
Commun. Comput. Phys.
doi: 10.4208/cicp.290610.210111s

Vol. 11, No. 4, pp. 1205-1225
April 2012

Computer Simulation of Helium Effects in Plutonium

During the Aging Process of Self-Radiation Damage

Bingyun Ao1,∗, Piheng Chen1, Peng Shi1, Xiaolin Wang1,
Wangyu Hu2 and Liang Wang2

1 National Key Laboratory for Surface Physics and Chemistry, Mianyang,
Sichuan 621907, China.
2 Department of Applied Physics, Hunan University, Changsha 410082, China.

Received 29 June 2010; Accepted (in revised version) 21 January 2011

Communicated by Zhengming Sheng

Available online 29 November 2011

Abstract. Due to α radioactive decay Pu is vulnerable to aging. The behavior of He
in Pu is the foundation for understanding Pu self-radiation damage aging. Molecular
dynamics technique is performed to investigate the behavior of defects, the interaction
between He and defects, the processes of initial nucleation and growth of He bubble
and the dependence of He bubble on the macroscopical properties of Pu. Modified
embedded atom method, Morse pair potential and the Lennard-Jones pair potential
are used for describing the interactions of Pu-Pu, Pu-He and He-He, respectively. The
main calculated results show that He atoms can combine with vacancies to form He-
vacancy cluster (i.e., the precursor of He bubble) during the process of self-radiation
as a result of high binding energy of an interstitial He atom to vacancy; He bubble’s
growth can be dominated by the mechanism of punching out of dislocation loop; the
swelling induced by He bubble is very small; grain boundaries give rise to an energet-
ically more favorable zone for the interstitial He atom and self-interstitial atom accu-
mulation than for vacancy accumulation; the process of He release can be identified
as the formation of release channel induced by the cracking of He bubble and surface
structure.

PACS: 61.72.-y, 61.72.Cc, 61.72.Qq, 71.15.Pd

Key words: Plutonium, radiation damage, helium effect, molecular dynamics, crystal defect.

1 Introduction

Pu is perhaps the most complex metallic element known and has attracted extraordinary
scientific interest since its discovery in 1941. It is of great technological importance due
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to its use in nuclear industry. However, modern day problems concerning Pu involve
understanding and predicting the properties of Pu and its alloys for the safe handling,
use and long-term storage of these important, but highly toxic materials which made ex-
perimental observations extremely difficult [1]. So, development of a predictive aging
model for Pu is one of major goals of many researchers’ works on Pu. Pu is vulnerable
to aging because it is a radioactive element, decaying to U by emitting α particle. Al-
though the widely used Pu-239 has a relatively long half-life of about 24,000 years, its
decay rate is still sufficiently high to lead to a significant buildup of He and radiation
damage within the metal after several decades [2]. As for the behavior of He atoms in Pu
lattice, there may be a number of interactions occurring in the lattice. These interactions
mainly include: 1) trapping and thermal detrapping of He atom in single vacancy, diva-
cancies and vacancy clusters; 2) He atom trapping at dislocations and grain boundaries;
3) replacement of He atom bound to single vacancy by either interstitial Pu atoms or U
atoms or other impurities; 4) He atom clustering into He-vacancy clusters and He bub-
ble; 5) displacement of trapped He atoms by He-He or He-U collisions; and 6) diffusion
of He atom as an interstitial [3]. Knowledge from Pu and other materials suffered from
He and radiation damage has proved the degradation, or even worse, the invalidation of
the material properties [4]. In fact, He effects in Pu are always associated with radiation
damage effects and can be regarded as the focalization on probing the microstructural
changes with ages.

Despite the central importance, there are still dearth of comprehensive studies in the
literature concerning the complex He effects in Pu. Experimentally, transmission electron
microscope (TEM), positron annihilation spectroscopy (PAS), X-ray diffraction (XRD),
dilatometry, etc. have been used to probe into the He effects in Pu [5–7]. Although,
these pioneering researches provide some valuable evidences on understanding the ini-
tial stage of He bubble nucleation and growth, many uncertainties still exist as a result of
difficulties in experiments and lacking sufficient aged Pu samples. On the other hand,
more and more theoretical modeling techniques have been performed to explore the
atomistic mechanism of cascade damage effects during the last two decades [8, 9]. How-
ever, the atomistic behaviors of He effects have not been studied in detail with few ex-
ceptions, among them the classical works of Valone et al. and Dremov et al. who studied
the stabilities of isolated He bubbles in δ Pu-Ga alloys by molecular dynamics simula-
tion [10, 11]. They found that the stabilities of He bubble were strongly dependant on
size, He-vacancy ratio and temperature. As for the macroscopical aspects of He bubble
in Pu such as lattice swelling, material property changes, He bubble pressure and He
release, there are few reports to the best of our knowledge.

In this article, we review our recent findings on He effects in Pu during the aging
process of self-radiation damage by computer simulation technique, especially on inves-
tigating the microcosmic mechanism of initial nucleation and formation of He bubble.
In addition, some macroscopical aspects of He bubble in Pu such as lattice swelling, He
bubble pressure and He release process are also presented [12–14]. The remainder of the
paper is organized as follows. In Section 2, the methods used are briefly described focus-
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ing on the development of interatomic potentials. The models for different simulations
and calculations are discussed in Section 3. Finally, conclusive comments are provided in
Section 4.

2 Methods

2.1 Molecular dynamics

A complete understanding of the behavior of He in Pu requires an atomic level simula-
tion. Molecular dynamics (MD) simulation is an important tool for understanding mate-
rials at atomic level. By using MD simulation, the behavior of defects in solid materials
can be directly probed. The general methods of MD simulation have been discussed in
great details by a number of authors; thus, we give here only the specific details of our cal-
culations. In the present MD simulation, the six-value Gear predictor-corrector algorithm
is employed. Usually, the time step is chosen as 1fs and total simulation time is greater
than 10ps. In some cases, for instance the computational system contains nanometer-size
He bubbles and extended defects, the total simulation time is high to ns level, depending
on the computational cell being simulated. The thermodynamic quantities are evaluated
only after ensuring a thorough equilibration of the computational system. Periodic com-
putational cells are used to eliminate surface effects. The detailed simulation processes
for different investigations will be addressed in the following text.

2.2 Potentials

The success of the MD simulation lies in the choice of the interatomic potentials of Pu-Pu
and Pu-He. We have developed our own Pu embedded atom method (EAM) potential to
reproduce the fcc δ Pu phase. In the original EAM model, there are two assumptions [15].
First, the atomic electron densities are to be well represented by the spherically averaged
free atom densities calculated from Hartree-Fock theory. Second, the host electron den-
sity is approximated by a linear superposition of the atomic densities of the constituents.
These assumptions are too simple and cannot describe the actual situation well. Baskes
modified it to include direct and bonding in the expression of electron density, and ap-
plied to variety of cubic materials [16], and the calculations were very complicated. Our
group proposed another modified method [17]. With introducing a modified energy term
M(P) to the total energy expression to express the energy difference resulting from the
electron density difference and to correct the negative Cauchy relation, a new type of
modified analytic EAM (MAEAM) has been constructed for many typical metals and
alloys [18–23].

The present MAEAM describes the total energy Et of any structure as the sum of three
terms, a many-body term depending on the local electron density, a two-body term de-
pending on interatomic distances, and a modification term to correct for the assumption
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of the linear superposition of atomic electron density in the original EAM [20–23],

Et=∑
i

F(ρi)+
1

2 ∑
i,j

φ(rij)+∑
i

M(Pi), for i 6= j, (2.1)

where φ(r) is the effective two-body potential, F(ρ) is the embedding energy. The local
electron density ρi and its second order Pi are determined by a superposition of individ-
ual atomic electron densities f (rij),

ρ=∑
m

f (rm), (2.2a)

P=∑
m

f 2(rm), (2.2b)

where m is the number of the neighbor atoms. The atomic electron density is described
by the function f (r),

f (r)=
( r1

r

)4.7[ rce−r

rce−r1

]2
, (2.3)

where r1 is the nearest neighbor atomic equilibrium distance, f (r) is truncated at rce,
rce = r4+0.75(r5−r4), where r4 and r5 are the fourth and fifth neighbor distances for a
perfect crystal, respectively.

The energy modification term is empirically taken as,

M(P)=α
{

1−exp
[

−104
(

ln
P

Pe

)2]}

, (2.4)

where Pe is its equilibrium value.
The embedding functions of F(ρ) take the same forms as those used by Johnson [24],

F(ρ)=−F0

[

1−nln
ρ

ρe

]( ρ

ρe

)n
, (2.5)

where F0 and n are model parameters, ρe is the equilibrium electron density.
A Morse-like pair potential is proposed in the frame of our MAEAM. The proposed

pair potential φ(r) is,
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)

, (2.6)

where ki (i=−1,0,1,2,3,4) are the potential parameters. In the present model, the atomic
interactions up to the third neighbor distance are considered and φ(r) is truncated be-
tween the third and the fourth neighbor distance, rc = r3+0.75(r4−r3). At this point, the
pair potential and its slope are zero, i.e.,

φ(rc)=0, φ′(rc)=0. (2.7)
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Table 1: Input physical parameters for the δ Pu MAEAM potential, a is the lattice constant, Ec the cohesive
energy, E1 f the mono-vacancy formation energy, C11, C12 and C44 the elastic constants.

a (nm) Ec (eV) E1 f (eV) C11 (GPa) C12 (GPa) C44 (GPa)

0.464 -4.20 0.90 38.0 26.0 33.0

All the model parameters are determined analytically by fitting the properties of met-
als, such as lattice constants a, cohesive energy Ec, mono-vacancy formation energy E1 f ,
and elastic constants C11, C12, C44. The input physical parameters for Pu [25–27] are listed
in Table 1. Although this potential is for pure Pu, the elastic constants and the mono-
vacancy formation energy are taken from the Ga-stabilized Pu alloy. The Pu EAM poten-
tial has been proven to be effective to a certain extent to reproduce many solid properties
of Pu, but it can not reproduce the complicated phase transformations [26,28–30] and can
not reproduce the unusual phonon softening in δ Pu. In fact, many of these difficulties can
be corrected only by the most advanced electronic structure calculation methods, for ex-
ample, the recently developed dynamics mean field theory (DMFT) has been succeeded
in reproducing the unusual phonon softening in δ-phase Pu [27, 31]. From the viewpoint
of atomic level computer simulation, the Pu MAEAM potential can be tentatively used
to investigate the atomic behavior of defects in Pu.

The He-He potential used is of the Lennard-Jones pair potential [32],

φ=φ0

[( r0

r

)12
−2

( r0

r

)6]

, (2.8)

where φ0 and r0 are the potential parameters. The He-He potential has been widely used
to study He effects in solid materials.

For the Pu-He cross potential, there is no experimental data at all with which to fit the
potential. As is well known, He atom has a filled-shell electronic configuration and are
thus likely to interact with other atoms in a simpler way than do metal atoms, in other
words, the electronic effects of He-metals interactions may be negligible. For this reason,
the Pu-He cross potential is modeled as Mores pair potential,

φ=φ0

[

exp
(

−2α
( r

r0
−1

))

−2exp
(

−α
( r

r0
−1

))]

, (2.9)

where φ0, r0 and α are the potential parameters. In order to determine the potential pa-
rameters, we try to compare Pu with other fcc metals (such as Al, Pd and Ni) whose
interaction potentials with He were developed by using first-principles calculations [33].
We have obtained the potential parameters by choosing from a variety of values of φ0,
r0 and α. Although the fidelity of the potential parameters is limited, the Pu-He cross
potential is qualitatively feasible for modeling the behavior of He in Pu. Furthermore,
the selected potential parameters are in accordance with the Pu-He dimer potential de-
veloped by using ab initio calculations [34]. In fact, with view to the importance of Pu-He
potential for the atomistic investigation of He behavior and the lack of experimental data
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on Pu-He system, we are developing the Pu-He potential from the first-principles energy
band calculation method [35, 36].

3 Results and discussion

3.1 Energetic calculation of He-vacancy cluster

In terms of Trinkaus’s classification of He bubble by size, the lowest size class is usually
indicated by He-vacancy (HenVm, n and m denote the number of He atoms and vacancy,
respectively) clusters, which may play an important role in the nucleation of He bub-
ble [37, 38]. Such small HenVm clusters are hardly characterized experimentally, which
should be necessary for a theoretical approach.

The defects formation energies are determined by comparing the energy of a crystal
containing defects with a crystal of the same number of atoms on their perfect lattice
sites. The formation energy of a HenVm cluster that contains n He atoms and m vacancies
is defined as follows,

E f (HenVm)=Etot(HenVm)−nεHe−(N−m)εPu, (3.1)

where E f (HenVm) is the formation energy of HenVm cluster with n He atoms in a void
of m vacancies, Etot(HenVm) is the calculated total energy of a computational Pu cell
containing a HenVm cluster, εPu is the cohesive energy of a perfect fcc Pu crystal, and εHe

is the cohesive energy of a perfect fcc He crystal. Here, the calculated cohesive energies
of perfect crystals are -4.2eV/atom and -0.0071eV/atom for Pu and He, respectively. N
denotes the number of perfect fcc lattice sites in the computational cell and therefore
(N−m) is the number of Pu atoms in the cell. The solubility of He in Pu is described by
the binding energies of a He atom EB(He) to a HenVm cluster, which are calculated from
the following equation [39],

EB(He)=E f (Hen−1Vm)+E f (He)−E f (HenVm), (3.2)

where E f (He) is the formation energy of He in an interstitial site. The structure of the
empty void is determined by beginning with a single vacancy, and repeatedly removing
the atom having the highest potential energy from the cell, thereby creating another va-
cancy for calculating the isolated vacancy formation energy, so the formation energy of
di-vacancy is calculated. By repeating the step in the same manner, the vacancies are in-
creased one by one and the formation energy of an empty void is obtained as a function
of the number of vacancy in the void. Afterwards, a He atom is firstly introduced into
an m-size void Vm for calculating the formation energy of He1Vm cluster, then the He
atoms are introduced into the cluster one by one for calculating the formation energies
of the clusters containing increasing He atoms. In order to fully relax the simulation cell,
annealing molecular dynamics is employed for each initial configuration. The compu-
tational system is relaxed at 300K, with the temperature controlled via explicit rescaling
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of the velocities and the pressure controlled using Parrinello and Rahman method [40],
followed by slowly cooling and quenching the system to 0K. The positions of the atoms
are relaxed to their minimum energy configurations. The forces exerted on each atom are
calculated, and then the formation energies of HenVm clusters are calculated.

3.1.1 Formation energies of HenVm clusters

The formation energies of HenVm clusters are the foundation of calculating the defect
binding energies. Fig. 1 shows the dependence of the formation energies of HenVm clus-
ters on the number of He atom. It can be found that for He atom in Pu lattice, the forma-
tion energies of HenVm clusters slowly increase with the introducing of He atom until the
ratio of the number of He atom to vacancy is greater than 1, which indicates the lowest
energy configuration occurs when there is one vacancy per He atom. Fig. 2 shows the de-
pendence of the formation energies of HenVm clusters on the number of vacancies. The
formation energies of HenVm clusters slowly decrease with the introducing of vacancy
until the ratio of the number of He atom to vacancy is greater than 1, which also indicates
the lowest energy configuration occurs when there is one vacancy per He atom. When
the He-to-vacancy ratio (n/m) of a cluster is less than 1, the formation energy of the clus-
ter is close to the void formation energy. However, when n/m is greater than 1, the rapid
increase of the formation energy is mainly due to the presence of He. In this way, the
cluster size dependence of the formation energy of a HenVm cluster is greatly dependent
on the ratio, n/m.

3.1.2 Binding energies of point defects to HenVm clusters

According to the Eq. (3.2), the binding energies of a He atom to a HenVm cluster have been
calculated. These binding energies are graphed in Fig. 3. He density is defined as the He
to vacancy ratio of the HenVm cluster, which is provided by n/m. As shown in the figure,
the binding energies indicate a strong dependence on the He density. He binding energy
represents the energy required to bind the nth He atom in a HenVm cluster. Notes that
for the smaller ratio of n/m, the binding energy approximately equals to the formation
energy of an interstitial He atom in Pu lattice. It shows that He atom is most strongly
bound to the large nearly empty voids, because He exists in a nearly free state. The high
binding energies also explain the formation of He bubbles. The binding energy of an
interstitial He atom to HenVm clusters gradually decreases with increasing He density,
followed by an increase at He density greater than 5. As illuminated by Morishita et
al. [38], the change in the dependence of the energies on the He density at greater than 5
may be originated from the athermal SIAs production and associated effective decrease in
the He density. In other words, the collective motion of He atoms in the cluster produces
bubble pressure large enough to push the Pu atoms off from their normal lattice sites
and spontaneously creates addition vacancies and SIAs, therefore increasing the bubble
volume and thus lowering the He density. The process is more like the self-trapping
mechanism of He bubble formation in the perfect crystal. In fact, our present studies
have shown that five He atoms cluster together in a perfect Pu lattice is sufficient to
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Figure 1: HenVm formation energy as a function
of the number of He atoms.

Figure 2: HenVm formation energy as a function
of the number of vacancies.

Figure 3: Binding energy of a He atom to HenVm clusters as a function of the He density of the clusters.

(a) (b)

Figure 4: Trajectory of one He atom in the perfect Pu lattice at different temperatures: (a) 300K; (b) 400K. In
the figure, orange lines are the trajectory of He atom; blue balls are the initial Pu atomic positions of one layer
which is provided to make the jump of He atoms clear.
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spontaneously push a Pu atom off from its normal site, thereby creating a Frenkel pair
and a deeply-bound He cluster. The introduction of further He atoms produces more
Frenkel pairs. The results indicate that the maximum n/m ratio in a HenVm cluster is
about 5. This athermal behavior may effectively increase the number of vacancies in the
cluster, consequently, reduce the actual He density of the cluster.

3.2 He diffusion in perfect lattice

He diffusion in metals is still a matter of investigation, and yet still requires a deeper fun-
damental understanding. It is a basic requirement for bubble nucleation and growth, and
it is the result of random jumps of He atoms from one to another (meta-) stable lattice site.
The most important positions for He atoms in a lattice are interstitial and substitutional
sites (He atom in a vacancy). The preferential position and dominant migration mode
depend on temperature as well as on the presence of other intrinsic or radiation induced
defects acting as traps for He atoms [41]. For example, above results have shown that He
can strongly bind to vacancies and HenVm clusters and some extended defects such as
dislocations and grain boundaries generally represent fast diffusion paths for He atoms.

Our present works aim to simulate the diffusion process of one He atom in the perfect
Pu lattice by using MD technique. Due to the size effect and the energy difference for He
atom in the perfect lattice, He atom at octahedron interstitial site is more stable than at
tetrahedron interstitial site, thus the diffusion process can be seen as He atom moves
from one octahedron interstitial site to another. To make the procedure simple, He atom
migration can be treated as He atom ”jumps” from one octahedron interstitial site to
the first neighbor one. During the simulation, the jump number of He atom is recorded
and the diffusion coefficient can be calculated from the jump-frequency method which is
derived from Einstein relation as follow and very suitable for the interstitial diffusion in
perfect lattice [42, 43],

D= f
α2

2d
, (3.3)

where D is the diffusion coefficient of a He atom, f is the jump frequency, α is the jump
distance, d is the diffusion dimension, in our simulation, d= 3. At the beginning of MD
simulation, He atom is placed near the center of the simulation cell. At relatively low tem-
perature, He atom oscillates around its initial octahedron interstitial site, as is depicted
in Fig. 4(a). When the temperature is increased to 400K, there are several relatively stable
octahedron interstitial sites for He atom, as is shown in Fig. 4(b). It is obvious that He
atom obtain enough thermal energy to jump across the potential barrier, so the diffusion
process occurs. The temperature at which He atom begins to jump in Pu is much lower
than in other fcc metal, such as Pd and Ni (the corresponding temperatures are about
800K and 600K for Pd and Ni, respectively) [42]. From this result, we may conclude that
it is easier for He atom in Pu lattice than in Ni and Pd lattices to form a bubble. In fact,
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Figure 5: Arrhenius plot of the diffusion coefficient of interstitial He atom in Pu.

the high mobility of He atom in Pu lattice implies that the activation energy for He atom
diffusion is correspondingly low, which will be proven in the followings.

The diffusion coefficient D can be calculated from the jump-frequency method. On
the other hand, we know the Arrhenius relation as follows,

lnD= lnD0−
Ea

kBT
, (3.4)

where Ea is the activation energy of interstitial mechanism for He atom diffusion. With
the plot of lnD to 1/T as shown in Fig. 5, the values of lnD0 and Ea are evaluated as -5.98
and 0.22eV for He atom diffusion in Pu lattice, respectively. This activation energy is far
lower than those for He atom diffusion in Pd and Ni lattices which are 0.67eV and 0.49eV,
respectively [42]. The temperature dependence of diffusion coefficient of He atom in Pu
lattice can be derived as following,

D(T)=0.0025exp
(

−
0.22eV

kBT
cm2s−1

)

. (3.5)

Compared with He atom diffusion in other fcc and bcc metals, He atom diffusion in
Pu is fast, which may lead to a rapid accumulation of He atoms at some extended defects
resulting in the formation of bubbles, as observed in the [44].

3.3 Interaction between He and grain boundary (GB)

3.3.1 Atomic structures of GB

The interactions between He and GB are investigated within the framework of coinci-
dence site lattice (CSL). Coincidence boundaries are fundamental to current models of
grain-boundary structure, and in addition, have a number of simplifying features from
the computational standpoint. We first consider the structures of two symmetrical tilt
GBs Σ5(310)[001] and Σ5(210)[001] with angles misorientation 36.87◦ and 53.13◦, which
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(a) (b)

Figure 6: Initial atomic structures of two symmetrical tilt GBs. (a) Σ5(310)[001]−36.87◦ , (b) Σ5(210)[001]−
53.13◦.

are well known from experimental observations and computational simulations. The
initial unrelaxed-state structures of two GBs are shown in Fig. 6(a) and (b), respectively.

In order to obtain the equilibrium structures of two GBs, annealing MD is employed
and periodic boundary conditions are imposed in directions parallel to the GB plane.
Each GB contains free atoms, which are able to move under interatomic forces, as well as
fixed atoms which are fixed in their lattice sites to maintain the total volume of the com-
putational system. The computational systems are relaxed at 300K, with the temperature
controlled via explicit rescaling of the velocities and the pressure controlled using Par-
rinello and Rahman method, followed by slowly cooling and quenching the systems to
0K. The positions of the atoms are relaxed to their minimum energy configurations. The
point defects (including He, vacancy and SIA) are placed at different sites along GB. Af-
ter static relaxation, the point defect formation energy can be determined by comparing
the energy of GB containing a point defect with a GB of the same number of Pu atoms. In
the article, we firstly report the results of the interaction between He and GB.

3.3.2 Energetic calculation of He at GB

The interaction between He and GB is investigated by insertion of a single He atom in
either an interstitial or a substitutional location along GB, and then relaxing the computa-
tional system. The formation energy of the He atom (either interstitial or substitutional)
at a particular site s along GB is determined from the equation,

Es
f (He)=Es

c(GB)−Ec(GB)−εHe, (3.6)

where Es
c(GB) and Ec(GB) are the total configuration energies of the relaxed GB with a

He atom at site s and without the He atom, respectively. The strength of the interaction
between a point defect and a GB is represented by its binding energy. The binding energy
of the He atom at the site s to the GB core is calculated from the equation,

Es
b(He)=E f (He)−Es

f (He), (3.7)
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(a) (b)

Figure 7: Formation energy and binding energy of interstitial He atom as a function of the distance from the
GB core. (a) Σ5(310)[001]−36.87◦ , (b) Σ5(210)[001]−53.13◦ .

(a) (b)

Figure 8: Formation energy and binding energy of substitutional He atom as a function of the distance from
the GB core. (a) Σ5(310)[001]−36.87◦ , (b) Σ5(210)[001]−53.13◦ .

where E f (He) is the formation energy of He atom (either interstitial or substitutional)
in the perfect Pu crystal. The calculated values are 2.3eV and 1.53eV for interstitial and
substitutional He atoms, respectively.

In Figs. 7 and 8, the formation energy and binding energy of interstitial and substitu-
tional He atoms are plotted as a function of the distance from GB core. The results show
that the formation energies are lower than in the perfect crystal but variations from site
to site along GB are very remarkable. Both substitutional and interstitial He atoms are
trapped at GB, a result similar to the findings of Baskes [45] in fcc Ni and Kurtz [44] in
bcc Fe. Interstitial He atom is much more strongly bound at GB core than substitutional
He atom (He-vacancy complex) mainly due to the strong binding of the He atom to the
vacancy. It is clear that the binding energy of a He atom at GB core is greater than that of
a He atom to a vacancy by a few tenth of an electron volt. The binding energies for both
interstitial and substitutional He atoms are close to zero at some distances. For the GB



B. Y. Ao et al. / Commun. Comput. Phys., 11 (2012), pp. 1205-1225 1217

(a) (b)

Figure 9: Formation energy of multiple He atoms as a function of the number of He atom. (a) Σ5(310)[001]−
36.87◦, (b) Σ5(210)[001]−53.13◦ .

Σ5(310)[001], the distances from the GB core, i.e., capture radii, are about 9.2Å and 4.2Å
for interstitial and substitutional He atoms, respectively. For the GB Σ5(210)[001], the
corresponding capture radius are 9.2Å and 6.5Å, which implies that the capture radius
depend on the GB structures. Further works about the dependence of GB structure on
binding He atom are in progress.

The high binding energy of the interstitial He atom at GB indicates that GB is a sink for
trapping He atoms. The interactions between a few of He atoms and GB are investigated
by adding He atom one by one into GB core. The first He atom is introduced into GB core
for calculating the formation energy of single He atom. Afterwards, the second He atom
is introduced at the nearest neighbor interstitial site of the first He atom for calculating
the formation energies of two He atoms and the second He atom. In this way, 20 He
atoms are sequentially introduced into GB core. Fig. 9(a) and (b) show the plots of the
average formation energy of He atom and the formation energy of the nth He atom at two
GBs versus the number of He atom. As shown in the two figures, the average formation
energy and the formation energy of the nth He atom at two GBs slowly decrease with the
increasing number of He atom. The results also imply that the average binding energy
and the binding energy of the nth He atom at two GBs slowly increase with the increasing
number of He atom. From these results, we can conclude that He atoms tend to form
bubbles in the GB core. The conclusion is likely to provide perceptive in understanding
He embrittlement or He damage in Pu. Researches regarding this problem will focus on
He diffusion along GB.

3.4 Growth of He bubble

3.4.1 Punching out dislocation loop

We have found that five He atoms in Pu can cluster by self-trapping mechanism, creating
a Frenkel pair and a deeply bound cluster. The introduction of further interstitial He
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atoms produces many more Frenkel pairs. After reaching a certain He-vacancy size, the
punching out of dislocation loop is energetically more favorable. In fact, the punching
out of dislocation can be viewed as the extension of He self-trapping [47].

Experiments have shown that nanometer-size He bubbles form in Pu of at least twenty-
year age mainly due to its long half-life of about 24,000 years. Atomic scale MD technique
can not be used to investigate the overall process of He bubble formation or even only
the process of HenVm cluster formation for the inherent deficiency in time-scale. For this
reason, we simplify the He bubble formation process by only taking the near equilibrium
configuration into consideration, which can be viewed as reasonable to some extent for
describing the atomistic behavior of He bubble [2]. The initial configuration of interstitial
He atoms in bubble is set to be very sparse. After MD relaxation, most of the He atoms
cluster together forming a compact He bubble. Only a few of He atoms are apart from
the He bubble, forming some substitutional He atoms and some very small He-vacancy
clusters. The dynamics process shows that He bubble forms at the beginning of MD sim-
ulation, which implies that initial configuration of interstitial He atoms is very instable
and the equilibrium configuration of He bubble is relatively stable. During the process
of He bubble growth, many Pu atoms around He bubble are pushed off the normal lat-
tice sites, finally, those Pu atoms form a distinct dislocation loop, i.e., the rectangle of self
interstitial Pu atoms around He bubble as shown in Fig. 10.

The most remarkable property of the dislocation loop is that all the Pu atoms inside
the dislocation loop still stay at the normal lattice sites while the Pu atoms of the dislo-
cation is disorder. When He bubble is removed and the cell is performed MD simulation
again, most of those Pu atoms of dislocation loop approximately come back to their nor-
mal lattice sites and only a few of Pu atoms form crowded interstitial atoms. As discussed
by many researchers, He bubble in metals may show a packing structure mainly due to
crystal stresses. However, the structure of He bubble strongly depends on He atomic
density (He-vacancy atomic ratio). We have found that the configuration of He atoms
in relatively small HenVm cluster shows fcc-like packing when the He atomic density is
about less than 5. As for He bubble with high He atomic density, He atoms do not show
perfect fcc packing, but He bubble shows a compact ellipsoidal structure, as indicated in
Fig. 11.

3.4.2 Lattice swelling by He bubble

The swelling induced by He bubble growth is shown in Fig. 12 as a function of He atomic
concentration. The swelling is defined by S= (V−V0)/V0, where V is the equilibrium
volume of the relaxed simulation cell containing a bubble and V0 is the initial volume
in the absence of bubble. For the low He concentration, swelling increases linearly with
increasing He concentration. However, swelling does not increase linearly with high He
concentration. As is well known, one of very important macroscopical effects of He in
metals is swelling due to He bubble formation and growth. As shown in the figure, the
swelling induced by He bubble in δ Pu is very small. For δ Pu, the cumulative rate of
He production is about 40 atomic parts per million per year (appm/year). Even after
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Figure 10: Projection of simulation cell containing a bubble of 216 He atoms. Pu and He atoms are denoted
by blue and orange balls, respectively. The dislocation loop is indicated by orange circle.

(a) (b) (c)

Figure 11: 3D configurations of He bubbles and their projections on three planes. The orange and light gray
balls designate He atoms and their projections, respectively. (a) 216 He atoms, (b) 512 He atoms, (c) 800 He
atoms.

Figure 12: Calculated results for swelling of Pu containing He bubble.
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40 years of self-radiation aging, the swelling is still less than 1%. From the calculated
results, we can infer that swelling due to He bubble is less serious than other possible
mechanism, such as void swelling. In fact, our MD results have indicated that grain
boundary and dislocation can act as sinks and sources of self-interstitial atoms, which
may be a reason for the swelling of Pu after a period of self-radiation aging because of
the higher concentration of vacancy in the bulk.

3.5 Release of He from surface

MD simulation are performed to investigate the release behavior of nanometer-size He
bubble in nanometer-size δ Pu films which are often necessary to carry out microstruc-
tural characterization and surface analysis. Spherical voids with different size and depth
d are created by removing Pu atoms and then He bubbles are formed with different He-
vacancy atomic ratio η and diameter D by filling He atoms into the voids. D from about
1.25nm to 2.20nm, η from 1:1 to 4:1, d from 1.61nm to 5.56nm and temperatures T from
100K to 1200K (liquid Pu) are considered, respectively. In general, the similar trends
of the simulation results with different model parameters (D, η, d and T) are observed,
therefore only some representative results and the trends are discussed in the article.

3.5.1 He release process

All the simulation cases contain only one isolated He bubble and the bubble-bubble inter-
actions are not fully taken into considerations. He bubble is initially placed in the center
of the slab and thus its states and behaviors are similar to that in the bulk. The bubble
with roughly spherical shape is clearly shown after initial MD relaxation and the shape
can be kept during the complete process of MD simulation. The spherical shape can be
interpreted by the isotropic crystal stresses bearing on He bubble, which was also found
in other theoretical works. However, the diameter of the He bubble gradually increases
before MD equilibrium and the distortion of the Pu atoms surrounding He bubble con-
sequently occurs. The simulation results indicate that there is a critical model parameter
for He release from the slab when other three parameters are fixed. Here, we put our
efforts to the dependence of d on He release. The spherical shape of He bubble begins
to distort with decreasing d as a result of anisotropic crystal stresses induced by surface
stresses. When d reaches its critical value which is 1.85nm observed in this research, He
atoms start releasing from the slab.

He release process is illustrated in Fig. 13 and can be briefly described as follows.
Initial spherical shape of He bubble begins to elongate obviously towards the surface and
push the surface Pu atoms away from the normal surface sites. The surface is gradually
deformed and ruptured and a surface cavity connecting to the bulk is formed. As a
result, the channel for He release is preliminary created, which induces the onset of He
release. He atoms begin to release along the channel one by one at a relatively low rate.
Simultaneously, the channel firstly expands with the evolution of MD simulation, which
facilitates or accelerates He release. In other words, He release rate increases drastically
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                           (a)                                    (b)                             (c)                    (d) 

Figure 13: Side view of atomic configurations of He bubble during the process of He release (d = 1.85nm,
D=2.20nm, η=2.25, T=310K). The yellow balls denote the released He atoms and all the Pu atoms are not
displayed in the configurations. (a) t=2ps; (b) t=4ps; (c) t=9ps; (d) t=11ps.

with the expansion of the channel and reaches the maximal release rate corresponding to
the maximal expansion of the channel.

3.5.2 He release rate

In order to better understand the processes and the trends of He release, time-dependent
relationships of He release fraction θ and release rate ν for some selected simulation cases
are provided, as shown in Fig. 14. Three-stage characteristics of He release, i.e., acceler-
ating, decelerating and terminable release are approximately exhibited. It is obvious that
θ, ν and the interval time ∆t from initial release to maximal ν of each stage are dependant
on the model parameters. On the whole, the maximal θ and maximal ν increase with

(a) (b)

Figure 14: He release fraction and release rate from some selected computational models. (a) He release fraction
as a function of simulation time. Inset is the initial release process with the release fraction limit to 10% and
the time limit to 10ps. (b) He release rate differentiated from He release fraction as a function of simulation
time. Inset is the initial release rate with the time limit to 20ps.
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decreasing d and increasing D, η and T, but the trend of ∆t is inverse. It is of interest to
note that ∆t of the simulation case (D≈2.20nm, η=2.25, d=1.85nm, T=310K) is shorter
than that of the simulation case with the same model parameters except for T=450K. As
is well known, He behaviors in materials are very sensitive to temperature [41]. Accord-
ing to our theoretical works, moderate temperature (T<0.5Tm, where the melting point
Tm equals to 913K for Pu) is favorable for the nucleation of HenVm cluster, which may
partially account for the anomalous trend of ∆t in the two cases discussed above.

Since there is almost no direct experimental and theoretical data on He release from
Pu and radiation damages are not be considered in the present simulation, we turn to
properly refer to the extensively-studied mechanisms of He release from metal tritides in
which radiation damages can be also viewed as insignificant. Observations from metal
tritides have indicated that He release process always consists of three stages and there
is a critical He concentration for the onset of accelerating release [48,49]. The duration of
each stage and the critical concentration are dependent on the inherent material proper-
ties, tritium content (approximately proportional to He content with age), temperature,
sample shape and so on. The behaviors of He release generally have the same trends as
observed in the present simulation with some exceptions mainly due to the differences in
the states of He atoms or He bubbles. Unlike the metal tritides, in the simulation cases He
bubbles are artificially created and fixed in the slab, so the influences of He bubble forma-
tion and additional He atoms are not considered for He release. As a result, He release
from Pu reaches the accelerating stage relatively more rapidly than from metal tritides
and He release can be viewed as terminable when the largest fractional He atoms release,
as shown in Fig. 14 and the insets therein. Moreover, it is noticeable to point out that
He release rates in metal films are much greater than that in bulk crystals, which means
there exists a He bubble free region or denuded region corresponding to the critical d in
the present simulations. Outside the denuded region, He bubble is retained in the host
metal, whereas it expands rapidly and finally cracks, creating the channel for He atoms
to propagate to the surface as long as they enter into the denuded region. However, due
to the limits of model size and simulation time in the MD technique, the predicted d is
much smaller than the measured thickness of denuded region which is approximately
15nm for erbium (Er) tritide films [50].

4 Conclusions

In this work, we present our recent theoretical findings on He effects in Pu during its
self-radiation-damage process mainly by MD simulation technique. A modified EAM
potential of Pu is developed by fitting its experimental lattice and solid parameters and
proven to be effective to a certain extent to reproduce many solid properties of Pu. Some
inherent mechanisms and macroscopical changes induced by He are discussed.

The processes of initial nucleation and growth of He bubble can be regarded as the
continuous absorption of He atoms and vacancies by small HenVm clusters, which can be
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deduced by the energetic calculation on the clusters formation energies and binding en-
ergies of point defects (He, vacancy and SIA). Progressive growth of HenVm clusters can
eventually evolve as visible He bubbles. He bubble’s growth can also be dominated by
the mechanism of punching out of dislocation loop when the ratio of He-vacancy in the
HenVm cluster is sufficiently high. In addition, grain boundaries give rise to an energeti-
cally favorable zone for the interstitial He atom accumulation and He bubble formation.
As for the macroscopical aspects of He bubble, the swelling induced by He bubble is very
small and less serious than other possible mechanism, such as void swelling. Moreover,
the process of He release can be identified as the formation of release channel induced by
the cracking of He bubble and surface structure.
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