (4.11)

2k+1 1 k42 | . 2k

3At
i+t D T e

4e
A2

+ Tope 6105 {0x01e, X+ 6,612} Yy (4.12)

5x {5y (€x2k+2 _ €x2k) _ 5x (€y2k+2 _ eka)

(Sx (h22k+2 _hZZk)> |j+%,]‘+%

At

2k+1 _
Gk i = g

Hijiy

1
+ zéx(hzzk“-l—hfk)] (4.13)

At
iji+i— E

ij+3

5xhz*| 5x{5y(ex2k+1 +€x2k) +5x(ey2k+1 +€y2k) } |i,]'+%

1
+ E(Sx (h22k+1+h22k)|

At
— Eéx{5y<ex2k+2+ex2k+l) +5x(3y2k+2+3y2k+1)}’

i/j""%’ (4.14)

*k
Ouh: 1y

1

ij+3
where 4, ka“, with f =e,,e,, are the same as those in (4.9).

By using these five intermediate variables in (4.11)-(4.15) and careful calculation we
derive that
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6-Stage 1 for exact solution:

Oy (e, —e,2) 1 . g 2%k 1o .ok
At . :_E(S"é"{hz the }i+%/f+%+§5"§yi+%,j+%’
5x(hz*_h22k) 1 2k+1 2k 1 2k+1
6-Stage 2 for exact solution:
S (e 2k+1_p 2k 1 i} 1
x( X o X ) ’i,j _ Z(Sy(sx{hZZk—H +hz }i+%,]’+ E(SXCX%];—H/
8o (> —h.") 1 %+1, , 2% Lo okt
Al ’i,j+% :ﬂ(sy‘SX{ex +ex }i,j+%+§(sx772i’]-+%;

6-Stage 3 for exact solution:

S-(e 2k+2_e 2k+1 1 s 1
x( X o x ) ’i,j — i(sy(sx{hz +h22k+l}i,]'+ E(SXCXZZ’I]{+1’
5x<hz>‘<>l< - h22k+l) _ 1 2k+2 2k+1 1 2k+1.
Al ’i’j+% —ﬂ(syfsx{ex +eyx }i,j+%+§5x1721‘,]'+%’

6-Stage 4 for exact solution:

beley 2~ ) = s 2y oo,
AL i+d,j+1 T T g 0x0x Uz Z Jikgjrs T i il
(Sx<h22k+2—hz**)

1 2%+2 |, 2k+1 Lo okt
At 1= _ﬂ(sm"{ey ey g MRS

Define the errors of the fields appeared in the operated scheme 6,-EC-S-FDTD as

5x8xm:5x€xm_5xExm, 5x8ym:5x€ym_5xEym, 5X,Hzm:5xhzm_5tzm,
5XHZ**:5th**_5XHZ**I 5x%z*:5xhz*_5tz*, m:2k,2k+1.
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(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24a)
(4.24b)

Then, subtracting the equations in the scheme (3.15)-(3.22) from those in (4.16)-(4.23), we

have the system of the error equations for 6,-EC-S-FDTD:

6-Stage 1 of error equations:

Oy (5y2k+1 — gka) 1 ¥ 2k 1 2k41
At |i+%4’+%:_Z5"5"{H2 tH: }i+%,j+%+§5"‘§yi+%,j+%’

Sx(H="—H-") 1 %41, o 2k 1o ok
%\iﬁ%:—g@&x{@ Hyeg, }i,j-i-%—l_iéxnzi,ji%;

(4.25)

(4.26)
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6-Stage 2 of error equations:

(Sx(5x2k+l _ngk) -
At = 5

5 5 {H22k+1+H2*}1+1 ]+ 5x€x2k+1/

Ox (M2 =) 1 %41, o 2k 1 k
X At z |i,j+% 2]/{(5 (S {5 + +5 }l]-i-l + xnzlzjj:}/

6-Stage 3 of error equations:

5. (E 2k+2_8 2k+1 1 .
x( X v x )‘l]— (S 5 {HZ +7_L22k+1}l]_|_ §x€x2k+1’

Ox (M —H, 2 1 %42 | o 2%k+1 1 2%k+1
At |1,]+% ]/lé 5 {5 8 }1]+ X’?Zl]_,’_ll

6-Stage 4 of error equations:

5x(5y2k+2 _5y2k+1) 1 2k+2 K% 1 2k+1

At i1+ :_2_(53‘5"{%Z +H: }i+1,j+1+_5XCyi+%,j+%’
5x(H22k+2_%z**) o 2k+2 2k+1 2k+1

Y |ifi+%__2y5 e T

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Besides the error equations above, we also need the error equations of the original
scheme, symmetric EC-S-FDTD (3.1)-(3.8). Using the same technique of deriving (4.25)-
(4.32) (or see [1] for the details), we can obtain the error equations of the symmetric EC-

S-FDTD scheme:

Stage 1 of error equations of Symmetric EC-S-FDTD:
2k+1 2k

g

At Lt

H,*—H* 1 %41 | o 2k 1 o
T ar bt T 0 G T A G i R

1 . ok 1. ok
_—iéx{?'{z +H, }i,j+%+ﬁgyi,]'+%'

Stage 2 of error equations of Symmetric EC-S-FDTD:

£ 2k+1_5 2k 1 . . 1
. - ’i+%,]': _5y{7—[22 +1+Hz }i+l’j+§€x?k+l,

At i+3,"
H22k+1_HZ* o
— 11, o 2% . %1 .
At |1+ 30+3 y{f,' +éx }1+%J+%+21721+ 1j+37

Stage 3 of error equations of Symmetrlc EC-S-FDTD:

E T2 g 21 _ 15 9y 43y 2k 1. o1
T’i+%'f_£ A H""+H, }i+%,]‘+§§x-

i+
*% 2k+1
H, " —H
z z

1 %42 | o 2K+l 1 o
At ’H‘%,]"r%:ﬂéy{gx “l_gx }l+%/]+%+§172 i

i+3j+3"

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Stage 4 of error equations of Symmetric EC-S-FDTD:

8y2k+2 _Ska-‘rl 1 - 1 -~
_J _ *k +
At ’i,]'+% —_Eéx{}[z + —|—Hz }irf+]§+§(:yi,j+%’ (439)
HATE 1 2%t2 | o 2K+l L oki1
At ’i+%’j+% :—ﬂéx{gy +€y }i+%rj+%+§nzi+%,]'+%; (4:.4:0)

1 1 1 .
where &2, &, %*%2 and 1,2*2 are defined as
Y

C 2k+1 _€x2k+2_ex2k‘ _15 {]’l 2k+2+h Zk}’
Vit At i+3,j gy z Jlivg
At 1
_ 2_‘u€5y{5x(ey2k+2 _eka) + E5y(€}(2k+2 —€x2k) } ‘i+%,j’ (4‘41)
o1 e e 1 %42 | 4 2k
+1 __
Sijet = ar ey Tl TR
At
TR R L 5 5026015 5.0 2kt 443
Meiryjel = AElhirh T 10T =00y i (4.43)

The terms of &, %1, CkaH and 17,21 are the truncation errors of the following equivalent
form of the symmetric EC-S-FDTD scheme (which can be obtained by the same technique
of deriving the equivalent form of the ,-EC-S-FDTD, or see [1] for the derivation):

Ex2k+2 _EXZk At

= ‘i+%/j _ %(Sy{ (224 1,2+ ﬂ&c(EkaH ~E2)} ‘i+%,j
—I—4A—;;5y5y(5x2k+2—15x2k)\i+;,j, (4.44)
W ’i,j+% — _%5x{(szk+2+H22k) + f—;(sx(EkaH—Eka)}) ’i,j-i—%’ (4.45)
H 2k+2t 1.2k ‘H%’ﬁ% _ %{@&Exzkﬂ _5x5tEy2k+l}’i+%,j+%- (4.46)
From the expressions of & %1, CkaH and 7,%*1, we can obtain that
18 M e+ 112y I, + 172 1, < C{AR + 827 + Ay} (4.47)

Similar to the definitions of the error in (4.24), the error functions in (4.33)-(4.40) are de-
fined as
EM=e,"—E", &"=e,/"E,", H."=h"—-H)", (4.48a)
H, =h*"—H,*, H, =h,""—H,"*, m=2k2k+1, (4.48Db)
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where the intermediate variables h,* and h,** are defined as

At

z ’1+ ]+;___{5 < 2k+l+3x2k)+(Sx<€y2k+l+3y2k)}’i+%,j+%
k k
+§(hz2 T h) e (4.49)
h, ’i+%,j+% :@{5y(€x2k+2+€x2k+l)+5x(€y2k+2+€y2k+l)}!i+%,j+%
1. o k
+§(h22 +2+h22 +1)’i+%’]’+%. (450)

Using these error equations, we can now prove the following super-convergence in
Theorem 4.1.

Theorem 4.1. Assume that e = (ex,e,) and h, the solution components of the Maxwell’s equa—
tions, are smooth enough such as e C*([0,T];[C*(Q)]?) and h, € C*([0,T];C*(Q)). Let E % ey

EyZIJ‘ I and sziz i+ be the solution components of the symmetric EC-S-FDTD scheme, and let

£k —p 2 _F 2% Ska _ eka _ Eka’ 7,2k —p 2k g 2%
be the errors. Then, for k>0, we have the following error estimates:
HéXgXZk H(SxEx + H(ngka H‘SxEy + Héxq-LZZk H(Stz + ‘gka‘Elﬂ'/
< C{ Héxgxo HéxEx + Héxgyo HéxEy + H‘SXHZO H5tz + ‘5y0 ’Ey,-/ +At2 —|—Ax2—|—Ay2}, (4.51)

184 Nl .+ 18y €y o, £, + 10, H 1o, .+ 1€,
<CLI8yEC s,z +185E o, 2, + 10y H o 1.+ |E e, + AP +AC +AY). (452)

Proof. First, we prove (4.51). Similarly to the derivation of the energy identities, from the
error equations (4.25) and (4.26) and using Lemma 3.1, we have

k k k
l6x&,? +1||§ £, — 10xEy ™ 13, + 105 H=" 15, 11, = 118513, .

2k+1 2k * 2k
2AXZZ 5 + —1—5 <7'Lz +7'Lz )l'/,]‘_,'_%Ay

2]1

_1_22 x§y2k+15 5 2k+1+g Zk)AxAyAt
i=1j= 1
—1]— 1]/!
+ZE S8 S (H* 1) AxAyAt. (4.53)

i=1j=0
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From (4.33) withi=i"=1,I—-1and j=0,1,---,] —1, we get that

At *
_<gy2k+1+gy2k)5x<7_[z _1_%221()‘

74}

(5 2k+1 ) —8(5 2k )2_ _Cy2k+1 <gy2k+1+5y2k)

Yirj+1 Yirj+31 ij+3 (4.54)

P4y

Combining (4.53) and (4.54) and using the estimates of the truncation errors in (4.10) and
(4.47), we have

(1= ED) 16213 i, 10"+ 1622, )
< (1 ) UIEX B, + 102 B 82 S Lot ari 8y}, (@55)
Similarly, from (4.27) and (4.28), we have
(1= ED) U243 i 10H2 R 1)
g(1+7){Haxeﬂuéx,gﬁH(wz*||5XHZ}+C{At4+Ax4+Ay4}. (4.56)
Combining (4.55) with (4.56), we get that

(1= S UIBEX B o, + 1 3 g, + 16 +IER )

< (11 D) NP B o, + 1662 B 5, 1053 s+ IEAR, )
+ A0 H |3, + C{A + Ax* + Ayt (4.57)

Similarly, from the other stages (4.29)-(4.32), we can obtain

(1= ED) U223 10 E 22 B, + 162 HEAR, )

< (L BN BB g, + 16624 1B g, +I0H2 Ry 416541}
+AH|0 H |5 1+ C{AF +Ax* + Ay} (4.58)

Solving 6,H," from (4.26) and (4.28), 5, H,™* from (4.30) and (4.32), respectively, we have
1 At
O H, = Eéx(HZZk“ + 71,2 — @53({@(53"“ + &)+ (4T €51, (4.59)

(SX,HZ**:%5X(H22k+2+%22k+1)_|_f_;&x{dy(5x2k+2+5x2k+l)+5x(5y2k+2+gy2k+1)}' (4.60)
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Thus, we have

) 2087 (1
0xHa" I 1 < 10xH2 1B, + 1052 13 1+ ——{ 5z (10xE I,
pe LAy
1
k k k
10 EE R )+ 5 (106, B e, + 16,513, . (@61)
o 20 ¢ 1
10xH" 13,11, < N0V g+ N g+ ——{ 5z (1xE 2,
pe L2y
1
k k k
FISEET R g )+ 55 (165 R, + 165 3e) ). 462)

Combining (4.57) and (4.58) with the above two estimates (4.61) and (4.62), we obtain

(1=rD8)* {16 E 25 £, +116:672 15,5, + 16 H2 425, + 16,72 %y,./}
< (LAt {16813, g, +16E, 715, £, 11615, 11, + |€y2k’%yi/}
+CAH{ A + Ax* + Ay, (4.63)

where

r—max{1+ 282 1, 287 g}
N 2 ueAx?’2 " ueAy?’2J°

So, using the transitivity of inequalities, we have
2k 2 2 2%
10xEx™ 13 £, + 10:Ey ™ 113 £, + 10 H 15, b1, 1641,
< T{10xE° 5, b, + 11058 15,6, + 105 H 15, 1, + 16,

enT—1
2r1+12

»

(A +Axt Ay, (4.64)

+C

where e is the Euler number and r; is a constant. This completes the proof of (4.51). The
other estimate (4.52) can be symmetrically proved by repeating the above argument with
Jx being changed into 6. O

If regarding J;, as 6,,0; (w=x,y), we can further obtain the following theorem.

_ T 2% 2% 2% . 2% o2k 2%k
Theorem 4.2. Let e=(ey,ey), hy; Exi+%’]., Eyi,j+%’ Hzi+%’].+%, and £, £ and HZ* be the same

as those in Theorem 4.1. If e C°([0,T];[C*(QY)]?) and h, € C>([0, T);C*()), then for any k>0,
we have the following error estimates:
H‘St‘sxngkH ||<5xEx + ||‘5f5x€y2k4rl ||5xEy + ||5t5x7'[22k+1 ||<5tz + "ngkaH ’Eyi/
< C{ H‘St(sxgx1 ||<5XEX + ||‘5t5x€yl ||5xEy + ||‘5t‘3x7'[zl ||<5tz
+10:E, g, + AP+ A+ Ay, (4.65)
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1060y €M,z + 1010y Ey™ Nl b, + 108y HF g, + |07,
<C{16:0yEx 15, .+ 116664y lls, £, + 1106y H2 |15, .
+[61E: [, + AP +Ax7+ Ay} (4.66)

On the other hand, if regarding J,, (w=x,y) as I (the identity operator), we obtain the
following two estimates in Remark 4.1 (which were proved by Chen, Li and Liang in [1]).
Remark 4.1. Let e = (ey,ey), h; Exlzil 7 Eyl 1Y sz+ fY and £, €y2k and H2* be the

same as those in Theorems 4.1 and 4.2. If e C3([0,T]; [C3(Q)]2) and h, € C3([0,T};C3(QY)),
then

1€ N e A+ 1€ 1, + 171,
< CLIES e, + 1€ Nle, +1H:" | 1+ A8+ 827+ Ay}, (4.67)
and if e C*([0,T];[C?(Q))]?) and h, € C*(]0,T];C3(Q))), then
16: &2 e A+ 0.6 I, +16:H 1,
<C{l16:Ex g, 1168y g, + 116:H |11, + AP+ Ax* + Ay} (4.68)

Finally, we combine all results in Theorems 4.1 and 4.2 and Remark 4.1, we have the
following super-convergence estimates in Theorem 4.3.

Theorem 4.3. Suppose that the assumptions in Theorems 4.1 and 4.2 are satisfied. Then, we have
following super-convergence estimates in the discrete H'-norm.

1€+ 116, 1+ 1121

SC{IEL I+ I1EL I+ IH 1+ AR +Ax2+ Ay}, (4.69)
H5t5x2k+1H1+ H5t5y2k+1H1+ HétzHZZkJrlHl
<C{I6:EM 1 +110:Ey 1+ 10eH |1+ AP + Ax* + Ay* ). (4.70)

The super-convergence of the symmetric EC-S-FDTD scheme provides us a simple
method to estimate the error bound of the divergence of electric field, as shown in Theo-
rem 4.4.

Theorem 4.4. Let {E > i+ ]} {Ey 1} and {H,* i+ +1} be the solution of the symmetric EC-
S-FDTD scheme. If the exact solutzon components e and h; of the Maxwell’s equations is smooth

enough, then for any k> 1, the divergence of the electric field is estimated by

—-1J-1
|v/e(8xEx* +6,E, %) ||?:= Z;Z (5 EX+6,E 2") AxAy
i=1j

<C{At +Ax HAYAY. (4.71)
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Proof. Let e, and e, be the exact solution of the Maxwell’s equations, and &, = e, —Ey,
H(SXEJZCk +(S]/E§k ||<5XEX S ||5x5§k +5y5y2k ||5XEX + H(Sxeik +(Sy€§k H(SXEX
S ||5x5§k H(S,\'Ex + H(Sygka ||<5yEy + ||5xeizck+5ye§k ||5XEX’ (4'72)

where we have used the fact that ||-[|5,g, is the same as ||-[|s,r,- By the property that

the exact electric field (ex,ey) is divergence free and the error estimate of £ XZk and 5y2k in
Theorem 4.1 we see that (4.71) holds. O

5 Numerical experiments

In this section we do experiments to test the energy conservations and the super-
convergence of the symmetric EC-S-FDTD scheme. The considered model is a wave
guide problem in () =[0,1] x[0,1] and with e =y =1 and a PEC boundary condition.
The exact solution of the problem is

ex =ex(t,x,y) =cos(V/2mt)cos t(1—x)sinm(1—y),

e, =ey(t,x,y) =—cos(V2rmt)sinr(1—x)cost(1-y),

h, =", (t,x,y) = —V/2sin(v/27t) cos (1 —x) cos (1 —y).

51 Computation of energy in the different norms

For the fields of (E™,H"), we define the discrete energy functionals of I, Iy, Iy and I by
using the energy norms defined in Section 2, i.e., for m =2k or 2k+1, k>0

[

L((B" H2)) = (I16:E2 13 6, + 10y 13,6, + 1062 13 1o+ EVIR,,) (5.12)
LOE"E) = (16, B + I8, B, + 16, H B E2E ) Gib)
Io((E™ HI")) = (||E;"||%X+|\E;1n%y+uﬂsin%ﬂ)%, (5.1¢)
B((E" H) = (IL(E" H)P+ L(E HD)P+ R(EHDE) . 61d)

Tables 1 and 2 give the discrete energy functionals of the approximate fields
(E?N,H2N) and 6;(E?N~1,H2N~1) and the absolute values of their differences with the ini-
tial energies as well as the energy functionals of the exact fields (e, /1,) at t=T. The spatial
and time steps are Ax = Ay =0.02 and At=0.01, respectively. N=100 and T =2NAt=2.
From results in Tables 1 and 2, we can see clearly that the solution of the symmetric EC-
S-FDTD scheme and its é;-difference are energy-conserved in terms of the four discrete
energy norms.
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Table 1: Energy of (E,H;) in four energy norms at t=0 and t=2.

Energy Functionals Iy Iy Iy I
(e,hz) @ s % s % V0542
(E°,HY) 22213 22213 0.7071 3.2201
(E2N,H2N) 22213 22213 0.7071 3.2201
(E2N,H2N)-(E%,HD) | 2.2204e-15 9.7699e-15 8.7708e-15 3.1086e-15

Table 2: Energy of 6;(E,Hz) in four energy norms at t=0 and t=2—At.

Energy Functionals Iy Iy Iy I
ot(e,hz) 2 2 T V14212
5 (EL,H}) 9.8676 9.8676 3.1411 14.3040
8¢ (E2N—1 F2N-1) 9.8676 9.8676 3.1411 14.3040
S (E2N=1 H2N-1)5,(E!,H]) | 3.3751e-14 3.9080e-14 2.7978e-14 5.6843e-14

Table 3: Energy of (E,H;) in four energy norms at t=0 and t=8.

Energy Functionals I Iy Iy L
(e,hz) % T % T ‘/TE V0.5+m2
(E°,HY?) 2.2214 22214 0.7071 3.2201
(E2N,H2N) 22214 22214 0.7071 3.2201
(E2N,H2N)-(E, H?) | 5.5511e-14 5.5067e-14 1.6542e-14 7.9936e-14

Table 4: Energy of &;(E,H:) in four energy norms at t=At and t=8—At.

Energy Functionals I Iy Iy L
ot (e hz) 2 2 T V14212
5 (EL,H}) 9.8676 9.8676 3.1411 14.3040
8¢ (E2N—1 2N 9.8676 9.8676 3.1411 14.3040
S (E2N=1 H2N-1)5,(E%, H?) | 2.4336e-13 2.1494e-13 6.8834e-14 3.3218e-13

1693

In order to observe the behavior in a long time, Tables 3 and 4 present numerical
results of the discrete energy functionals at time T =8 or N =800 when Ax = Ay =0.01,
and At =0.005 are used. It is clearly shown that for a long time, the numerical solution
of the symmetric EC-5-FDTD scheme and its d;-difference keep energy-conserved in the
discrete energy norms and are consistent with theoretical results obtained in Theorems

3.2-3.4 in Section 3.
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Table 5: Errors and convergence rates of (EzN,HZZN) in four energy norms.
At=Ax=Ay I Iy Rate Iy Rate I Rate

h=0.02 1.672e-2 1.672e-2 5.323e-3 2.424e-2
h=0.01 4.184e-3  4.184e-3 19989 | 1.332e-3 19917 | 6.065e-3 1.9990
h=0.005 1.046e-3 1.046e-3 1.9997 | 3.329e-4 19998 | 1.516e-3 1.9997
h=0.0025 2.6153e-4 2.6153e-4 1.9999 | 8.3248e-5 1.9999 | 3.7922e-4 1.9999
Table 6: Errors and convergence rates of &;(E*N~1, H2N=1) in four energy norms.
At=Ax=Ay Iy Iy Rate Iy Rate L Rate
h=0.02 7.453e-2  7.453e-2 2.373e-2 1.080e-1
h=0.01 1.874e-2 1.874e-2 1.9917 | 5.966e-3 1.9919 | 2.717e-2 1.9918
h=0.005 4.697e-3 4.697e-3 1.9964 | 1.495e-3 1.9964 | 6.809e-3 1.9964
h=0.0025 1.176e-3 1.176e-3 1.9983 | 3.742e-4 1.9983 | 1.7041e-3 1.9983

5.2 Computation of errors and convergence rates

As given in Section 4, let (£",H2) = (ef —E},ej) —Ej,hf — H!) denote the vector of the
errors between the numerical solutions and the exact solution. I, I, Iy and I; are the
discrete energy norms or the discrete energy functionals defined in (5.1). Take Ax=Ay =
At=0.02, 0.01, 0.005 and 0.0025. Let the time length T=2 and N = %. The errors and
convergence rates of the numerical solutions computed by the symmetric SC-S-FDTD
scheme are presented in four discrete energy norms in Tables 5 and 6.

Numerical results in Tables 5 and 6 show clearly that the errors of the numerical so-
lution and its é;-difference of the symmetric EC-S-FDTD scheme in the discrete H!-norm
are of second order convergence in both time and space steps, which confirm the theoret-
ical results of the super-convergence in the discrete H!-norm.

6 Conclusions

We have derived new energy-conserved identities of the symmetric EC-S-FDTD scheme,
which show that the scheme is energy-conserved and unconditionally stable in the dis-
crete H! norm. By the new energy-conserved identities, it is proved that the symmetric
EC-S-FDTD scheme is second order convergent in the discrete H' norm. This shows the
scheme has the property of super convergence. By the super convergence, we strictly
proved that the error of the divergence of the electric field of the symmetric EC-S-FDTD
scheme is second order accurate.
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