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Abstract. This paper further considers weighted essentially non-oscillatory (WENO)
and Hermite weighted essentially non-oscillatory (HWENO) finite volume methods
as limiters for Runge-Kutta discontinuous Galerkin (RKDG) methods to solve prob-
lems involving nonlinear hyperbolic conservation laws. The application discussed
here is the solution of 3-D problems on unstructured meshes. Our numerical tests
again demonstrate this is a robust and high order limiting procedure, which simulta-
neously achieves high order accuracy and sharp non-oscillatory shock transitions.
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1 Introduction

Qiu et al. [16–18, 27, 28] have investigated weighted essentially non-oscillatory (WENO)
and Hermite WENO (HWENO) finite volume methods as limiters for Runge-Kutta dis-
continuous Galerkin (RKDG) finite element methods [3–8], for the numerical solution of
problems involving nonlinear hyperbolic conservation laws on structured and unstruc-
tured meshes. The goal is to construct a robust and high order limiting procedure that
simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions
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for the RKDG method, and in this paper we consider the solution of problems involving
3-D nonlinear hyperbolic conservation laws of form

{

ut+ f (u)x+g(u)y+r(u)z =0,
u(x,y,z,0)=u0(x,y,z)

(1.1)

on 3-D unstructured meshes.

The WENO [9, 11, 12, 14, 25] and HWENO [16, 18, 26, 27] schemes developed in recent
years are a class of high order finite volume or finite difference schemes to numerically
solve problems involving hyperbolic conservation laws, where both high order accuracy
and essentially non-oscillatory shock transitions may be maintained. We have discussed
third order finite volume WENO schemes in one space dimension [14], third and fifth or-
der finite difference WENO schemes in various space dimensions with a general frame-
work for the design of the smoothness indicators and nonlinear weights [12], and finite
volume WENO schemes on structured and unstructured meshes [9, 11, 15, 21, 25]. The
design of the WENO and also HWENO [16, 18, 26, 27] schemes have been based on suc-
cessful ENO schemes [10,23,24]. In both the ENO and WENO schemes, adaptive stencils
were used in a reconstruction procedure based on local smoothness of the numerical so-
lution, to automatically achieve high order accuracy and non-oscillatory behavior near
discontinuities.

The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and
Hill [19], for neutron transport described by steady state linear hyperbolic equations. A
major development of the DG method was later carried out by Cockburn et al. in a series
of papers [3–7]. They established a framework to readily solve problems involving non-
linear time-dependent hyperbolic conservation laws, via explicit nonlinearly stable high
order Runge-Kutta time discretizations [23] and DG discretization in space, with exact
or approximate Riemann solvers for interface fluxes and a total variation bounded (TVB)
limiter [22] to achieve the non-oscillatory property for strong shocks. These schemes are
now called RKDG methods.

To account for strong shocks in problems such as (1.1), an important component of
a RKDG method is a nonlinear limiter to detect discontinuities and control any spuri-
ous oscillations that may arise nearby. Many such limiters have been used with RKDG
methods. For example, the minmod TVB limiter [3–7] is a slope limiter using a technique
borrowed from finite volume methodology, while a moment based limiter [1] and also
an improved moment limiter [2] designed for discontinuous Galerkin methods use the
moments of the numerical solution. However, these limiters tend to degrade accuracy
when mistakenly used in smooth regions of the solution.

In [17], Qiu and Shu introduced the WENO methodology to provide limiters for the
RKDG method on structured meshes, in the following way:

Step 1: First identify possible “troubled cells” – i.e. those cells that might need the
limiting procedure.

Step 2: Replace the solution polynomials in these ”troubled cells” by reconstructed
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polynomials, using WENO methodology that not only maintains the original cell aver-
ages (conservation) and the same orders of accuracy as before but is also less oscillatory.

This technique worked quite well for 1-D and 2-D test problems [17], and in our fol-
lowup work where the more compact Hermite WENO method (HWENO method) was
used in the ”troubled cells” [16, 18, 27].

In this paper, this approach is extended to 3-D problems on unstructured meshes, us-
ing both WENO [25] and HWENO [16, 18, 26] limiters involving cell averages or deriva-
tive cell averages of neighboring cells to reconstruct the moments directly. This has pre-
viously turned out to be a robust way to retain the original high order accuracy of the
DG method. For the WENO limiter we adopt polynomials obtained by the finite vol-
ume WENO reconstruction procedure [25], and for the HWENO limiter we extend the
finite volume Hermite WENO reconstruction [16, 18, 26, 27], on 3-D tetrahedral meshes.
The main differences and difficulty in constructing a WENO or HWENO limiter in 3-D,
compared with lower dimensions, are as follows (cf. also [25]).

1. The methodology for choosing small stencils is not the same. Thus for non-
overlapping tetrahedrons, we choose eight small stencils to do the reconstruction,
and if necessary use least square methodology to solve for reconstructed polyno-
mials other than for the optimal linear weights.

2. The numerical volume integral and area integral are involved in 3-D, whereas the
numerical area integral and line integral apply in 1-D and 2-D, respectively [16, 18,
26, 27].

3. Smoothness indicators are computed using numerical volume quadrature formulae
in 3-D, whereas the numerical area volume quadrature formulae apply in 2-D.

4. Boundary numerical fluxes are defined on the facials (triangles) of the control vol-
ume (tetrahedrons) and the numerical area integral is required for the triangles in
3-D, whereas the boundary numerical fluxes are defined on the line segments of
the control volume (triangle) and the numerical line integral is required for the seg-
ments in 2-D.

Details of our procedure for the second order DG method are discussed in Section 2,
and extensive numerical results to verify accuracy and stability are presented in Section
3. Our concluding remarks are then made in Section 4.

2 WENO and HWENO reconstructions as limiters to the RKDG

method on unstructured meshes

We now detail our procedure using WENO or HWENO reconstructions as limiters for
the RKDG method.

Given the tetrahedral cell ∆j, let P
k(∆j) denote the set of polynomials of degree at

most k defined on ∆j. The k could change from cell to cell, but for simplicity we assume
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it is constant in this paper. In the DG method, both the solution and the test function
space are in Vk

h ={v(x,y,z) : v(x,y,z)|∆j
∈P

k(∆j)}, and we emphasize the procedure does
not depend on the specific basis chosen for the polynomials. We adopt a local orthogonal

basis over the target tetrahedral cell, such as ∆0: {v
(0)
l (x,y,z),l = 0,··· ,K; K = (k+1)(k+

2)(k+3)/6−1}: thus

v
(0)
0 (x,y,z)=1,

v
(0)
1 (x,y,z)=

(x−x0)

|∆0|1/3
,

v
(0)
2 (x,y,z)= a21

(x−x0)

|∆0|1/3
+
(y−y0)

|∆0|1/3
+a22,

v
(0)
3 (x,y,z)= a31

(x−x0)

|∆0|1/3
+a32

(y−y0)

|∆0|1/3
+
(z−z0)

|∆0|1/3
+a33,

...

where (x0,y0,z0) and |∆0| are the volume barycenter and the volume of the target tetra-
hedral cell ∆0, respectively. We solve this linear system for the aℓm, by invoking the
orthogonality property

∫

∆0

v
(0)
i (x,y,z)v

(0)
j (x,y,z)dxdydz=wi δij , (2.1)

where wi =
∫

∆0
(v

(0)
i (x,y,z))2 dxdydz. The numerical solution uh(x,y,z,t) in the space Vk

h
can be written as

uh(x,y,z,t)=
K

∑
l=0

u
(l)
0 (t)v

(0)
l (x,y,z) for (x,y,z)∈∆0 ,

and the degrees of freedom u
(l)
0 (t) are the moments defined by

u
(l)
0 (t)=

1

wl

∫

∆0

uh(x,y,z,t)v
(0)
l (x,y,z)dxdydz, l=0,··· ,K.

In order to obtain the approximate solution, we evolve the degrees of freedom u
(l)
0 (t) via

d

dt
u
(l)
0 (t)=

1

wl

(

∫

∆0

(

f (uh(x,y,z,t))
∂

∂x
v
(0)
l (x,y,z)+g(uh(x,y,z,t))

∂

∂y
v
(0)
l (x,y,z)

+r(uh(x,y,z,t))
∂

∂z
v
(0)
l (x,y,z)

)

dxdydz

−
∫

∂∆0

(

f (uh(x,y,z,t)),g(uh(x,y,z,t)),r(uh(x,y,z,t))
)T

·n v
(0)
l (x,y,z)ds

)

(2.2)



J. Zhu and J. Qiu / Commun. Comput. Phys., 11 (2012), pp. 985-1005 989

for l=0,··· ,K, where n is the outward unit normal at the boundary ∂∆0.

The integral terms in Eq. (2.2) can either be computed exactly or by suitable numerical
quadratures. In this paper, we use AG points (AG=5 for k=1) for the volume quadrature
and EG points (EG =6 for k=1) for the face quadrature such that

∫

∆0

(

f (uh(x,y,z,t))
∂

∂x
v
(0)
l (x,y,z)+g(uh(x,y,z,t))

∂

∂y
v
(0)
l (x,y,z)

+r(uh(x,y,z,t))
∂

∂z
v
(0)
l (x,y,z)

)

dxdydz

≈|∆0|∑
G

σG

(

f (uh(xG,yG,zG,t))
∂

∂x
v
(0)
l (xG,yG,zG)+g(uh(xG,yG,zG,t))

∂

∂y
v
(0)
l (xG,yG,zG)

+r(uh(xG,yG,zG,t))
∂

∂z
v
(0)
l (xG,yG,zG)

)

, (2.3)

∫

∂∆0

(

f (uh(x,y,z,t)),g(uh(x,y,z,t)),r(uh(x,y,z,t))
)T

·n v
(0)
l (x,y,z)ds

≈
4

∑
ll=1

|∂∆0ll
|∑

G

σ̄G

(

f (uh(x̄llG
,ȳllG

, z̄llG
,t)),g(uh(x̄llG

,ȳllG
, z̄llG

,t)),r(uh(x̄llG
,ȳllG

, z̄llG
,t))
)T

×nll v
(0)
l (x̄llG

,ȳllG
, z̄llG

), (2.4)

where (xG,yG,zG)∈∆0 and (x̄llG
,ȳllG

, z̄llG
)∈∂∆0ll

are the quadrature points, and σG and σ̄G

are the quadrature weights. Since the face integral is on boundaries where the numeri-
cal solution is discontinuous, the flux ( f (uh(x,y,z,t)),g(uh(x,y,z,t)), r(uh(x,y,z,t)))T ·n is
replaced by a monotone numerical flux. The simple Lax-Friedrichs flux is used in all of
our numerical tests. The semi-discrete scheme (2.2) is discretized in time by a nonlinear
stable Runge-Kutta time discretization – e.g. the third-order version [23]























u(1)=un+∆tL(un),

u(2)=
3

4
un+

1

4
u(1)+

1

4
∆tL(u(1)),

un+1=
1

3
un+

2

3
u(2)+

2

3
∆tL(u(2)).

(2.5)

Without further modification, the method described above can compute solutions to
Eq. (1.1) that are either smooth or have weak shocks and other discontinuities. However,
if the discontinuities are strong, the scheme generates significant oscillations and even
nonlinear instability. To avoid this, we borrow the technique of a slope limiter from the
finite volume methodology, and use it after each Runge-Kutta inner stage or after the
complete Runge-Kutta time step.

In this paper, we only use the limiter adopted in [7] to detect ”troubled cells”. The
main procedure is as follows:
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Figure 1: The limiting diagram.

• Use (xmℓ
,ymℓ

,zmℓ
), ℓ= 1, 2, 3, 4, to denote the barycenters of the facial triangles on

the boundaries of the target tetrahedral cell ∆0 and (xbi
,ybi

,zbi
), i=1, 2, 3, 4, to denote the

barycenters of the neighboring tetrahedral cells ∆i, i=1, 2, 3, 4, as shown in Fig. 1.

• Solve the four linear equations to get the nonnegative α1, α2, α3, similar to [7] – i.e.
solve







xm1
−xb0

=α1(xb1
−xb0

)+α2(xb2
−xb0

)+α3(xb3
−xb0

),
ym1

−yb0
=α1(yb1

−yb0
)+α2(yb2

−yb0
)+α3(yb3

−yb0
),

zm1
−zb0

=α1(zb1
−zb0

)+α2(zb2
−zb0

)+α3(zb3
−zb0

),
(2.6)







xm1
−xb0

=α1(xb1
−xb0

)+α2(xb2
−xb0

)+α3(xb4
−xb0

),
ym1

−yb0
=α1(yb1

−yb0
)+α2(yb2

−yb0
)+α3(yb4

−yb0
),

zm1
−zb0

=α1(zb1
−zb0

)+α2(zb2
−zb0

)+α3(zb4
−zb0

),
(2.7)







xm1
−xb0

=α1(xb1
−xb0

)+α2(xb3
−xb0

)+α3(xb4
−xb0

),
ym1

−yb0
=α1(yb1

−yb0
)+α2(yb3

−yb0
)+α3(yb4

−yb0
),

zm1
−zb0

=α1(zb1
−zb0

)+α2(zb3
−zb0

)+α3(zb4
−zb0

),
(2.8)







xm1
−xb0

=α1(xb2
−xb0

)+α2(xb3
−xb0

)+α3(xb4
−xb0

),
ym1

−yb0
=α1(yb2

−yb0
)+α2(yb3

−yb0
)+α3(yb4

−yb0
),

zm1
−zb0

=α1(zb2
−zb0

)+α2(zb3
−zb0

)+α3(zb4
−zb0

).
(2.9)

At least one such set of linear equations may necessarily depend only on the position of
(xm1

,ym1
,zm1

) and the geometry of the tetrahedral meshes. We then define

ũh(xm1
,ym1

,zm1
,t)

≡uh(xm1
,ym1

,zm1
,t)−u

(0)
0 (t), (2.10)

∆u(xm1
,ym1

,zm1
,t)

≡α1(u
(0)
1 (t)−u

(0)
0 (t))+α2(u

(0)
3 (t)−u

(0)
0 (t))+α3(u

(0)
4 (t)−u

(0)
0 (t)). (2.11)
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• Using the TVB modified minmod function [22] defined as

m̃(a1,a2)=











a1, if |a1|≤M|∆0|,
{

smin(|a1|,|a2|), if s= sign(a1)= sign(a2),
0, otherwise,

otherwise,
(2.12)

where the choice of the TVB constant M>0 is problem dependent, compute the quantity

ũmod= m̃(ũh(xm1
,ym1

,zm1
,t), γ∆u(xm1

,ym1
,zm1

,t)) (2.13)

with γ>1 (we take γ=1.5 in our numerical tests). If

ũmod 6= ũh(xm1
,ym1

,zm1
,t),

∆0 is marked as a “troubled cell” for further reconstruction. This procedure is then re-
peated for the other three faces of the tetrahedral cell ∆0. Since the WENO-type recon-
structions maintain high order accuracy in the ”troubled cells”, it is less crucial to choose
an accurate M. Numerical tests for different choices of M are discussed in Section 3. For
the ”troubled cells”, we reconstruct the polynomial solutions while retaining their cell

averages. In other words, we reconstruct the degrees of freedom u
(l)
0 (t), l = 1,··· ,K and

retain only the cell average u
(0)
0 (t).

2.1 WENO reconstruction as a limiter to the RKDG method

For the k=1 case, let us now summarize the procedure for the first order moments u
(1)
0 (t),

u
(2)
0 (t) and u

(3)
0 (t) in the ”troubled cell” ∆0 using the WENO reconstruction procedure

[25]. For simplicity, we relabel the “troubled cell” and its neighboring cells, and write

u
(∗)
∗ =u

(∗)
∗ (t) wherever that will not cause confusion.

Step 1.1. Select the big stencil

S={∆0,∆1,∆2,∆3,∆4,∆11,∆12,∆13,∆21,∆22,∆23,∆31,∆32,∆33,∆41,∆42,∆43}

that includes ∆0, its four neighboring tetrahedrons ∆1, ∆2, ∆3, ∆4 and their neighboring
tetrahedrons, where ∆j1, ∆j2, ∆j3 are adjacent to ∆j but not ∆0 for j=1, 2, 3, 4.

Step 1.2. Divide S into sixteen smaller stencils and construct sixteen linear polynomi-
als

qi(x,y,z)∈ span

{

1,
(x−x0)

|∆0|1/3
,
(y−y0)

|∆0|1/3
,
(z−z0)

|∆0|1/3

}

, i=1,··· ,16,

which satisfy

∫

∆ℓ

qi(x,y,z)v
(ℓ)
0 (x,y,z)dxdydz=

∫

∆ℓ

u
(0)
ℓ
(v

(ℓ)
0 (x,y,z))2dxdydz, ∆ℓ∈Si, (2.14)
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for

i=1, ℓ=0,1,2,3; i=2, ℓ=0,2,3,4; i=3, ℓ=0,3,4,1; i=4, ℓ=0,4,1,2;

i=5, ℓ=0,1,11,12; i=6, ℓ=0,1,12,13; i=7, ℓ=0,1,13,11; i=8, ℓ=0,2,21,22;

i=9, ℓ=0,2,22,23; i=10, ℓ=0,2,23,21; i=11, ℓ=0,3,31,32; i=12, ℓ=0,3,32,33;

i=13, ℓ=0,3,33,31; i=14, ℓ=0,4,41,42; i=15, ℓ=0,4,42,43; i=16, ℓ=0,4,43,41.

Step 1.3. Find the combination coefficients, also called linear weights, denoted by

γ
(l)
1 ,··· ,γ

(l)
16 and satisfying

∫

∆0

u(x,y,z)v
(0)
l (x,y,z)dxdydz

=
∫

∆0

16

∑
i=1

γ
(l)
i qi(x,y,z)v

(0)
l (x,y,z)dxdydz, l=1,··· ,K, (2.15)

valid for any polynomial u(z,y,z) of degree at most 2, when we can obtain a third order
approximation to u(x,y,z) at the volume quadrature point (xG,yG,zG) for all sufficiently
smooth functions u(x,y,z). It is also notable that Eq. (2.15) holds for any polynomial

u(x,y,z) of degree at most 1 if ∑
16
i=1γ

(l)
i = 1, because each individual qi(x,y,z) recon-

structs linear polynomials exactly. There are six other constraints on the linear weights

γ
(l)
1 ,··· ,γ

(l)
16 , on requiring Eq. (2.15) to hold for

u(x,y,z)=
(x−x0)

2

|∆0|2/3
,
(x−x0)(y−y0)

|∆0|2/3
,
(x−x0)(z−z0)

|∆0|2/3
,
(y−y0)

2

|∆0|2/3
,
(y−y0)(z−z0)

|∆0|2/3
,
(z−z0)

2

|∆0|2/3
,

respectively. This leaves 9 free parameters in determining the linear weights γ
(l)
1 ,··· ,γ

(l)
16 .

These free parameters are uniquely determined by the least square

min

( 16

∑
i=1

γ
(l)
i

)2

, l=1,··· ,K,

subject to the constraints listed above. Thus we obtain the linear weights uniquely, but
they may not always remain positive. However, we can use the methods in [11, 21] and
elsewhere to overcome this drawback. Thus in brief, the linear weights may be divided
into two distinct groups

γ̄
(l)+

i =
γ
(l)
i +3|γ

(l)
i |

2
, γ̄

(l)−

i =
−γ

(l)
i +3|γ

(l)
i |

2
, i=1,··· ,16; l=1,··· ,K. (2.16)

such that

σ(l)± =
16

∑
j=1

γ̄
(l)±

j , γ
(l)±

i =
γ̄
(l)±

i

σ(l)±
, i=1,··· ,16; l=1,··· ,K. (2.17)
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Step 1.4. Compute the smoothness indicators denoted by βi, i=1,··· ,16, which mea-
sure how smooth the functions qi(x,y,z), i=1,··· ,16 are in the target tetrahedral cell ∆0.
The smaller these smoothness indicators, the smoother the functions in the target cell.
We use the recipe for the smoothness indicators in [12] – viz.

βi =
k

∑
|ℓ|=1

|∆0|
2|ℓ|

3 −1
∫

∆0

(

∂|ℓ|

∂xℓ1 ∂yℓ2 ∂zℓ3
qi(x,y,z)

)2

dxdydz, (2.18)

where ℓ=(ℓ1,ℓ2,ℓ3).

Step 1.5. Compute the nonlinear weights based on the smoothness indicators

ω
(l)±

i =
ω̄

(l)±

i

∑
16
ℓ=1ω̄

(l)±

ℓ

, ω̄
(l)±

ℓ
=

γ
(l)±

ℓ

(ε+βℓ)2
, l=1,··· ,K , (2.19)

where ε is a small positive number to prevent the denominator becoming zero. We found
that the computations for the 3-D test cases are not sensitive if ε varies from 10−3 to 10−6,
and we chose to set ε=10−3 as in [25].

For l=1,··· ,K, the moments of the reconstructed polynomial are then

u
(l)
0 (t)=

∫

∆0

(

σ(l)+
16

∑
i=1

ω
(l)+

i qi(x,y,z)−σ(l)−
16

∑
i=1

ω
(l)−

i qi(x,y,z)
)

v
(0)
l (x,y,z)dxdydz

∫

∆0

(v
(0)
l (x,y,z))2 dxdydz

. (2.20)

Remark 2.1. The above WENO reconstruction assumes that none of the tetrahedral
meshes overlap and the sixteen small stencils are all workable. However, the reconstruc-
tion procedure is still practicable if at least seven small stencils are available, even when
some tetrahedrons overlap. On the other hand, the WENO reconstruction procedure is
inapplicable if the small stencil number is less than seven – although we can then proceed
to scan the next neighboring tetrahedral layers, to see if they include enough small stencil
candidates to render the procedure workable.

2.2 HWENO reconstruction as a limiter to the RKDG method

For the k = 1 case, let us now summarize how to reconstruct the first order moments

u
(1)
0 (t), u

(2)
0 (t) and u

(3)
0 (t) in the ”troubled cell” ∆0 using the HWENO reconstruction

procedure. For simplicity, we relabel the “troubled cell” and its neighboring cells.

Step 2.1. Select the big stencil S={∆0,∆1,∆2,∆3,∆4}.

Step 2.2. Divide S into eight smaller stencils and construct eight linear polynomials

qi(x,y,z)∈ span

{

1,
(x−x0)

|∆0|1/3
,
(y−y0)

|∆0|1/3
,
(z−z0)

|∆0|1/3

}

, i=1,··· ,8.
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The first four polynomials should satisfy the conditions

∫

∆ℓ

qi(x,y,z)v
(ℓ)
0 (x,y,z)dxdydz=

∫

∆ℓ

u
(0)
ℓ
(v

(ℓ)
0 (x,y,z))2dxdydz, ∆ℓ∈Si, (2.21)

for

i=1, ℓ=0,1,2,3; i=2, ℓ=0,2,3,4; i=3, ℓ=0,3,4,1; i=4, ℓ=0,4,1,2 ;

and the next four polynomials should satisfy the conditions

∫

∆0

qi(x,y,z)v
(0)
0 (x,y,z)dxdydz=

∫

∆0

u
(0)
0 (v

(0)
0 (x,y,z))2dxdydz, ∆0∈Si, (2.22)

min

(

(

∫

∆ℓ

qi(x,y,z)v
(ℓ)
0 (x,y,z)−u

(0)
ℓ

(v
(ℓ)
0 (x,y,z))2dxdydz

)2

+
(

∫

∆ℓx

qi(x,y,z)v
(ℓx)
1 (x,y,z)−u

(1)
ℓx

(v
(ℓx)
1 (x,y,z))2dxdydz

)2

+
(

∫

∆ℓy

qi(x,y,z)v
(ℓy)
2 (x,y,z)−u

(2)
ℓy

(v
(ℓy)
2 (x,y,z))2dxdydz

)2

+
(

∫

∆ℓz

qi(x,y,z)v
(ℓz)
3 (x,y,z)−u

(3)
ℓz

(v
(ℓz)
3 (x,y,z))2dxdydz

)2
)

,

∆ℓ|ℓ 6=0,∆ℓx
,∆ℓy

,∆ℓz
∈Si, (2.23)

for

i=5, ℓ=0,1, ℓx =1, ℓy=1, ℓz =1; i=6, ℓ=0,2, ℓx =2, ℓy =2, ℓz =2;

i=7, ℓ=0,3, ℓx =3, ℓy=3, ℓz =3; i=8, ℓ=0,4, ℓx =4, ℓy =4, ℓz =4.

Step 2.3. Find the combination coefficients, also called linear weights, denoted by

γ
(l)
1 ,··· ,γ

(l)
8 that satisfy

∫

∆0

u(x,y,z)v
(0)
l (x,y,z)dxdydz=

∫

∆0

8

∑
i=1

γ
(l)
i qi(x,y,z)v

(0)
l (x,y,z)dxdydz, l=1,··· ,K, (2.24)

valid for any polynomial u(z,y,z) of degree at most 2, when we can obtain a third order
approximation to u(x,y,z) at the volume quadrature point (xG,yG,zG) for all sufficiently
smooth functions u(x,y,z). It is again notable that (2.24) also holds for any polynomial

u(x,y,z) of degree at most 1 if ∑
8
i=1γ

(l)
i =1, because each individual qi(x,y,z) reconstructs

linear polynomials exactly. There are also six other constraints on the linear weights

γ
(l)
1 ,··· ,γ

(l)
8 as before, but now on requiring Eq. (2.24) to hold for

u(x,y,z)=
(x−x0)

2

|∆0|2/3
,
(x−x0)(y−y0)

|∆0|2/3
,
(x−x0)(z−z0)

|∆0|2/3
,
(y−y0)

2

|∆0|2/3
,
(y−y0)(z−z0)

|∆0|2/3
,
(z−z0)

2

|∆0|2/3
,
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respectively. In determining the linear weights γ
(l)
1 ,··· ,γ

(l)
8 , this leaves one free parameter,

which is uniquely determined by the least square

min

( 8

∑
i=1

γ
(l)
i

)2

, l=1,··· ,K

subject to the constraints listed above. Thus we can get the linear weights uniquely, but

again they may always not be positive, so we use the methods as before to get γ
(l)±

i , σ(l)± ,
etc..

Step 2.4. Compute the smoothness indicators denoted by βi, i=1,··· ,8 that measure
how smooth the functions qi(x,y,z), i=1,··· ,8 are in the target tetrahedral cell ∆0. Once
again, the smaller these smoothness indicators the smoother the functions in the target
cell, where we use Eq. (2.18).

Step 2.5. Compute the nonlinear weights based on the smoothness indicators:

ω
(l)±

i =
ω̄

(l)±

i

∑
8
ℓ=1ω̄

(l)±

ℓ

, ω̄
(l)±

ℓ
=

γ
(l)±

ℓ

(ε+βℓ)2
, l=1,··· ,K. (2.25)

The 3-D test cases were again found to be insensitive to ε varying from 10−3 to 10−6, and
we chose ε=10−3 in our computations [25].

For l=1,··· ,K,the moments of the reconstructed polynomial are then

u
(l)
0 (t)=

∫

∆0

(σ(l)+
8

∑
i=1

ω
(l)+

i qi(x,y,z)−σ(l)−
8

∑
i=1

ω
(l)−

i qi(x,y,z))v
(0)
l (x,y,z)dxdydz

∫

∆0

(v
(0)
l (x,y,z))2 dxdydz

. (2.26)

3 Numerical results

In this Section, we provide numerical results demonstrating the performance of the
WENO and HWENO reconstructions as limiters for the RKDG method on unstructured
meshes (cf. Section 2). The CFL number used is 0.3 for all of the numerical tests. In order
to magnify the possible effect of the WENO and HWENO limiters on accuracy, we often
used a small M value near zero (viz. M=0.01) for the constant in the TVB minmod lim-
iter to identify ”troubled cells”, such that many good cells are also identified as ”troubled
cells”.

Example 3.1. We solved the linear scalar equation

ut+ux+uy+uz=0 (3.1)

on a uniform tetrahedral mesh over the domain [−2,2]×[−2,2]×[−2,2], with initial con-
dition u(x,y,z,0)=sin(π(x+y+z)/2) and periodic boundary conditions in each direction.
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Table 1: ut+ux+uy+uz=0. u(x,y,z,0)=sin(π(x+y+z)/2). Periodic boundary conditions in each direction.

t=1. L1 and L∞ errors. RKDG with the WENO and HWENO limiters (M=0.01) compared to RKDG without
limiter. Uniform tetrahedral mesh.

DG with WENO limiter DG without limiter
tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 5.11E-1 8.20E-1 9.76E-2 2.98E-1
6000 2.18E-1 1.23 4.04E-1 1.02 1.55E-2 2.65 6.82E-2 2.13

48000 6.67E-2 1.71 1.41E-1 1.51 3.15E-3 2.30 1.60E-2 2.09
384000 1.31E-2 2.34 3.29E-2 2.11 7.34E-4 2.10 3.84E-3 2.06

DG with HWENO limiter DG without limiter
tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 5.84E-1 9.23E-1 9.76E-2 2.98E-1
6000 3.65E-1 0.68 6.00E-1 0.62 1.55E-2 2.65 6.82E-2 2.13

48000 1.17E-1 1.63 2.43E-1 1.30 3.15E-3 2.30 1.60E-2 2.09
384000 2.66E-2 2.15 6.13E-2 1.99 7.34E-4 2.10 3.84E-3 2.06

Table 2: ut+ux+uy+uz=0. u(x,y,z,0)=sin(π(x+y+z)/2). Periodic boundary conditions in each direction.
t=1. CPU time (second). RKDG with the WENO and HWENO limiters (M=0.01) compared to RKDG without
limiter. Uniform tetrahedral mesh.

DG with WENO limiter DG with HWENO limiter DG without limiter
tetrahedrons CPU time (second)

750 2.573 0.993 0.232
6000 48.90 19.09 6.650
48000 813.5 300.4 158.6

384000 9312 4358 2407

We computed the solution up to t= 1. The errors and numerical orders of accuracy for
the RKDG method with the WENO and HWENO limiters, compared with the original
RKDG method without any limiter, are shown in Table 1. The computational costs of the
RKDG method with and without the WENO and HWENO limiters are shown in Table
2. It can be seen that the WENO and HWENO limiters retain the designed order of accu-
racy, but the error magnitudes are larger than for the original RKDG method on the same
mesh.

Example 3.2. We solved the nonlinear scalar Burgers equation

ut+

(

u2

2

)

x

+

(

u2

2

)

y

+

(

u2

2

)

z

=0 (3.2)

on a uniform tetrahedral mesh over the computing domain [−3,3]×[−3,3]×[−3,3], with
the initial condition u(x,y,z,0) = 0.5+sin(π(x+y+z)/3) and periodic boundary condi-
tions in each direction. We computed the solution up to t=0.5/π2, where the solution is
still smooth. The errors and numerical order of accuracy for the RKDG method with the
WENO and HWENO limiters compared with the original RKDG method without limiter
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Table 3: ut+(u2/2)x+(u2/2)y+(u2/2)z=0. u(x,y,z,0)=0.5+sin(π(x+y+z)/3). Periodic boundary condi-

tions in each direction. t=0.5/π2. L1 and L∞ errors. RKDG with the WENO and HWENO limiters (M=0.01)
compared to RKDG without limiter. Uniform tetrahedral mesh.

DG with WENO limiter DG without limiter
tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 7.11E-2 2.08E-1 3.32E-2 1.40E-1
6000 2.34E-2 1.60 8.97E-2 1.22 1.08E-2 1.61 5.07E-2 1.47

48000 5.87E-3 2.00 2.61E-2 1.78 3.23E-3 1.75 1.49E-2 1.77
384000 8.79E-4 2.74 4.34E-3 2.59 8.50E-4 1.93 3.94E-3 1.92

DG with HWENO limiter DG without limiter
tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 1.13E-1 4.03E-1 3.32E-2 1.40E-1
6000 4.92E-2 1.20 1.80E-1 1.15 1.08E-2 1.61 5.07E-2 1.47

48000 1.32E-2 1.89 6.12E-2 1.55 3.23E-3 1.75 1.49E-2 1.77
384000 2.04E-3 2.69 1.48E-2 2.04 8.50E-4 1.93 3.94E-3 1.92

Table 4: ut+(u2/2)x+(u2/2)y+(u2/2)z = 0. u(x,y,z,0)= 0.5+sin(π(x+y+z)/3). Periodic boundary con-

ditions in each direction. t = 0.5/π2. CPU time (second). RKDG with the WENO and HWENO limiters
(M=0.01) compared to RKDG without limiter. Uniform tetrahedral mesh.

DG with WENO limiter DG with HWENO limiter DG without limiter
tetrahedrons CPU time (second)

750 1.186 0.484 0.340
6000 21.73 9.473 6.215

48000 326.4 144.8 111.6
384000 4593 2254 1504

are shown in Table 3. The computational costs of the RKDG method with and without the
WENO and HWENO limiters are shown in Table 4. It can again be seen that the WENO
and HWENO limiters retain the designed order of accuracy, but the error magnitudes are
larger than for the original RKDG method on the same mesh.

Example 3.3. We solved the system of Euler equations

∂

∂t













ρ
ρu
ρv
ρw
E













+
∂

∂x













ρu
ρu2+p

ρvu
ρwu

u(E+p)













+
∂

∂y













ρv
ρuv

ρv2+p
ρwv

v(E+p)













+
∂

∂z













ρw
ρuw
ρvw

ρw2+p
w(E+p)













=0 (3.3)

where ρ is the density, u is the x-component of the velocity, v its y-component and w its z-
component, E the total energy and p the pressure. The initial conditions were ρ(x,y,z,0)=
1+0.2sin(π(x+y+z)/3), u(x,y,z,0)=1, v(x,y,z,0)=1, w(x,y,z,0)=1, p(x,y,0)=1 and the
computing domain was [−3,3]×[−3,3]×[−3,3] with uniform tetrahedral mesh, and pe-
riodic boundary conditions were applied in each direction. We computed the solution up
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Table 5: 3D-Euler equations: initial data ρ(x,y,z,0)=1+0.2sin(π(x+y+z)/3), u(x,y,z,0)=1, v(x,y,z,0)=1,

w(x,y,z,0)=1 and p(x,y,z,0)=1. Periodic boundary conditions in each direction. t=1. L1 and L∞ errors. RKDG
with the WENO and HWENO limiters (M = 0.01) compared to RKDG without limiter. Uniform tetrahedral
mesh.

DG with WENO limiter DG without limiter
tetrahedrons L1 error order L∞ error order L1 error order L∞ error order

750 8.48E-2 1.34E-1 1.80E-2 6.07E-2
6000 4.16E-2 1.03 7.32E-2 0.88 3.12E-3 2.52 1.22E-2 2.30

48000 6.38E-3 2.71 1.47E-2 2.32 7.26E-4 2.10 2.91E-3 2.07
DG with HWENO limiter DG without limiter

tetrahedrons L1 error order L∞ error order L1 error order L∞ error order
750 9.58E-2 1.55E-1 1.80E-2 6.07E-2

6000 6.31E-2 0.60 1.04E-1 0.57 3.12E-3 2.52 1.22E-2 2.30
48000 8.29E-3 2.92 1.91E-2 2.44 7.26E-4 2.10 2.91E-3 2.07

to t=1. The errors and numerical orders of accuracy of the density for the RKDG method
with the WENO and HWENO limiters compared with the original RKDG method with-
out a limiter are shown in Table 5. As in the previous example, it can be seen that the
WENO and HWENO limiters again retain the designed order of accuracy, and the error
magnitudes are larger than for the original RKDG method on the same mesh.

We then tested the performance of the RKDG method with the WENO and HWENO
limiters for problems containing shocks. For a direct comparison with the RKDG method
using the original minmod TVB limiter, we refer to the results in [3–5, 7]. In general, they
are comparable when M is chosen adequately. The RKDG method with the WENO and
HWENO limiters produced much better results than the original minmod TVB limiter.

Example 3.4. We solved the same nonlinear Burgers equation (3.2) with the same initial
condition u(x,y,z,0)=0.5+sin(π(x+y+z)/3), except that the results plotted for t=5/π2

are after a shock has appeared. A uniform tetrahedral mesh with 384000 tetrahedrons
was used in the computation. In Fig. 2, we show the contours on the surface and one
dimensional cutting-plot along x=y, z=0 of the solutions by the RKDG method with the
WENO and HWENO limiters. It can be seen that the scheme gives non-oscillatory shock
transitions for this problem.

Example 3.5. Transonic flow over the Onera M6 wing [20] is a classic CFD validation case
for external flows, because of its simple geometry combined with complexities in the tran-
sonic flow. We assumed the Mach number M∞ =0.84 and angle of attack α=3.06◦. The
computational domain is

√

x2+y2+z2 ≤ 16 and z≥ 0, consisting of 143645 tetrahedrons
and 24382 points with 1311 triangles over the surface (the surface mesh used is shown in
Fig. 3). In this case, the second order RKDG scheme with the WENO and HWENO lim-
iters and TVB constants M=1,10 and 100 were adopted in the numerical tests. In Table 6,
we document the maximal percentage and the average percentage of cells declared to be
”troubled cells”, for different TVB constants in the minmod limiter to identify ”troubled
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Figure 2: Burgers equation. t= 5/π2. Contour plot on the surface (top) and 1D cutting-plot along x = y,
z=0 with circles representing the numerical solution and the line representing the exact solution (bottom) by
WENO-RKDG (left) and HWENO-RKDG (right).
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Figure 3: Zoom in on the Onera M6 wing surface mesh.

Table 6: Onera M6 wing problem. The maximal percentage and the average percentage of cells declared to be
“troubled cells” under the WENO and HWENO limitings.

M∞=0.84, angle of attack α=3.06◦

WENO-RKDG HWENO-RKDG
TVB constant M 1 10 100 TVB constant M 1 10 100

maximum percentage 8.20 5.32 1.81 maximum percentage 9.07 6.03 2.12
average percentage 7.02 4.29 1.26 average percentage 8.10 5.08 1.55
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Figure 4: Onera M6 wing problem. M∞ =0.84, angle of attack α=3.06◦. Mach number with contour plot on
the surface (top) and Pressure coefficient number with contour plot on the surface (bottom) by WENO-RKDG
(left) and HWENO-RKDG (right).

cells”. The results for the different TVB constants M do not appear to differ much – and to
save space, we only show the 30 equally spaced Mach number contours from 0.56 to 1.08,
and 30 equally spaced pressure coefficients Cp=(p−p∞)/0.5ρ∞(u2

∞+v2
∞) for M=100m

where p is the local pressure (and p∞, ρ∞, u∞ and v∞ are the pressure, density, and x and
y velocity components in the faraway free fluid region), with numbered contours from
−0.63 to 0.6 in Fig. 4. It is seen that the schemes perform well with good resolution, with
both the shock and contact discontinuities well captured.

Example 3.6. We used INRIA’s 3D tetrahedral elements for the BTC0 (streamlined body,
laminar) test case in project ADIGMA with the Mach number M∞=0.5 and angle of attack
α=0◦ [13]. The computational domain used was

√

x2+y2+z2 ≤10, consisting of 191753
tetrahedrons and 33708 points with 8244 triangles over the surface. The surface mesh
used in the computation is shown in Fig. 5. The second order RKDG scheme with the
WENO and HWENO limiters and the TVB constant values M=1,10 and 100 were again
used here in the numerical tests. In Table 7, we document the maximal percentage and
the average percentage of cells declared to be ”troubled cells” for different TVB constant
M in the minmod limiter to identify ”troubled cells”, and for large M we see that only a
small percentage are declared ”troubled cells”. There is again little perceptible difference
for the different TVB constants M, so to save space we show only 80 equally spaced
Mach numbers (from 0.15 to 1.44) and 80 equally spaced pressure coefficient numbers
(from −0.12 to 1.11) for M = 100 in Fig. 6. The schemes again perform well with good
resolution.
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Table 7: BTC0 problem. The maximal percentage and the average percentage of cells declared to be “troubled
cells” under the WENO and HWENO limitings.

M∞ =0.5, angle of attack α=0◦

WENO-RKDG HWENO-RKDG
TVB constant M 1 10 100 TVB constant M 1 10 100

maximum percentage 5.68 2.09 0.18 maximum percentage 7.31 3.43 0.46
average percentage 3.06 0.47 0.00 average percentage 5.60 1.91 0.09
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Figure 5: Zoom in on the BTC0 surface mesh.
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Figure 6: BTC0 problem. M∞ = 0.5, angle of attack α= 0◦. Mach number with contour plot on the surface
(top) and Pressure coefficient number with contour plot on the surface (bottom) by WENO-RKDG (left) and
HWENO-RKDG (right).

Example 3.7. We considered inviscid Euler transonic flow past a single Y3815-pb1l plane
(the repository of this free 3D model is available at INRIA’s Free 3D Mesh Down-
load http://www-rocq1.inria.fr/gamma), with the Mach number M∞ = 0.8 and an-
gle of attack α = 1.25◦, and for M∞ = 0.85 and α = 1◦. The computational domain was
√

x2+y2+z2≤100, consisting of 180855 tetrahedrons and 50588 points with 24640 trian-



1002 J. Zhu and J. Qiu / Commun. Comput. Phys., 11 (2012), pp. 985-1005

X

Y

Z

X
Y

Z

X
Y

Z

X

Z

Y

Figure 7: Zoom in on the Y3815-pb1l plane surface mesh.

gles over the surface. The surface mesh used in the computation is shown in Fig. 7. The
second order RKDG scheme with the WENO and HWENO limiters and the TVB con-
stants M= 1,10 and 100 were used in the numerical tests. In Table 8, we document the
maximal percentage and the average percentage of cells declared to be “troubled cells”
for different TVB constants M in the minmod limiter to identify ”troubled cells”. For large
M, only a small percentage are again declared ”troubled cells”. To save space, only the
results for M= 100 are shown as before. Mach number contours plotted on the surface
with 80 equally spaced contours from 0.11 to 1.86, and pressure coefficient number con-
tours plotted on the surface with 80 equally spaced contours from −2.09 to 1.28 for the
Mach number M∞ =0.8 and angle of attack α=1.25◦, are shown in Fig. 8. Mach number

Table 8: Y3815-pb1l plane problem. The maximal percentage and the average percentage of cells declared to
be “troubled cells” under the WENO and HWENO limitings.

M∞ =0.8, angle of attack α=1.25◦

WENO-RKDG HWENO-RKDG
TVB constant M 1 10 100 TVB constant M 1 10 100

maximum percentage 5.64 1.79 0.41 maximum percentage 6.16 1.92 0.43
average percentage 4.16 1.16 0.22 average percentage 5.13 1.45 0.29

M∞ =0.85, angle of attack α=1◦

WENO-RKDG HWENO-RKDG
TVB constant M 1 10 100 TVB constant M 1 10 100

maximum percentage 5.78 1.85 0.42 maximum percentage 6.34 1.97 0.45
average percentage 4.45 1.25 0.24 average percentage 5.40 1.54 0.30
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Figure 8: Y3815-pb1l plane problem. M∞ =0.8, angle of attack α=1.25◦. Mach number with contour plot on
the surface (top) and pressure coefficient number with contour plot on the surface (bottom) by WENO-RKDG
(left) and HWENO-RKDG (right).
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Figure 9: Y3815-pb1l plane problem. M∞ = 0.85, angle of attack α= 1◦. Mach number with contour plot on
the surface (top) and Pressure coefficient number with contour plot on the surface (bottom) by WENO-RKDG
(left) and HWENO-RKDG (right).

contours plotted on the surface with 80 equally spaced contours from 0.14 to 1.89, and
pressure coefficient number contours plotted on the surface with 80 equally spaced con-
tours from −1.88 to 1.27 for the Mach number M∞ = 0.85 and angle of attack α= 1◦, are
shown in Fig. 9. It can be seen that the schemes perform well with good resolution, with
both the shock and contact discontinuities well captured.
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4 Concluding remarks

We have developed limiters for the RKDG method for the numerical solution of prob-
lems involving hyperbolic conservation laws, using finite volume high order WENO and
HWENO reconstructions on 3-D unstructured meshes. Thus ”troubled cells” are first
identified under a WENO-type limiting, using a TVB minmod-type limiter. The polyno-
mial solution inside the ”troubled cells” is then obtained by WENO or HWENO recon-
structions, using cell averages or derivative averages of neighboring tetrahedrons while
retaining the original cell averages of the ”troubled cells”. Numerical results show that
the method is stable, accurate, and robust in maintaining accuracy.
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