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Abstract. We present a well-posed and discretely stable perfectly matched layer for
the anisotropic (and isotropic) elastic wave equations without first re-writing the gov-
erning equations as a first order system. The new model is derived by the complex
coordinate stretching technique. Using standard perturbation methods we show that
complex frequency shift together with a chosen real scaling factor ensures the decay of
eigen-modes for all relevant frequencies. To buttress the stability properties and the ro-
bustness of the proposed model, numerical experiments are presented for anisotropic
elastic wave equations. The model is approximated with a stable node-centered finite
difference scheme that is second order accurate both in time and space.
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1 Introduction

Perfectly matched layers (PML) have since the introduction [3], emerged as a standard
non-reflecting boundary closure for many wave propagation problems. The basic prop-
erties of a PML can be found in [6]. In this paper we consider linear, anisotropic elasto-
dynamics in two space dimensions. Equations describing the dynamics are usually de-
rived via Newton’s law, which connects acceleration and force, and yields a second or-
der system (in both time and space) for the displacements. The system is hyperbolic,
and by introducing suitable variables the model can be rewritten as a hyperbolic first
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order system. PMLs for elasto-dynamics are usually derived from the first order formu-
lation [4, 5, 23]. This is also the case for other hyperbolic systems that naturally come in
second order formulation, like the standard wave equation.

However, there are several advantages with using the second order formulation. The
first order formulation requires more variables, and it introduces a new wave with zero
wave speed. Also, in many cases a straightforward discretization of the first order formu-
lation introduces high frequency spurious modes. In this paper we construct a PML for
the second order equations of linear, anisotropic elasto-dynamics in two space dimen-
sions without first rewriting the equations as a first order system. By construction the
PML is perfectly matched, but there is no guarantee that all solutions decay with time.
The analysis of temporal stability is therefore a main topic of research. In [4], the geomet-
ric stability condition was formulated, and found to be a necessary condition for stability
of the split field PML. In [5], it was proved to be necessary also for stability of a modal
PML, even though the complex frequency shift had a stabilizing effect.

The aim of this paper is to construct efficient layers based on the second order equa-
tions, for all materials, and also those violating the geometric stability condition. The
PML equations are derived using a complex coordinate stretching technique, [6, 17]. We
include a grid stretching parameter and a complex frequency shift. One advantage of this
approach is that we can choose auxiliary variables so that the resulting system is strongly
hyperbolic.

In computations using standard second order central finite differences, our PML be-
haves dramatically better than the corresponding first order PMLs, for materials where
the geometric stability condition is violated. In many cases no growth is seen in the com-
putation even at very late times. A large part of the paper is dedicated to understanding
why our PML behaves in this stable way, and how the stable behavior can be enhanced.

We start by applying a standard perturbation analysis to our PML at constant coeffi-
cients. The result is that our PML suffers from the same high frequency instability as the
above mentioned first order PMLs for the geometric stability violating materials. From
the analysis we know that the instability appears only at sufficiently high spatial frequen-
cies. If these frequencies are not well resolved, the discrete behavior may be completely
different. A straight forward computation of the temporal eigenvalues corresponding to
the discrete spatial operator in a constant coefficient setting shows that if unstable modes
are not well resolved, they are in fact stable in the discrete setting. We have investigated
how the grid stretching parameter can be used to enhance this effect.

A second reason is the stabilizing effect of corner regions. When the layers are used
as boundary closures completely surrounding a domain there are usually corner regions.
We use the same perturbation technique as above applied to a constant coefficient corner
problem, and find that our PML is significantly more stable in the corner region. In
computations we have observed that the bulk of an unstable mode typically is localized
to part of the layer and propagates tangentially while the amplitude grows. Eventually
the bulk of the unstable mode moves into a corner region and is damped.

The paper is organized as follows. In Section 2 we introduce the elastic wave equa-
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tion, the materials treated in the paper, and their corresponding dispersion relations. A
brief review of existing layers and there properties are given, followed by a derivation
of our layer. The basic mathematical properties such as perfect matching, hyperbolicity
and wellposedness are discussed. Section 3 is devoted to stability analysis. In Section
4 we present numerical calculations both as illustration of our theoretical results, and to
further explore the properties of our layer. We close Section 4 by investigating the effi-
ciency of the layer. We present computations where we show that it is possible to chose
parameters related to the spatial step size yielding reflections from the layer that decay
as h→0. In Section 5 a brief conclusion is offered.

2 Elastic waves and damping layers

In this section, the second order equations of linear elastodynamics (in orthotropic me-
dia) in two space dimensions will be stated and we will derive the PML model using a
complex coordinate stretching technique.

2.1 Elastic waves

Using Einstein’s convention of summation and neglecting body forces, the equation of
continuum can be written

ρ
∂2ui

∂t2
=

∂σi,j

∂xj
, i, j=1,2. (2.1)

Here ρ is the density and u1, u2 are the displacement, σi,j is the stress tensor, which is
related to the tensor of deformation

ǫi,j(u)=
1

2

(∂ui

∂xj
+

∂uj

∂xi

)
.

By Hooke’s law

σi,j =Cijklǫkl . (2.2)

The fourth-order tensor C of elastic coefficients satisfies the classical symmetries

Cijkl =Cjikl =Cklij.

It is also positive definite,

Cijklψijψkl ≥‖ψ‖2 =αψijψij,

for all symmetric tensor ψij, see [25]. The symmetry of C allows us to simplify the equa-
tions by using the scheme

Cijkl = cp(i,j),p(k,l),
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where p(i, j)= i, if i= j, p(i, j)= i+ j, if i 6= j.

In an orthotropic medium whose principal axes coincides with the (x,y) axes, we
have c13= c23=0, hence

C=




c11 c12 0
c21 c22 0
0 0 c33


.

Now Eq. (2.1) can be formally written as

utt=A1uxx+A2uyy+A3uxy, (2.3)

where

u=[u1,u2]
T , A1=

(
a 0
0 c

)
, A2=

(
c 0
0 b

)
, A3=

(
0 d
d 0

)
.

Here a= c11, b= c22, c= c33, d= c33+c21. For convenience we have also assumed ρ=1. It
is easy to show that (2.3) is strongly hyperbolic and strongly well-posed.

2.2 Plane waves and slowness diagrams

In order to understand the wave propagation properties of the model (2.3) it is useful to
consider wave-like solutions

u=u0est−ikxx−ikyy, u0∈Rn, kx,ky,x,y∈R, 0≤ t. (2.4)

In Eq. (2.4), (kx,ky) ∈ R2 is the wave vector, and u0 is a vector of constant amplitude
called the polarization vector. By inserting (2.4) in (2.3) we have a solvability condition
(2.5), often called the dispersion relation

F0(s,kx,ky)≡det(s2 I+Ψ(kx,ky))=0, Ψ(kx ,ky)=A1k2
x+A2k2

y+A3kxky. (2.5)

The polarization vector u0 is the eigenvector of Ψ(kx ,ky), with associated eigenvalue −s2.
By evaluating (2.5) for (2.3) we have

s4+
(
(a+c)k2

x+(b+c)k2
y

)
s2+ack4

x+bck4
y+(ab+c2−d2)k2

xk2
y =0. (2.6)

It should be noted that the polynomial (2.6) has four purely imaginary roots, correspond-
ing to the quasi-P and quasi-S waves. We will refer to these modes as the physical modes.

If we write s= iω(kx,ky), where ω∈R is called the temporal frequency, we can also
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introduce

K=
( kx

|k|
,

ky

|k|

)
, the normalized propagation direction, (2.7a)

Vp=
( ω

kx
,
ω

ky

)
, the phase velocity, (2.7b)

S=
(kx

ω
,
ky

ω

)
, the slowness vector, (2.7c)

Vg=∇kω(kx,ky), the group velocity, (2.7d)

and

|k|=
√

k2
x+k2

y. (2.7e)

By inspection (2.6) is homogeneous in ω, kx,ky, we can rewrite (2.6) as

F0(i,S)=0. (2.8)

The wave propagation properties of a certain medium can be described by plotting the
slowness diagrams defined by points in the S-plane satisfying (2.8). If we further assume
c11 6= c33 and c22 6= c33, the group velocity can be expressed as

Vg=∇kω(kx,ky)=−
(∂F0(iω,kx,ky)

∂ω

)−1
∇kF0(iω,kx,ky). (2.9)

That is, the group velocity is normal to the slowness curve. In [4] geometric stability
conditions are introduced. We have

Definition 2.1. [Geometric stability condition]

1. The geometric stability condition in the x-direction is Sx×(Vg)x ≥ 0, for all points
on the slowness curve.

2. The geometric stability condition in the y-direction is Sy×(Vg)y ≥ 0, for all points
on the slowness curve.

Here Vg=((Vg)x,(Vg)y) and S=(Sx,Sy).

By Theorem 2 in [4] the geometric stability condition in the x(y)-direction is necessary
for stability of the vertical (horizontal) PML. The material parameters we will consider
in this paper are presented in Table 1. The anisotropic material MA1 with the slow-
ness diagram Fig. 2(a) severely violates the geometric stability conditions in both x- and
y-directions, and is the same as material III in [4, 5]. The anisotropic material MA2 (Ap-
atite) marginally violates the geometric stability condition in both x- and y-direction, see
Fig. 2(b), and has been studied in [16]. The material MA3 violates the geometric stabil-
ity condition only in the y-direction, see Fig. 2(c). The anisotropic material MA4 (Zinc
crystal) violates the stability condition in the x-direction, see Fig. 2(d), and has also been
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(a) Stable. (b) Unstable.

Figure 1: Geometric stability condition.
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Figure 2: Slowness diagrams.

studied in [16]. For the materials MA1 and MA2, the classical PML in both x- and y-
directions will be unstable, while the y-dependent PML for material MA3 will be unsta-
ble. Since material MA4 violates the geometric stability condition only in the x-direction,
the x-dependent PML for material MA4 will be unstable. The anisotropic material MB is
the same as Material I in [5] and does not violate the stability condition, the classical PML
for the material MB is expected to be stable. Though material MC (same as Material IV
in [5]) does not violate the geometric stability condition, it has a generic weak instability
as demonstrated in [4].
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Table 1: Elastic coefficients of the orthotropic materials.

Elastic Coefficients
Material c11 c22 c33 c12

MA1 4.00 20.00 2.00 7.50
MA2 16.70 14.00 6.63 6.60
MA3 4.00 20.00 2.00 4.90
MA4 16.50 6.20 3.96 5.00
MB 4.00 20.00 2.00 3.80
MC 10.00 20.00 6.00 2.50

2.3 Damping layers for elastic wave equations

Several damping layers exist for the elastic wave equations, [4,5,8,23]. Many of these lay-
ers are only weakly hyperbolic and weakly well-posed. In many cases the existing layers
also support exponentially growing solution. This shortcoming, for the classical PML
for elastic waves as reported in [4], was in part corrected in [5] by adding the complex
frequency shift in a modal PML for the first order formulation. For materials that violate
the geometric stability condition, the construction of a stable and efficient absorbing layer
has remained a challenge.

In a very recent work [16], the multi-axial perfectly matched layer (M-PML) was pro-
posed. Their model is based on a damping profile that varies in more than one direction.
This approach may give a stable model for some materials but it generates non-trivial
reflections from the interface of the layer and the computational domain and therefore is
not perfectly matched. In numerical experiments we have also observed that long-time
solutions of the M-PML model may exhibit growth as the solutions reach quiescent state.

2.4 Our perfectly matched layer

In this section, we will derive PML equations using the complex coordinate stretching
technique, see [6, 17]. The idea is to introduce new coordinates defined by special com-
plex metrics. The PML can be viewed as the complex change of variables in the Fourier
transformed wave equation. We begin with a Fourier transformation in time,

u(x,y,t)=
∫

∞

−∞

û(x,y,ω)eiωtdω, −ω2û=A1ûxx+A2ûyy+A3ûxy. (2.10)

To include PML in both x-direction and y-direction we introduce the complex metrics,

s1=α1(x)
(

1+
σ1(x)

η+iω

)
, s2=α2(y)

(
1+

σ2(y)

η+iω

)
,

yielding

−ω2û=A1
1

s1

( 1

s1
ûx

)

x
+A2

1

s2

( 1

s2
ûy

)

y
+A3

1

s1

1

s2
ûxy. (2.11)
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Here, η≥0 is the complex frequency shift, α1, α2>0, are grid compression (or stretching)
functions and σ1, σ2≥0 are the damping functions. The functions α1, α2, σ1, σ2 are required
to be smooth. A1, A2, A3 are elastic coefficients defined just after (2.3).

By choosing the auxiliary variables, and inverting the Fourier transform we have the
full PML formulation

utt=
1

α1
A1

( 1

α1
ux

)

x
+

1

α2
A2

( 1

α2
uy

)

y
+

1

α1α2
A3uxy

−
1

α1
A1

(σ1

α2
v−

σ2

α1
w
)

x
+

1

α2
A2

(σ1

α2
q−

σ2

α1
p
)

y
−(σ1+σ2)ut

+(σ1+σ2)η(u−r)−σ1σ2

(
(u−r

)
−(r−z)

)
, (2.12a)

vt=
α2

α1
ux+

α2

α1
σ2w−(σ1+η)v, wt=ux−ηw, (2.12b)

pt=
α1

α2
uy+

α1

α2
σ1q−(σ2+η)p, qt=uy−ηq, (2.12c)

rt=η(u−r), zt=η(r−z). (2.12d)

In order to investigate some of the mathematical properties of the PML model (2.12) we
will consider the vertical layer (parallel to the y-axis). We set σ2 = 0, α2 = 1 in (2.12) and
obtain the reduced system

utt=
1

α1
A1

( 1

α1
ux

)

x
+A2uyy+

1

α1
A3uxy−

1

α1
A1(σ1v)x+A2(σ1w)y−σ1ut+ησ1(u−r), (2.13a)

vt =
1

α1
ux−(σ1+η)v, wt =uy−ηw, rt =η(u−r). (2.13b)

By construction the model (2.13) is perfectly matched if σ1 =0 and α1 =1 at the interface
between the physical domain and the layer.

2.5 Hyperbolicity and well-posedness

For convenience we shall rewrite (2.13) as a first order system in time and space. Without
loss of generality we consider η=0, α1=1, introduce the auxiliary variables,

U1=u, U2=v, U3=w, U4=
∫ t

0
(uy+σ1w)dτ,

and we have
Ut=BxUx+ByUy+σ1CU. (2.14)

Here

Bx=




0 A1 A3 0

I 0 0 0
0 0 0 0

0 0 0 0


, By=




0 0 0 A2

0 0 0 0
I 0 0 0

I 0 0 0


, C=




-I 0 0 0

0 -I 0 0
0 0 0 0

0 0 I 0


,
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where 0 is a 2×2 null matrix and I is a 2×2 identity matrix.

It is easy to show that ∀S = (Sx,Sy)∈R2 normalized to satisfy (2.8), the matrix B̂=
SxBx+SyBy has real eigenvalues and a complete system of eigen-vectors. It follows that
the PML model (2.13) is strongly hyperbolic, thus strongly well-posed, see [12]. However,
because of the lower order term σ1CU the system (2.13) may have solutions that grow in
time. It is important to note that strong hyperbolicity guarantees the well-posedness of
partial differential equations under all lower order perturbations. The first order split-
field or modal PML formulations for the elastic wave equation are only weakly hyper-
bolic and lack this important property [4, 5]. Including η 6= 0, will correspond to adding
more zeros to the columns and rows of the matrices Bx, By and the corresponding princi-
pal part is strongly hyperbolic.

3 Stability analysis

In this section we will explore the stability properties of the proposed layer. The perfectly
matched layer is indeed a variable coefficient problem, but the mathematical tools readily
available only allows for the analysis of the corresponding constant coefficient problem.
Here we use standard perturbation techniques similar to the methods used in [4,5,16], to
analyze the corresponding constant coefficient Cauchy problem.

3.1 Stability of the standard PML

To begin with, consider the model (2.13). We will show that at constant coefficients our
layer suffers from the so called geometric (high frequency) instability. By introducing the
modal ansatz W=W0est−ikxx−ikyy, where (kx,ky) is the wave vector, and W= [u,v,w,r]T ,
we get the characteristic polynomial

F
(

s,
kx

α1
,ky,σ1,η

)
≡ (s+η)2F0

(
(s+σ1+η

)
s,
(s+η)kx

α1
,
(
s+σ1+η)ky

)
=0. (3.1)

F0 is defined in (2.5). The stability of the PML model (2.13) is characterized by the roots
s of the polynomial (3.1). In order to determine whether (2.13) is stable or unstable we
only need to know the sign of the real part of s, ℜs, as we introduce damping.

First, we will characterize the roots of the undamped system. By setting σ1=0 in (3.1)
we have

F
(

s,
kx

α1
,ky,0,η

)
=(s+η)6F0

(
s,

kx

α1
,ky

)
. (3.2)

Clearly (3.2) has 10 roots, 4 of which are the purely imaginary roots of (2.6) and corre-
spond to the physical (quasi-P and quasi-S) modes. The remaining 6 roots are real and
non-positive

sm ={−η}, m=5,6,··· ,10. (3.3)
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We call the corresponding modes non-physical. Since the roots depend continuously on
the coefficients, it is apparent that at intermediate frequencies and with small enough
damping the roots s of the non-physical modes will remain in the left half of the complex
plane. Thus we have

Lemma 3.1. At intermediate frequencies, if η>0 and α1>0, the non-physical modes s are stable
for all sufficiently small damping σ1≥0.

At high frequencies a more refined analysis is needed.

Lemma 3.2. For any α1 >0 and for sufficiently small damping σ1 ≥0, the parameter η >0 will
stabilize the non-physical modes at high frequencies.

Proof. We introduce the normalized variables,

λ=
s

|k|
, k1 =

kx

|k|
, k2 =

ky

|k|
, ǫ=

σ1

|k|
, γ=

η

|k|
, |k|=

√
k2

x+k2
y, (3.4)

in (3.1) and we have

(λ+γ)2F0

(
(λ+ǫ+γ)λ,

(λ+γ)k1

α1
,(λ+ǫ+γ)k2

)
=0. (3.5)

Remark 3.1. It is possible to normalize by |k|=
√

k2
x/α2

1+k2
y such that (3.5) is independent

of α1. We instead interpret α1 as a rescaling of the elastic coefficients and consider the
normalization as given by (3.4).

The non-physical modes are continuous functions of ǫ and therefore can be expanded
by a Puiseux series, see [24],

λ
( k1

α1
,k2,ǫ

)
=−γ+Υ

γ
( k1

α1
,k2

)
ǫr+o(ǫr), r∈Q+. (3.6)

If r ≥ 1, then we know that the perturbed root λ will have a negative real part for suf-
ficiently high frequencies and ǫ/γ ≪ 1, hence the non-physical modes are stable. Let
us assume that there exists a solution such that 0 < r < 1 and Υγ 6= 0. By inserting the
expression (3.6) in (3.5) we have

(
Υ

γ
( k1

α1
,k2

)
ǫr
)6

F0

(
−γ+O(ǫr),

k1

α1
+o(1),k2+o(1)

)
=0,

=⇒
(

Υ
γ
( k1

α1
,k2

)
ǫr
)6

F0

(
−γ,

k1

α1
,k2

)
+o(1)=0,

=⇒
(

Υ
γ
( k1

α1
,k2

)
ǫr
)6

F0

(
−γ,

k1

α1
,k2

)
=0.

Since F0(−γ,k1/α1,k2) 6=0 for all γ∈R+, it follows that Υγ =0, which is a contradiction.
We must have r≥1 and the lemma is shown.
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We note that the proof of Lemma 3.2 is analogous to the proofs of Lemma 7 in [5] and
Theorem 1 in [4].

We see that if η>0 the instability in the standard PML at constant coefficients can not
come from the non-physical modes. In order to understand the stability of the physical
modes we perform the high frequency stability analysis due to [4]. To begin with, we
consider α1 = 1. The physical modes are simple (distinct), therefore can be expanded in
the powers of ǫ,

λ=λ0+ǫλǫ+O(ǫ2). (3.7)

Here λ0 is a purely imaginary root of F0(λ,k1,k2). At sufficiently high frequencies, ǫ≪1,
we can ignore higher order terms in ǫ, and the sign of the real part of λǫ determines the
stability of (2.13).

Consider

F0

(
λ,
(

1+
ǫ

λ+γ

)−1
k1,k2

)
=0,

and expand in the powers of ǫ, and we have

F0(λ0,k1,k2)+ǫ
(

λǫ
∂F0

∂λ
−

k1

λ0+γ

∂F0

∂k1

)
+O(ǫ2)=0.

By ignoring higher order terms and using that λ0, ∂F0/∂λ are purely imaginary, we have

ℜλǫ =−
|λ0|2

γ2+|λ0|2
k1

λ0

(
−

∂F0

∂λ

)−1 ∂F0

∂k1
. (3.8)

We see that a physical mode will be unstable if

k1

λ0

(
−

∂F0

∂λ

)−1 ∂F0

∂k1
<0. (3.9)

Remember if we replace s= iω, where ω is the temporal frequency we have

ℜλǫ =−
|ω|2

γ2+|ω|2
kx

ω

(
−

∂F0

∂ω

)−1 ∂F0

∂kx
=−

|ω|2

γ2+|ω|2
Sx×(Vg)x. (3.10)

Therefore, the relation (3.9) is equivalent to the so called geometric stability condition in
the x-direction. By Definition 2.1 we have proved the following

Lemma 3.3. Consider α1=1 and σ1>0. If the geometric stability condition in the x-direction is
violated there are unstable physical modes at sufficiently high frequencies.

By computing the roots of (3.5) for a set of frequencies we also observed that increas-
ing the complex frequency shift η for a fixed σ1 can move most of the unstable physical
modes into the stable complex plane. However if η ≫ σ1 the whole spectrum moves
towards the imaginary axis, indicating weak damping.
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3.2 Grid compression

Here we investigate the effect of the grid compression parameter α1 on the physical
modes. Looking again at the slowness diagrams in Fig. 2, we see that if the geometric
stability condition is violated, the modes on the slowness curve violating the geometric
stability condition in the x-direction satisfy the relation

|Sx|

|Sy|
≤κ, (3.11)

for some κ > 0. For any anisotropic elastic material, the instability parameter κ can be
determined precisely from the slowness diagrams.

Lemma 3.4. Assume there exists a κ > 0 such that the geometric stability condition in the x-
direction is violated for modes satisfying (3.11). Given σ1, k0 >0 there exists α0 >0 such that for
all 0< α1 ≤ α0 and all η ≥ 0, the physical modes with the normalized frequencies (k1,k2) in the
range k0< |k1|≤1, 0≤|k2|≤1, are stable at sufficiently high frequencies.

Proof. We repeat the analysis above with 0<α1 <1, arriving at

ℜλǫ =−
|λ0|2

γ2+|λ0|2
k1

α1λ0

(
−

∂F0

∂λ

)−1 ∂F0

∂k1
, (3.12)

where λ0(k1/α1,k2) is a root of F0(λ,k1/α1,k2)=0. Note that

∂F0

∂λ
,

∂F0

∂k1
,

are evaluated at λ0(k1/α1,k2), k1/α1, k2. If α1 = k0/κ then for all k2 and |k1| ≥ k0, the
expression (3.12) will be evaluated at k̃1 = k1/α1, k̃2 = k2 corresponding to a point on the
slowness curve where

|k̃1|

|k̃2|
=

|Sx|

|Sy|
=

k1

α1k2
≥

k0

α1k2
≥

κ

k2
≥κ.

Thus ℜλǫ<0 and all physical modes with the normalized frequencies (k1,k2) in the range
k0< |k1|≤1, 0≤|k2|≤1, are stable.

A direct consequence of Lemmas 3.2 and 3.4 is the corollary

Corollary 3.1. Assume α1, η satisfy the conditions in Lemmas 3.2 and 3.4. For sufficiently
high frequencies |k| the constant coefficient PML model (2.13) is asymptotically stable for all
frequencies, |k0|< |k1|≤1, 0≤|k2|≤1.

In order to highlight the above result, we perform the semi-discrete analysis below
and consider two materials Apatite and Zinc crystal violating the geometric stability con-
dition, see Figs. 2(b) and 2(d).
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3.3 Semi-discrete analysis

In a discrete setting a finite number of grid points are used, and only certain frequencies
can be represented. For a given discretization instability or stability in the continuous
model can be strengthened or weakened. We expect a layer to be unstable, at least if
modes violating the stability condition can be represented and are well resolved. In this
subsection we demonstrate that un-resolved modes are in fact more stable than predicted
by the continuous analysis. We also demonstrate that for a chosen discretization, the grid
compression parameter α1 can be chosen such that the discrete PML is stable.

Consider 2π-periodic problem (in both space directions), with constant coefficients,
discretized by N=2M+1 equally spaced grid points in each spatial direction. The spatial
step is h=2π/N, and modes with wave numbers kx, ky =0,±1,±2,··· ,±M can be repre-
sented. Replacing derivatives with standard second order central differences in the right
hand side of (2.13), we have the semi-discrete problem

utt+σ1ut= Lh(u)+Fh(u,Θ,σ1,η), Θt= Jh(u,Θ). (3.13)

Here Θ=(v,w,r)T are the auxiliary variables, Lh, Jh are spatial discrete operators, and Fh

is a semi-discrete auxiliary function enforcing the perfect matching.
We introduce the variable φ=ut to obtain a first order system in time, then take dis-

crete Fourier transform in space. Temporal stability is determined by the eigenvalue
problem

sU= D̃hU. (3.14)

Here

D̃h =




0 I 0 0 0

Dh+ησ1I −σ1I
iσ1

α1h
A1sin(hkx)

iσ1

h
A2sin(hky) −ησ1I

−
i

α1h
sin(hkx)I 0 −(η+σ1)I 0 0

i

h
sin(hky)I 0 0 −ηI 0

ηI 0 0 0 −ηI




,

and

Dh=−
4

(α1h)2
A1sin2

(hkx

2

)
−

4

h2
A2sin2

(hky

2

)
−

1

α1h2
A3sin(hkx)sin(hky),

is the (discrete) Fourier transform of the discrete approximations of the right-hand side of
(2.3). If sin(kxh)/h≈ kx and sin(kyh)/h≈ ky we say that the corresponding mode is well-
resolved. Otherwise it is un-resolved. In a discrete setting the behavior of un-resolved
modes may differ significantly from what continuous analysis predicts.

To investigate the stability of a numerical approximation at a certain resolution we
can compute the eigenvalues of D̃h for all wave numbers represented on the grid. In
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Figure 3: The discrete spectrum of the vertical layer (parallel to the y-axis) for Materials MA2 (Apatite) and
MA4 (Zinc crystal).

Fig. 3, we have plotted the eigenvalues for Apatite and Zinc crystal when h = 0.05. In
Figs. 3(a) and 3(c) there is no grid compression. In both cases there are only a few unsta-
ble eigenmodes, with k1∼h and k2∼1. These unstable modes are well resolved and have
frequencies corresponding to the unstable part of the slowness curve. There are other
discrete modes, with higher frequencies (not well resolved), also corresponding to the
unstable part of the slowness curve, but these are in fact stable. This indicates that the
semi-discrete PML (3.13) has significantly more robust stability properties than the cor-
responding continuous PML (2.13). In Paper II of [26], the stability of a simpler system,
discretized in second order form, is analyzed in detail. The result supports the claim.

The well-resolved modes behave as predicted by the continuous analysis, and by
Lemma 4 can be stabilized by the grid compression parameter α1. This is illustrated,
as seen in Figs. 3(b) and 3(d), where we also used a complex frequency shift to stabilize
the non-physical modes. However, as we refine the mesh, more unstable, well resolved
physical modes appear. These unstable modes can also be stabilized by reducing α1 fur-
ther. Asymptotically we expect to use α1∼h.
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3.4 Stability of the corner region

If a Cartesian grid is surrounded by perfectly matched layers, corner regions are intro-
duced where both damping coefficients are non-zero, σ1, σ2>0. In order to understand the
behavior of the entire scheme, it is useful to investigate the stability of this corner region.
In this section we show that the full PML formulation (2.12) is significantly more stable.
We know that in the continuous setting at sufficiently high frequencies the complex fre-
quency shift η stabilizes the non-physical modes but does not guarantee the stability of
the physical modes. We therefore consider the standard PML with η=0, α1=α2=1, (3.15)
and investigate the stability of the physical modes in the corner region

utt =A1uxx+A2uyy+A3uxy−A1(σ1v−σ2w)x+A2(σ1q−σ2p)y−(σ1+σ2)ut−σ1σ2u, (3.15a)

vt =ux+σ2w−σ1v, wt =ux, pt =uy+σ1q−σ2p, qt =uy. (3.15b)

We will prove the following Lemma.

Lemma 3.5. Consider the constant coefficient PML (3.15) with σ1 = σ2 = σ > 0. The physical
modes are stable for all frequencies.

Proof. For σ1=σ2=σ≥0, the auxiliary variables can be excluded. The roots corresponding
to the physical modes satisfy the dispersion relation

F0(s+σ,kx ,ky)=0.

Thus, any σ>0 moves the physical modes into the left half plane and the PML is stable.
So, the lemma is proved.

A perturbation argument can be used to show that as long as σ1 and σ2 are sufficiently
close the PML is stable. Computations of the corresponding spectrum as in Section 3.3
shows that the constant coefficients PML (3.15) is stable for all combinations of σ1 > 0,
σ2>0. Therefore, we expect the corner region to always enhance the stability of the PML.

4 Numerical experiments

In this section, we present some numerical experiments. The experiments aim at vali-
dating the theoretical results and further exploring the efficiency and stability properties
of the proposed layers. Firstly, we shall briefly present the numerical method used. We
will then discuss each problem set up, describe the numerical experiments, and finally
present and discuss numerical results.

4.1 Numerical method

The numerical scheme is a node centered second order accurate (both in time and space)
finite difference scheme. We will start with the spatial discretization and the time step-
ping scheme will follow.
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4.1.1 Spatial discretization

Let the grid in (x,y) coordinates be defined by

xi = ihx, i=0,··· ,Nx−1, hx =
1

(Nx−1)
,

yj = jhy, j=0,··· ,Ny−1, hy =
1

(Ny−1)
.

We denote the grid function by [ui,j]. The standard finite difference operators are defined
by

hxDx
+ui,j=ui,j+1−ui,j, hyD

y
+ui,j=ui+1,j−ui,j, hxDx

−ui,j =ui,j−ui,j−1,

hyD
y
−ui,j=ui,j−ui−1,j, 2Dx

0ui,j =Dx
+ui,j+Dx

−ui,j, 2D
y
0ui,j=D

y
+ui,j+D

y
−ui,j.

We also used averaging operators

2Ex
1
2
(σi,j)=σi,j+1+σi,j, 2E

y
1
2

(σi,j)=σi+1,j+σi,j.

Replacing spatial derivatives with differences in (2.12) yields the semi-discrete problem

utt+(σ1+σ2)ut= Lh(u)+Fh(u,Θ,σ1,σ2,η), Θt= Jh(u,Θ). (4.1)

Here Θ= [v,w,p,q,r,z]T, are the auxiliary variables and Lh, Jh are spatial discrete opera-
tors. The auxiliary function Fh(u,Θ,σ1,σ2,η) ensures the perfect matching.

4.1.2 Temporal discretization

We introduce the discrete time variable, tn = ndt, n ∈ N, where dt is the time step and
un ≈u(tn). The usual finite difference operators with respect to time are denoted by

dt2Dttun =un+1−2un+un−1, 2dtDt
0un =un+1−un−1, dtDt

+un=un+1−un.

The time integration scheme uses, the leap-frog scheme for the physical variable and the
Crank-Nicolson scheme for the auxiliary variables. The fully discrete PML problem is

Dttun+(σ1+σ2)Dt
0un = Lh(u

n)+Fh(u
n,Θn,σ1,σ2,η), (4.2a)

Dt
+Θ

n =
1

2
Jh(u

n+1,Θn+1)+
1

2
Jh(u

n,Θn). (4.2b)

The discrete problem

Dttun= Lh(u
n), (4.3)

corresponds to the interior discretization of the elastic wave equation (2.3), can be shown
to conserve discrete energy, see [13].



K. Duru and G. Kreiss / Commun. Comput. Phys., 11 (2012), pp. 1643-1672 1659

4.2 Stability of the PML

The aim of this subsection is to numerically study the dynamic behavior of the discrete
PML model. We are particularly interested on how growth depends on the complex
frequency shift η, the magnitude and variability of the damping parameter, the mesh size
and the material parameters. We consider a square (x,y)∈ [−1,1]×[−1,1] with damping
everywhere. To mimic a vertical layer we use σ1(x) = 5(n+1)|x|n, σ2(y) = 0, while a
horizontal layer is obtained by σ1(x) = 0, σ2(y) = 5(n+1)|y|n . Here n is a non-negative
integer. We use η = 1+0.1σ1 such that the conditions in Lemma 3.2 are satisfied. In all
forthcoming experiments in this section we set α1=1, α2=1 and consider the initial data

u1=u2=exp
(
−ln(2)

x2+y2

δ

)
, δ=0.02, (4.4a)

u1t=u2t=0, (4.4b)

for the displacement field and homogeneous initial data for the auxiliary variables.
We begin with the strongly unstable material MA1 on a uniform grid, with hx =hy =

0.05, (that is there are about 15 points in the initial pulse) and study the behavior of the
vertical layer by setting σ2=0. Homogeneous Dirichlet boundary conditions are imposed
in the x-direction and the boundaries in the y-direction are closed with periodic boundary
conditions. We run the simulations until time T=50, for n={0,2,4,6,8}. Numerical results
are displayed in Fig. 4(a) for η=0 and in Fig. 4(b) for η=1+0.1σ1.

As predicted by the analysis in the preceding section, at constant coefficients the
PML solutions grow in time and growth depends on maxσ1, see Figs. 4(a), 4(b) and also
Fig. 4(d). Growth also remains for variable coefficients. With our choice of damping func-
tion the local values of σ1 decreases with increasing degree of the monomial in a large part
of the layer, and therefore it is not surprising that the growth rate decreases with increas-
ing monomial degree, see also Figs. 4(a) and 4(b). However, with grid refinement this
behavior will probably change. In conclusion, for a given resolution, using higher order
monomials seems advantageous as the damping power of the layer can be held constant
by our choice of damping function while reducing the severity of the growth.

Theoretical analysis at constant coefficients also predicts that the complex frequency
shift stabilizes the non-physical modes. We see from Figs. 4(a) and 4(b), the introduc-
tion of the complex frequency shift reduces the growth rate significantly. However, the
absorption power of the PML for a fixed width layer is weakened.

Next we fix the PML parameters and vary the mesh-size hx=hy={0.2,0.1,0.05,0.025}.
From Fig. 4(c), we see that the growth rate increases with resolution, but the growth rate
approaches a constant-the theoretical growth rate-as we refine the mesh. These results
complement the semi-discrete analysis in the last section and support the conclusion that
only well-resolved modes corresponding to the unstable part of the slowness curve are
unstable.

In the last sets of the experiment, the mesh-size is hx =hy =0.05, the PML parameters
are held constant, and we vary the material parameters. Here we study the behavior of
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(c) Vertical layer η=1+0.1σ1, σ1 =5.
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(a) Vertical layer η=1, σ1 =5.
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(b) Horizontal layer η=1, σ1 =5.

Figure 5: The maximum elastic energy (‖
√

u2
1+u2

2‖∞), h=0.05.

both the vertical layer and the horizontal layer. In Fig. 5, we see that growth rate depends
also on the material parameters, that is the degree of violation of the geometric stability
condition. From the slowness diagrams for material MA1 we know that the geometric
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stability condition is more severely violated in the y-direction than in the x-direction,
therefore it is not surprising that the growth rate for the horizontal layer is larger than
that of the vertical layer. We note that if the violation of the geometric stability is mild (as
in MA2, MA3, MA4), on a reasonably fine mesh the discrete PML is be stable, see Fig. 5.

4.3 Ducted problem

In this subsection we apply the PML to a ducted elastic wave problem. The physical do-
main is the infinite strip −5≤x≤5, −∞<y<∞. The problem is periodic in the x-direction,
but extends to the infinite space in the y-direction. In order to perform numerical experi-
ments we truncate the domain in the y-direction such that the computational domain is a
square −5≤x≤5, −5≤y≤5. To simulate the infinite space, we add two additional layers,
5≤|y|≤6 (see Fig. 6) in which the PML equations are solved. For the displacement field
we use the initial data

u1=u2=exp
(
−ln(2)

x2+y2

δ

)
, δ=0.2, (4.5a)

u1t=u2t=0. (4.5b)

Homogeneous initial data are used for the auxiliary variables. We set homogeneous
Dirichlet boundary conditions in the y-direction, and periodic boundary conditions in
the x-direction.

Source

PML

PML

Figure 6: Computational domain.

The damping profile is the monomial of the form

σ2(y)=





0, if |y|≤y0,

d0

(
|y|−y0

y1−y0

)n
, if |y|≥y0,

d0>0, n=4, y0 =5, y1=6.

The velocities of the P-wave and S-wave are denoted Cp, Cs. We choose d0 =Cp(n+
1)/(2(y1−y0))log(1/Re f ) such that the relative error from the outer boundaries is of the
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Figure 7: The dynamics of
√

u2
1+u2

2 for the new second order PML for the ”unstable” Material MA1. All

figures are with contours between 0 and 1 at intervals of 0.01, exempting the zero contour. Note that the color
code changes, red and blue colors correspond to the maximum energy and minimum energy respectively in the
interval [0.01,1].

magnitude Ref, see [4, 23]. Here, Cp = 4.5 is the maximum wave speed for the elastic
materials considered. Note that if d0 is large it may cause stiffness.

In order to highlight the effectiveness of the proposed layers we consider the difficult
elastic material MA1 (and the strongly ”unstable” horizontal layer).

We discretize the domain by introducing the uniform mesh-size hx=hy=0.1 such that
the initial pulse is well resolved. We set the relative error of magnitude Re f =10−3, intro-
duced the complex frequency shift η = 1+0.1σ2 and compute the solutions until T= 70.
The behavior of the PML is illustrated in Fig. 7, showing how the initial pulse spreads,
enters into the layer and is being absorbed. After a long time, T = 70, the growing so-
lutions corrupts the solution in the interior of the domain, see Fig. 8(a). To study the
dependence of growth on the mesh-size, we coarsened the mesh hx = hy = 0.2 and com-
pute until T=70, and there was no growth, see Fig. 8(b). However, if the computation is
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Figure 8: The maximum energy ‖
√

u2
1+u2

2‖∞ in the interior of the domain.

extended to T=100 we see a slow growth in energy. Next, we set the complex frequency
shift η=0 the growing solutions reappear, see Fig. 8(c), highlighting the stabilizing effect
of the complex frequency shift.

Numerical experiments were also performed for the materials MA2, MA3, and MA4.
For these materials and at the above refinement levels, no growth was seen in the layer,
even at late times. This behavior would probably change with further refinements. The
explanation is that if the violation of the geometric stability condition is mild, on a rea-
sonably fine mesh the discrete PML is stable.

In order to further investigate the behavior of the layer we repeat the above exper-
iment for material MA1 (with η = 0, h = 0.1) and zoom very close to the layer ((x,y) ∈
[−5,5]×[5,6]) as shown in Fig. 9. We carefully study the dynamics of the waves transmit-
ted into the layer. Observe that the solutions in the layer are smooth and waves propagat-
ing normal to the boundary are perfectly absorbed. The remnant propagates tangentially
unabsorbed in the layer. Because of the periodic boundary conditions in the tangential
direction, with increasing time waves propagate back and forth in the layer and grow
slowly, see Fig. 9.
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Figure 9: The dynamics of
√

u2
1+u2

2 inside the PML for the ”unstable” Material MA1. All figures are with

contours between 0 and 1 at intervals of 0.01, exempting the zero contour. Note that the color code changes,
red and blue colors correspond to the maximum energy and minimum energy respectively in the interval [0.01,1].
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Figure 10: Same as Fig. 9, except for dynamics inside the split-field PML.
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In order to make a comparison we apply the split-field PML [4, 23] to the first order
(velocity-stress) formulation of the elastic wave equation. Considering the same set-up
and resolution h=0.1 as above, we discretized the equations using standard second order
accurate centered finite difference approximations in space and standard second order
Runge-Kutta method in time. We compute the solutions until a final time T. Since we are
interested in the behavior of the layer we zoom very close to the layer ((x,y)∈ [−5,5]×
[5,6]) as shown in Fig. 10. We see that as the slower S-wave penetrates the layer, at
approximately t=4.0 the solution in the layer in this case grows destructively in time. As
before, the mesh was coarsened and the solutions remained unstable but with a slower
growth rate. We believe the strong instability observed here and reported in [4, 5] is
related to the high-frequency parasitic numerical modes that are present in the standard
discretization of the first order formulation. Analysis of the discrete behavior of PML
models is a topic of Paper II in [26], where the stability of a simpler system, discretized
in second order form is analyzed in detail.

4.3.1 Grid compression

From the analysis, we expect that for a given resolution, the introduction of a grid com-
pression parameter will stabilize the physical modes. This idea was tested for material
MA1 and the resolution hx = hy =0.1, for that case we observed growth, see Fig. 8(a). A
grid compression α2 = 1−0.5exp(−1/(5(|y|−5)) was introduced in the layer and it re-
sulted to a stable solution, see Fig. 8(d). However, as we refine the grid we expect the
growth to reappear. That growth can also be removed by further reducing the size of α2.
A von-Neumann analysis yields the CFL condition

dt<
( 2α2

2

1+α2
2

) 1
2
( 1

C2
p+C2

s

) 1
2
h. (4.6)

Note that if α2 = 1, we recover the CFL condition derived in [13]. The drawback here is
that the problem becomes increasingly stiff with decreasing α2, which consequently will
restrict the time step. Let W0 denote the work required when α2=1. If α2<1, work scales
∼ 1/α2W0. From the analysis, we expect to use α2 ∼ h, asymptotically. Therefore work
scales ∼NyW0.

4.4 Open domain

We consider an open domain problem. The computational domain is the rectangular
two-dimensional domain (x,y)∈ [−10,10]×[−10,10], completely surrounded by a PML
of width 2. The damping profile is a 4th degree monomial n=4. We chose the damping
coefficient d0 so that we a relative error of magnitude Re f = 2×10−2. The complex fre-
quency shift is η=1.0. If a Cartesian grid is surrounded by the PML, η=1, independent
of damping is sufficient for stability. No artificial dissipation or grid compression was
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(a) t=3. (b) t=4. (c) t=10.

(d) t=20. (e) t=40. (f) t=50.

Figure 11: The dynamics of
√

u2
1+u2

2 for MA1, with h= 0.125, n= 4. Note that the color code changes, red

corresponds to the maximum energy on the grid and the blue color is the minimum energy on the grid.

(a) t=2. (b) t=4. (c) t=8.

(d) t=10. (e) t=20. (f) t=50.

Figure 12: Same as Fig. 11, except for MA2.
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Figure 13: The maximum elastic energy (‖
√

u2
1+u2

2‖∞) inside the computational domain, with h=0.125, n=4.

used, that is α1=α2=1. We force the first component of the displacement vector with

F(x,y,t)= f (t)
1

δ
e−

7((x−8)2+(y+8)2)
δ ,

f (t)=(2π2(0.9t−1)2−1)e−π(0.9t−1)2
, δ=0.025.

An equidistant grid with hx = hy = 0.125 is used everywhere. This means that there
are about 10 points across the pulse in the source term. We compute the solution un-
til T = 50.0. The behavior of the model is displayed in Fig. 11 for material MA1 and in
Fig. 12 for material MA2, showing how the wave generated by the source field F(x,y,t)
spreads, penetrates the PML and it is being absorbed. Fig. 13, shows the time history of

the maximum energy ‖
√

u2
1+u2

2‖∞ in the interior of the computational domain, showing

the stability of the layer and long time decay of the energy.
For material MA1, we first observed a slowly growing solution in the layer ((x,y)∈

[−12,12]×[10,12]). Later the growing solution enters the corner region ((x,y)∈ [10,12]×
[10,12]) and decays in time, (note the changing exponent in Fig. 11). Furthermore, if we
set the damping to a 6th degree monomial (for h=0.125) or coarsen the mesh h=0.2 (for
the 4th degree monomial), we did not observe any growth in the layers. For the material
MA2 there was no growth observed with these resolutions, but with further refinement
we may expect to see some intermediate growth also for material MA2.

4.5 Convergence

From application point of view, convergence is the ability of a numerical procedure to
yield arbitrarily small errors at the expense of work. Often errors can be made to depend
on one parameter, the mesh-size h. When a PML model is used in a numerical computa-
tion, errors can be divided into 3 different categories: the discretization error, numerical
reflection, and the modeling error. The discretization error is the generic error that comes
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with any numerical method (for example by approximating derivatives by differences).
The numerical reflections are the spurious discrete effects introduced by discretizing the
PML and seen in the interior domain. The modeling error is introduced because the
layer has a finite width. The discretization error and numerical reflection should vanish
as the mesh-size approaches zero and the modeling error decreases as the magnitude of
damping coefficient or the PML width increases.

Here we show that we can choose the PML parameters (for a fixed PML width) as
a function of the grid-size h such that the total PML error (modeling error + numerical
reflection) converges to zero as we refine the mesh. In the forthcoming experiments we
consider the ”strongly unstable” material MA1 in the domain

Ω={−2≤ x≤2, 2≤y≤2}. (4.7)

The initial data is given by (4.5) with δ=0.05. In order to avoid unnecessary stiffness we
chose the damping profile as a monomial of degree n=3. We set

d0 =(n+1)×
4.5

(α×d)
×log

( 1

(C0h2)

)
. (4.8)

The factor α is included to compensate for the fact that the grid compression modifies the
wave speed. C0 = 0.01 has been empirically determined and d is the width of the PML.
In this case the numerical scheme in the interior converges quadratically. Therefore, the
discretization error approaches zero at the rate O(h2), the modeling error converges at
the rate

exp(−
∫

σdξ)=C0h2

and the numerical reflection should converge at the rate O(d0h2)=O(h2|log(h)|), if α=1.
However if α∼ h the convergence rate of numerical reflections reduces to O(h|log(h)|).
In both cases, the total PML error is expected to approach zero at the rate O(h2|log(h)|)
if α=1 and O(h|log(h)|) if α∼h.

In the first experiment we surround the computational domain Ω with a PML of
width d = 2. No artificial dissipation, grid stretching or compression was used, that is
α1=α2=1. The complex frequency shift is η=0.1. We compute the solution until T=1.5,
so that the modeling error has a chance to affect the solution in the interior. We also com-
pute a reference solution in a larger domain without the PML. By comparing the PML
solution in the interior of the domain to the reference solution, measured in the L2-norm
and normalized by the L2-norm of the initial data, we obtain an accurate measure of the
relative PML error. In Fig. 14(a) we plot the time history of the PML error. The fast
P-wave with velocity Cp=4.5 completely penetrates the layers at about t=0.45 and gen-
erates numerical reflection which level off before t= 1. At about t≈ 1 the slow S-wave
with velocity Cs = 2.3 penetrates the layers while the modeling errors due to P-wave
are simultaneously returning from the outer boundaries. At t ≥ 1 the numerical reflec-
tion from the interface and the modeling error from the outer boundaries superimpose.
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Figure 14: Relative error as a function of time.

The effect on the solution in the interior levels off as time increases. However, from the
choice of our damping coefficient, the convergence rate of the total PML error approaches
O(h2|log(h)|), see Fig. 14(a) and columns 2 and 3 of Table 2.

Table 2: Relative error as a function of the mesh-size h.

Open domain Ducted domain
mesh-size (h) relative error rate relative error rate

0.2000 2.1000×10−3 – 1.1800×10−2 –

0.1000 5.4612×10−4 1.9499 5.0000×10−3 1.2211

0.0500 1.4988×10−4 1.8654 2.6000×10−3 0.9478

0.0250 4.3763×10−5 1.7760 5.7161×10−4 2.1930

We note that no growth was seen even at late times. The remnant of the wave not
damped in the layer where σ1 = 0 or σ2 = 0, propagates immediately into the corner re-
gion and decays exponentially in time. It is pertinent to note that if a Cartesian grid is
surrounded by the PML no grid compression (or grid stretching) is needed to guarantee
stability. The PML closure itself is asymptotically stable for all material parameters. We
also recover the CFL condition of the interior scheme.

Next, we consider the case where the PML is placed only in one direction, and in the
tangential directions the computational boundaries are terminated with periodic bound-
ary conditions. The absence of the stabilizing corner regions can make convergence a
difficult problem if we consider elastic materials violating the geometric stability condi-
tions. The problem is made more difficult as we consider material MA1 and the strongly
unstable horizontal layer.

In the previous section we showed that the grid compression parameter can be used
to stabilize a discrete PML. Here we use the idea to achieve a stable PML for a fixed
width layer with errors converging to zero as the grid is refined. As before we consider
the domain (4.7) and add a layer of width 2 only in the y-direction. Inside the layer we
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introduce

α2(y)=1−βexp
(
−

1

(5(|y|−2)

)
,

such that
α2(y)≈1−β, for all |y|≥3.

The layer comprises of a transition region 2< |y|< 3 and a damping region 3≥ |y| ≥ 4.
The damping σ2(y) is zero in the transition region and positive in the damping region.
The damping coefficient is given by (4.8) with α= 1−β and d= 2. We use the following
mesh-sizes and corresponding β values h=0.2,0.1,0.05,0.025, β=0,0.25,0.5,0.75.

For these values the discrete PML is stable. Note that for small values of h we have
α ∼ h, which agrees with the results in Section 3.3. In this case the complex frequency
shift is η = 1+0.1σ2. As before we compute the solution until T= 1.5 and compare with
a reference solution. See Fig. 14(b) for the time history of the PML error. The effect of
the transition region is seen first, at t ≈ 0.6 (except for the coarsest grid). This effect is
reduced with refinement. The next increase in error is due to numerical reflections at
the beginning of the damping region. Note that this effect is seen earlier for smaller h
(and consequently smaller α) since the grid compression changes the wave speed. Effects
of the modeling error is seen at the final time for all grids. With our choice of d0 (4.8)
we can at most expect the numerical reflections to converge towards zero at the rate
O(d0h2)=O(h|log(h)|), which will also be the expected rate for the total PML error. In
Table 2 we have recorded errors for this case also. The table shows convergence, although
somewhat erratic.

Remark 4.1. To avoid the deterioration of the convergence rate, one could use a layer of
width d∼1/α and let the damping be independent of α. We would then expect to regain
the convergence rate O(h2|logh|), but the growing layer would make the work increase
faster with the number of points.

5 Conclusions

In this paper we derive a PML for the second order formulation of linear, anisotropic
elastodynamics in two space dimensions. The layer equations are derived by applying a
complex coordinate stretching directly to the second order equations. The resulting sys-
tem is strongly hyperbolic. By a standard perturbation argument our PML at constant
coefficients suffers from the same high frequency instability as the modal PML and the
split field PML if the geometric stability condition is violated. We also find that the com-
plex frequency shift has a stabilization effect. However, in computations using standard
second order finite differences our PML behaves much better than a standard first order
PML. We have found several reasons for this.

In a discrete setting modes corresponding to the unstable part of the slowness curve
may not be represented or not well-resolved. In such cases the unstable temporal be-
havior predicted by the continuous analysis may not be valid. In fact, a straight forward
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computations of the temporal eigenvalues corresponding to our discrete spatial operator
in a constant coefficient setting shows that if unstable modes are not well resolved they
are in fact stable. Computations using different resolutions verifies the conclusion also
for the variable coefficient setting. We also show that this effect can be enhanced by coor-
dinate compression in the layer. However, coordinate compression increases the stiffness
of the problem.

Secondly, we observe that the geometric instability gives rise to growing modes, with
bulk localized to part of the layer, and propagating tangentially. If a Cartesian domain
is surrounded by layers, the bulk of the unstable mode eventually moves into a corner
region, and decays. We analyze the stability properties of the corner region as before,
finding that the corner region is significantly more stable.

Due to these types of behavior we have been able to construct discretely stable lay-
ers that yield reflections that converge to zero as the spatial step h→ 0, for a variety of
anisotropic materials. The work required to compute a solution at a fixed time is ∼Ch−3.
When the domain is completely surrounded by PML the error due to the PML in the so-
lution approaches zero at a rate corresponding to the theoretically predicted O(h2|logh|).
In the difficult case of a ducted domain and a material that severely violates the geometric
stability condition the PML error in our solution also approaches zero, but at best at the
rate O(h|logh|). The reduced convergence rate is related to the grid compression. Also
note that the constant C in the work estimate may be large due to increased stiffness,
which is again related to the grid compression.
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