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Abstract. We develop a continuum hydrodynamic model for two-phase immiscible
flows that involve electroosmotic effect in an electrolyte and moving contact line at
solid surfaces. The model is derived through a variational approach based on the On-
sager principle of minimum energy dissipation. This approach was first presented in
the derivation of a continuum hydrodynamic model for moving contact line in neu-
tral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333–360
(2006)). Physically, the electroosmotic effect can be formulated by the Onsager prin-
ciple as well in the linear response regime. Therefore, the same variational approach
is applied here to the derivation of the continuum hydrodynamic model for charged
two-phase immiscible flows where one fluid component is an electrolyte exhibiting
electroosmotic effect on a charged surface. A phase field is employed to model the
diffuse interface between two immiscible fluid components, one being the electrolyte
and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model
consists of the incompressible Navier-Stokes equation for momentum transport, the
Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for
interface motion, and the Poisson equation for electric potential, along with all the
necessary boundary conditions. In particular, all the dynamic boundary conditions at
solid surfaces, including the generalized Navier boundary condition for slip, are de-
rived together with the equations of motion in the bulk region. Numerical examples
in two-dimensional space, which involve overlapped electric double layer fields, have
been presented to demonstrate the validity and applicability of the model, and a few
salient features of the two-phase immiscible electroosmotic flows at solid surface. The
wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric
double layer are both investigated.
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1 Introduction

Recently, there have been rapid developments in the design, patterning, and utilization
of microfluidic and nanofluidic devices which have found many applications in the de-
vised transport, separation, identification, synthesis, and manipulation of a wide range
of chemical and biological species [1]. In this respect, electroosmotic flows have been
widely used to transport and mix fluids using electric fields in micro- and nanofluidic
systems based on the lab-on-a-chip concept [2,3]. The use of mechanical pumps or valves
with moving components is therefore avoided. When a solid wall is in contact with an
electrolyte solution, it acquires a certain amount of charge on the surface through an
electrochemical adsorption/desorption process, while the counterions are released from
the solid surface into the solution. The electric double layer (EDL) is formed through
an accumulation of the counterions in the solution adjacent to the wall. These excess
counterions move under an external electric field and drag the fluid surrounding them.
This electrokinetic effect causes a flow, termed as electroosmotic flow (EOF), in the bulk
region via the viscous coupling. If the characteristic thickness of the EDL (i.e., the De-
bye length λD) is much smaller than the channel width (diameter), then the EOF will
exhibit the plug-flow velocity profile, which is very different from the parabolic veloc-
ity profile in conventional pressure driven flows. Generally speaking, EOF is preferred
for biomedical/chemical separation or detection applications since the plug-flow veloc-
ity profile reduces the sample dispersion effect, and consequently improve the device
performance [4, 5].

The fluid dynamics in confined geometries can be affected by the friction with confin-
ing walls. Theoretically, wall friction is quantified by setting some boundary conditions
at the wall. The no-slip boundary condition, which states that there is no relative motion
at the fluid-solid interface, has been extensively used and demonstrated in numerous
macroscopic flows. However, over the past two decades, experiments have shown that
slip occurs in mechanically driven flows over smooth solvophobic surfaces, with slip
lengths typically of the order of nanometer [6]. Slip effects become increasingly impor-
tant as the confinement space for fluids is reduced to sub-micrometer or nanometer scale.
The flow enhancement due to slip could be up to two or three orders of magnitude [7,8].
Excellent reviews on the experimental and theoretical aspects of liquid slip can be found
in [6,9]. This constitutes the first reason to explicitly take into account the wall slip in this
work.

Research interests in the dynamics of two-phase fluids in narrow channels stem from
many applications that microfluidic and nanofluidic devices have found in biological and
chemical analyses, drug delivery, and chemical synthesis [10]. In particular, droplets of
one fluid in the other immiscible fluid have been found useful in a wide range of appli-
cations, especially when the droplet size and the size distribution can be prescribed on
a micro- or nanoscale [11]. Droplet generation, manipulation, and delivery within micro
and nano systems have been extensively studied experimentally and numerically [12,13].
The flow phenomena in these applications constantly involve a classical problem in con-
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tinuum fluid mechanics. Decades ago, it was discovered that in immiscible two-phase
flows, the moving contact line (MCL), defined as the intersection of the fluid-fluid in-
terface with the solid wall, is incompatible with the no-slip boundary condition [14–18].
Solving the equation of motion with the no-slip boundary condition in the vicinity of
the MCL leads to a diverging stress and an infinite rate of energy dissipation. Actually,
molecular dynamics (MD) simulations and experiments have shown that slip indeed oc-
curs at the MCL [18]. This constitutes the second reason to model slip explicitly.

The recent discovery of the generalized Navier boundary condition (GNBC) [19, 20],
which states that the amount of slipping is proportional to the sum of tangential vis-
cous stress and the uncompensated Young stress, has resolved the MCL conundrum for
two-phase immiscible flows. Numerical results of our continuum model have shown
quantitative agreement with those from MD simulations [19, 20]. We would like to point
out that by combining the GNBC with the diffuse-interface formulation, our model al-
lows the coexistence of slip and diffusion, and in the systems in our MD simulations, it
is slip that dominates. More recently, the GNBC has been variationally derived together
with the equations of motion in the bulk region [21], through the principle of minimum
energy dissipation as formulated by Onsager [22,23]. This derivation means that the slip
boundary condition at the fluid-solid interface is consistent with the general principle for
irreversible thermodynamic processes. A recent study based on a sharp-interface model
also demonstrated that the stress singularity is regularized by a slip region in the vicinity
of the MCL where the Young stress is dominant [24].

In this paper, based on the variational approach presented in [21], we derive a con-
tinuum model for two-phase immiscible EOF that involve contact lines moving at solid
surface. This model consists of the incompressible Navier-Stokes equation for momen-
tum transport, the Nernst-Planck equation for ion transport, a phase-field equation of
Cahn-Hilliard type for interface motion, and the Poisson equation for electric potential.
In particular, the boundary conditions at solid surface are variationally derived together
with the equations of motion in the bulk region, including the GNBC for slip at solid
walls, a physical mechanism necessary for contact line motion. Our model is able to de-
scribe the coexistence of the apparent Smoluchowski slip in the EDL and the wall slip at
the solid surface. Recently, it has been shown that wall slip is able to amplify the EOF [25]
and hence enhance the electrokinetic energy conversion [26]. An accurate modeling of
two-phase immiscible EOF is essential to the understanding of electrowetting [27, 28] (in
which an external electric field is used to modify the wetting behavior of a conductive
liquid in an insulating ambient fluid) and electrohydrodynamics [29–31] (in which the
electric force due to the bounded charges at the interface can have a significant influence
on the fluid motion and the interface stability). In addition, using a conductive fluid
to pump a nonconductive fluid via viscous coupling is also an interesting application
that involves two-phase immiscible EOF [4,32]. The various flow phenomena mentioned
above can in principle be studied using the present variational model.

The paper is organized as follows. There is a brief review of electroosmotic flows in
Section 2. The variational derivation of the model is presented in Section 3. The numerical
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results are presented with discussion in Section 4. The paper is concluded in Section 5
with a few remarks.

2 Electroosmotic flows

The Poisson (P) equation
∇·D=−∇·(ǫ∇V)=ρe (2.1)

describes the relationship between the electric potential V and the net charge density ρe

in the electrolyte solution. Here,

D=ǫE=−ǫ∇V (2.2)

is the electric displacement field and ǫ is the dielectric constant. If the electrolyte con-
tains N ion species with charges eqα and concentrations cα (α = 1,··· ,N, where e is the
elementary charge and qα is the valence of the α-th ion species), then ρe =∑

N
α=1eqαcα. Ne-

glecting the effects of external and induced magnetic fields, we have the Nernst-Planck
(NP) equation as the continuity equation for each ion species:

∂cα

∂t
+v·∇cα =−∇· Jα, (2.3)

where v is the velocity of incompressible fluid and Jα is the flux of the α-th ion species
due to diffusion and electromigration, given by

Jα=−Dα∇cα−eqα Mαcα∇V. (2.4)

Here Dα is the diffusion coefficient of the α-th ion species and Mα is the corresponding
mobility, which is related to Dα through the Einstein relation Dα=MαkBT.

Consider a single-phase electrolyte confined between two parallel solid walls sepa-
rated by a distance 2H in the z direction. The system has translational symmetry in the x
direction. For the system in equilibrium, we have Jα=0, which gives

dcα

dz
=− eqαcα

kBT

dV

dz
, (2.5)

describing the balance between osmotic pressure and electric force. In the classical theory
for EDL, Eq. (2.5) is integrated from a point in bulk region where z=∞, V=0, cα=c0

α (i.e.,
the bulk concentration of the α-th ion species) to a point within the EDL. This leads to the
Boltzmann equation

cα= c0
α exp

(

− eqαV

kBT

)

. (2.6)

For a symmetric unary electrolyte such as KCl and NaCl, the net charge density ρe is
proportional to the local concentration difference between cations and anions, i.e.,

ρe =∑
α

eqαcα = e(c+−c−)=−2ec0 sinh

(

eV

kBT

)

, (2.7)
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with q+=−q−=1 and c0
+= c0

−= c0. Substituting Eq. (2.7) into Eq. (2.1) and assuming the
dielectric constant is spatially invariant, we obtain the well known Poisson-Boltzmann
(PB) equation

d2V

dz2
=

2ec0

ǫ
sinh

(

eV

kBT

)

. (2.8)

If eV/kBT ≪ 1, then the right-hand side of Eq. (2.8) can be simplified using the Debye-
Hückel approximation. This leads to

d2V

dz2
=

V

λ2
D

, (2.9)

where

λD =

√

ǫkBT

2e2c0
(2.10)

is called the Debye length, the characteristic thickness of EDL. The zeta potential ζ is
defined as the potential difference between the confining wall and the centerline of the
channel. Denoting the surface charge density on the wall by σ and using the electroneu-
trality condition, we can obtain the Grahame equation [33]

ζ=
2kBT

e
sinh−1

(

eσλD

2ǫkBT

)

, (2.11)

which describes the relation between ζ and σ under the assumption of H≫λD, with the
electric potential and its gradient vanishing far away from the wall.

In literature, the momentum transport in EOF is governed by the incompressible
Navier-Stokes (NS) equation

ρ

(

∂v

∂t
+v·∇v

)

=η∇2v−∇p−ρe∇V, (2.12)

supplemented by the incompressibility condition ∇·v=0. Here ρ is the mass density, η
is the shear viscosity, p is the pressure, and −ρe∇V is the electric body force.

The PB-NS model has been extensively used in investigating the dynamics of EOF in
microchannels [34–37]. However, it should be noted that the Boltzmann equation (2.6) is
derived under the following assumptions [38]: (a) Ion distribution is stationary; (b) Con-
vective transport of ions is negligible; (c) The two walls are separated far away from each
other; (d) Variations of cα and V only occur in the direction normal to the channel walls.
If any of the above is violated, then the NP equation should be used instead. This leads to
the fully coupled PNP-NS model. In [38], a model for determining the electric potential
and ion concentration in the overlapped EDL is presented. An intermediate equilibrium
state described by this model is further studied in a long nanopore with significant EDL
overlap [39]. The NP equation is adopted instead of the Boltzmann equation to study the
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convective effect due to inhomogeneous zeta potential in [40]. Obviously, for the two-
phase immiscible flows illustrated in Fig. 1, the Boltzmann distribution is no longer a
valid approximation. That is, we need to solve the NP equation (2.3) for ion concentra-
tions. In general, the NP equation should be coupled with the Poisson equation (2.1) and
the incompressible NS equation to simulate various flow phenomena, from the dynamics
in [39–41] to the steady states in [38, 42–45].

Boundary conditions play a crucial role in modeling electrokinetic phenomena. Re-
garding the boundary condition for the Poisson equation, there are two different choices:

D ·n=−σ (2.13)

for given surface charge density σ, and

V= ζ (2.14)

for given zeta potential ζ, where n is the outward pointing unit vector normal to the
fluid-solid interface. The former equation is of the Neumann type while the latter of the
Dirichlet type. These two boundary conditions have both been widely used. However,
van der Heyden et al. [37] found that Eq. (2.14) with a constant zeta potential is invalid
in calculating the variation of streaming conductance with salt concentration, while im-
posing a constant surface charge density in Eq. (2.13) yields good predictions at low salt
concentration. In general, the chemical equilibrium model provides the best fit over the
whole concentration range [37,46]. In this work, we will use the Neumann boundary con-
dition (2.13) with the simple assumption of constant surface charge density, as adopted
in [39, 43, 44, 47–49].

As to the hydrodynamic boundary conditions, the traditional no-slip condition is of-
ten used in solving the NS equation. However, recent theoretical studies have suggested
a significant amplification of EOF over slippery surfaces [25, 26, 50]. Studies at molec-
ular level have shown that the hydrodynamic boundary condition, for slip or no-slip,
is determined by the molecular interactions between fluid and solid, and the channel
size [51–53]. In the next section, we allow the fluid to slip at the solid surface and derive
the slip boundary condition in a variational approach.

We also want to mention the celebrated Helmholtz-Smoluchowski (HS) slip velocity,

Ueo=−ǫζE0

η
, (2.15)

which gives the velocity in the bulk (far away from the solid boundary) for fully devel-
oped EOF driven by an applied electric field E0. The HS velocity (2.15), derived from the
balance between electric force and viscous force with the no-slip condition, relates the
EOF velocity to the zeta potential and the applied electric field. For given ζ and E0, Ueo is
the velocity at large distances away from the wall (beyond the EDL), and hence the EOF
shows the plug-like velocity profile.
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3 Variational derivation of the model

3.1 The Cahn-Hilliard Navier-Stokes system with the GNBC

In the diffuse-interface modeling of binary fluids, a phase field φ(r) is introduced to mea-
sure the local relative concentration or composition in order to distinguish between the
two fluid components [54]. It assumes distinct constant values in the two bulk com-
ponents and undergoes a rapid but smooth transition in the interfacial region. The total
free energy of the system F[φ(r)] consists of the Cahn-Hilliard (CH) free energy FCH [φ(r)]
which stabilizes the fluid-fluid interface and the surface free energy Ff s[φ(r)] which arises
from the fluid-solid interactions:

F[φ(r)]=FCH [φ(r)]+Ff s[φ(r)], (3.1)

where FCH[φ(r)] and Ff s[φ(r)] are given by

FCH[φ(r)]=
∫

dr

[

K

2
(∇φ)2+

(

− r

2
φ2+

u

4
φ4
)

]

, (3.2)

Ff s[φ(r)]=
∫

dS
[

γ f s(φ)
]

. (3.3)

Here K, r and u are material parameters associated with the fluid-fluid interface, γ f s(φ)
is the free energy per unit area at the fluid-solid interface, and

∫

dS denotes the surface
integral at the fluid-solid interface. The values of K, r and u are directly related to the
fluid-fluid interfacial thickness ξ=

√
K/r, the interfacial tension γ=2

√
2r2ξ/3u, and the

two minima φ±=±
√

r/u of the double well potential −rφ2/2+uφ4/4. In the previous
MD simulations [19], ξ and γ can be measured and φ±=±1 for the two immiscible fluid
components. For the free energy density at the fluid-solid interface, we use γ f s(φ) =
(∆γ f s/2)sin(πφ/2), which is a smooth interpolation from γ f s(φ−)=−∆γ f s/2 (between
fluid 1 and solid) to γ f s(φ+) = ∆γ f s/2 (between fluid 2 and solid). Here ∆γ f s denotes
the change of γ f s(φ) from φ− to φ+, i.e., ∆γ f s = γ f s(φ+)−γ f s(φ−). According to the
Young equation γ f s(φ−) = γ f s(φ+)+γcosθs with θs being the static contact angle, we
have ∆γ f s=−γcosθs (in the partial wetting regime). Through the variational form of the
total free energy

δ{FCH[φ(r)]+Ff s[φ(r)]}=
∫

dr(µφδφ)+
∫

dS(Lφδφ), (3.4)

we define the chemical potential µφ in the bulk and the corresponding quantity Lφ at the
fluid-solid interface:

µφ=−∇·(K∇φ)−rφ+uφ3, (3.5)

Lφ=K∂nφ−
√

2

3

r2ξ

u
cosθssγ(φ), (3.6)



838 S. Shao and T. Qian / Commun. Comput. Phys., 11 (2012), pp. 831-862

where sγ(φ)=
π
2 cos

πφ
2 . As φ is a conserved order parameter, the two-phase equilibrium

conditions derived from minimizing FCH[φ(r)]+Ff s[φ(r)] are µφ=const. and Lφ=0. Note
that our choice of γ f s(φ) makes ∂γ f s(φ)/∂φ vanish at the two equilibrium phases φ±=
±1. As a consequence, far away from the contact line and deep in the single-phase region,
the phase field becomes a constant (+1 or −1) in space and time. This requirement can
of course be met by other forms of γ f s(φ), e.g., that adopted by Jacqmin [55] and Yue
et al. [56]. The form in these two works does not distort the level curves in equilibrium
and may lead to certain benefit in numerical simulations. We would like to pint out that
though our choice leads to the contour distortion in phase field, the effect is however
constrained at the contact line by the CH free energy in the bulk region.

Below we apply the Onsager principle of minimum energy dissipation [22, 23] to the
derivation of our continuum model. For a system described by the variables {α1,··· ,αN}
measuring the displacement from equilibrium, we need to construct a functional, here-
after denoted by A, for minimization with respect to {α̇1,··· , ˙αN}, the rates of change
of the variables {α1,··· ,αN}. There are two distinct parts in A: the dissipation function
Φ=(1/2)∑i,j ηij α̇iα̇j, which is half the rate of free energy dissipation, being positive defi-

nite and quadratic in the rates α̇i, and Ḟ=∑i(∂F/∂αi)α̇i, which is the rate of change of the
free energy F(α1,··· ,αN). Here the damping coefficients ηij satisfy the reciprocal relations
ηij =ηji.

There are four distinct dissipative processes considered in the dissipation function Φ.
The rate of dissipation due to the shear viscosity η in the bulk region is of the form

Rvis =
∫

dr
[η

2
(∂ivj+∂jvi)

2
]

. (3.7)

The rate of dissipation due to the slip at solid surfaces is written as

Rslip=
∫

dS[β(v
slip
τ )2], (3.8)

where v
slip
τ is the slip velocity, defined as the fluid velocity in the tangential (τ) direction

relative to the solid at the fluid-solid interface, and β is the slip coefficient which has
the dimension of [viscosity]/[length], from which the slip length ls is defined as ls =
η/β. The no-slip boundary condition corresponds to the limit of β→∞. For the rate of
dissipation due to the diffusion between the two fluid components, the relevant variable
is the composition φ, a conserved order parameter satisfying the continuity equation

φ̇=
∂φ

∂t
+v·∇φ=−∇· Jφ, (3.9)

where Jφ is the diffusive current density, which is taken as the rate variable here. Since
the dissipation function must be quadratic in rates, we use

Rdi f f =
∫

dr

(

J2
φ

Mφ

)

, (3.10)
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where Mφ is the mobility coefficient. At the fluid-solid interface, φ is no longer conserved.
Consequently, φ̇ becomes the rate variable for the relaxational dynamics there, and the
corresponding rate of dissipation is given by

Rrel =
∫

dS

(

φ̇2

Γ

)

, (3.11)

with Γ being a positive rate coefficient. The rate of dissipation due to the displacement
from two-phase equilibrium is

Rφ=Rdi f f +Rrel, (3.12)

and the dissipation function is given by

Φ=
1

2
(Rvis+Rslip+Rφ). (3.13)

As to the rate of change of the free energy Ḟ, we replace δφ by ∂φ/∂t= φ̇−v·∇φ in Eq.
(3.4) and obtain

Ḟ=
∫

dr

(

µφ
∂φ

∂t

)

+
∫

dS

(

Lφ
∂φ

∂t

)

=
∫

dr
[

µφ(φ̇−v·∇φ)
]

+
∫

dS
[

Lφ(φ̇−v·∇φ)
]

=
∫

dr
(

∇µφ · Jφ−µφv·∇φ
)

+
∫

dS
(

Lφφ̇−Lφvτ∂τφ
)

(3.14)

using φ̇=−∇· Jφ, v·n=0 and Jφ ·n=0 at the solid surface, together with an integration

by parts
∫

dr[µφ(−∇· Jφ)]=
∫

dr(∇µφ · Jφ).

According to the Onsager principle, we construct the functional A as A=Φ+Ḟ, which
reads

A[v(r), Jφ(r),φ̇(r)]=
∫

dr

(

J2
φ

2Mφ

)

+
∫

dr
(

∇µφ · Jφ

)

+
∫

dS

(

φ̇2

2Γ

)

+
∫

dS
(

Lφφ̇
)

+
∫

dr
[η

4
(∂ivj+∂jvi)

2
]

+
∫

dr
(

−µφv·∇φ
)

+
∫

dS

[

β

2
(v

slip
τ )2

]

+
∫

dS
[

−vτ(Lφ∂τφ)
]

. (3.15)

Supplemented with the incompressibility condition ∇·v= 0, A is to be minimized with
respect to the rates {v, Jφ,φ̇}. Minimizing A with respect to Jφ yields the constitutive
relation

Jφ =−Mφ∇µφ, (3.16)
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which, in combination with the continuity equation, leads to the convection-diffusion
equation

∂φ

∂t
+v·∇φ=∇·(Mφ∇µφ). (3.17)

Minimizing A with respect to φ̇ at the solid surface leads to the relaxational boundary
condition

∂φ

∂t
+vτ∂τφ=−ΓLφ. (3.18)

In minimizing A with respect to v, the incompressibility condition ∇·v = 0 is imposed
via the use of a Lagrange multiplier p(r) in an extra term

∫

dr(−p∇·v). By writing the
variation of A as the sum of a group of volume integrals and a group of surface integrals,
we first obtain the Stokes equation

−∇p+∇·σ+µφ∇φ=0, (3.19)

with the Lagrange multiplier p being the pressure and σ=η[∇v+(∇v)T] the Newtonian
viscous stress tensor, and then obtain the slip boundary condition

βv
slip
τ =−η(∂nvτ+∂τvn)+Lφ∂τφ, (3.20)

where the slip coefficient β= β(φ), a function of the local composition, may vary from
one fluid component to the other. The inertial effects are to be included by generalizing
the Stokes equation to the NS equation with the capillary force

ρ

(

∂v

∂t
+v·∇v

)

=∇·σ−∇p+µφ∇φ. (3.21)

Emerging from the application of the variational principle of Onsager, Eqs. (3.18) and
(3.20) constitute a consistent pair and are denoted the generalized Navier boundary con-
ditions (GNBC). Our continuum model for MCL in immiscible two-phase flows is formed
by Eqs. (3.17), (3.18), (3.20), and (3.21), supplemented with the incompressibility condi-
tion ∇·v=0 and the impermeability conditions vn =0 and Jφ ·n=0 at the solid surface.

3.2 Modeling the two-phase immiscible EOF

The hydrodynamics of two-phase immiscible EOF in narrow channels is modeled through
the same variational approach outlined in Section 3.1. The flow geometry in our simu-
lations is illustrated in Fig. 1. Here one fluid (fluid 1) is a conductive electrolyte and the
other (fluid 2) is nonconductive, or both are electrolytes. For simplicity, we treat fluid 1
(φ=−1) as an electrolyte and fluid 2 (φ=+1) as a nonconductive fluid. The generalization
to the case of two electrolytes is straightforward. We denote the cation concentration in
the electrolyte by c1(r) and the anion concentration by c2(r). In the following, α is used
to label the ion species with α = 1,2 and ∑α means ∑

2
α=1. We will employ a procedure
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Fluid 1Fluid 2

x

z

Fluid 1

2H

W

Figure 1: Two-dimensional (2D) simulations are carried out for EOF confined between two planar solid walls.
For single-phase EOF, the whole channel is occupied by a conductive electrolyte. For two-phase EOF, the two
curves denote the interfaces between an electrolyte (fluid 1) and a nonconductive fluid (fluid 2). The channel
measures W in the x direction and 2H in the z direction. The origin of the coordinate system is at the lower
left corner of the channel.

similar to that in Section 3.1 in order to derive the equations of motion in the bulk region
and the relevant boundary conditions at solid surfaces simultaneously.

Compared to the neutral immiscible two-phase flows modeled in Section 3.1, the ad-
dition of ions leads to new contributions to both free energy and dissipation. In addition
to the free energies FCH in (3.2) and Ff s in (3.3), there are three new free energies to be in-
cluded, for the entropy of ions, the electrostatic energy, and the ion-interface interaction.
The first one is

Fent[cα(r)]=∑
α

∫

dr(kBTcα lncα), (3.22)

which comes directly from entropy and drives the ion distribution toward a homoge-
neous state (of maximum entropy). The second one is the electrostatic energy

Fes[φ(r),cα(r)]=
∫

dr

(

1

2
E·D

)

, (3.23)

which depends on the dielectric constant ǫ(φ) and the net charge density ρe =∑α eqαcα

through Eqs. (2.1) and (2.2). Here all the effects of induced magnetic field are neglected
and the electric fields are curl-free. The third one is the so called solvation free energy [47]

Fsol[φ(r),cα(r)]=∑
α

∫

dr(Bαφcα), (3.24)

which arises from the ion-interface interaction and plays the role of a phase-field barrier
[57] that confines the ions within the electrolyte and keeps them from penetrating into
the nonconductive fluid. For the case considered here, φ=−1 and +1 correspond to the
electrolyte and the nonconductive fluid, respectively. We choose Bα = B> 0 (α= 1,2) to
set a barrier of height 2B. In general, B should be large enough to prevent the ions from
penetrating the fluid-fluid interface in the presence of an external electric field. The total
free energy for two-phase immiscible EOF consists of five contributions as follows:

F[φ(r),cα(r)]=FCH[φ(r)]+Ff s[φ(r)]+Fent[cα(r)]+Fes[φ(r),cα(r)]+Fsol [φ(r),cα(r)]. (3.25)
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From Eqs. (2.1) and (2.2), we have the variational form [47]

δ(E·D)=δ(ǫE2)

=−E2δǫ+2E ·δD

=−E2δǫ−2∇·(VδD)+2V∇·δD

=−E2δǫ−2∇·(VδD)+2eV∑
α

qαδcα,

from which we obtain the variation of the electrostatic energy

δ{Fes[φ(r),cα(r)]}=−
∫

dr

(

1

2
E2δǫ

)

+
∫

dS(Vδσ)+∑
α

∫

dr(eVqαδcα), (3.26)

using the divergence theorem and the boundary condition (2.13).
We use a linear interpolation to define the dielectric constant in the interfacial region:

ǫ(φ)=ǫ1(1−φ)/2+ǫ2(1+φ)/2=ǭ+ǫ̃φ with ǭ=(ǫ1+ǫ2)/2 and ǫ̃=(ǫ2−ǫ1)/2. This avoids
introducing extra nonlinearity in the governing equations. For the free energy density at
the fluid-solid interface, we use the nonlinear interpolation γ f s(φ)=(∆γ f s/2)sin(πφ/2)
in Section 3.1 to ensure that Lφ vanishes at the two bulk equilibrium phases, i.e., Lφ(φ)=0
for φ =±1. The nonlinear interpolation used for the surface charge density is σ(φ) =

σ1(1−sin
πφ
2 )/2+σ2(1+sin

πφ
2 )/2, which gives σ(φ) = σ̄+σ̃sin

πφ
2 , with σ̄ = (σ1+σ2)/2,

σ̃=(σ2−σ1)/2, and the subscript i denoting the fluid component i (i=1,2). Substituting
the above expressions for ǫ(φ) and σ(φ) into Eq. (3.26), we obtain

δ{Fes[φ(r),cα(r)]}=−
∫

dr
E2

2
ǫ̃δφ+

∫

dSVσ̃
π

2
cos

πφ

2
δφ+∑

α

∫

dr(eVqαδcα).

It is straightforward to obtain the variational form for each of the remaining terms in
(3.25). The variation of the total free energy is of the form

δ{F[φ(r),cα(r)]}=
∫

dr
(

µφδφ
)

+
∫

dS
(

Lφδφ
)

+∑
α

∫

dr(µαδcα),

in which µφ, Lφ, and µα are given by

µφ=−∇·(K∇φ)−rφ+uφ3+∑
α

Bαcα−
ǫ̃

2
(∇V)2, (3.27)

Lφ=K∂nφ+

(

Vσ̃−
√

2

3

r2ξ

u
cosθs

)

sγ(φ), (3.28)

µα= kBT(lncα+1)+eqαV+Bαφ, α=1,2. (3.29)

Here µφ and Lφ have been redefined and µα is defined as the chemical potential for cα.
The equilibrium conditions derived from minimizing the free energy F[φ(r),cα(r)] given



S. Shao and T. Qian / Commun. Comput. Phys., 11 (2012), pp. 831-862 843

in Eq. (3.25) are µφ=const., Lφ=0, and µα=const.. It is readily seen that deviation from the
equilibrium is measured by ∇µφ and ∇µα in the bulk, and Lφ at the fluid-solid interface.
It follows that for small perturbations away from the equilibrium, there is a new rate
of dissipation Rc in addition to those included in the rate of dissipation Rφ given in Eq.
(3.12). Arising from the spontaneous response to the inhomogeneity of µα, Rc is given by

Rc=∑
α

∫

dr

(

J2
α

cα Mα

)

, (3.30)

in which the current density Jα of ions is taken as the rate variable, and Mα is the cor-
responding mobility coefficient. The total dissipation function for two-phase immiscible
EOF is given by

Φ=
1

2
(Rvis+Rslip+Rφ+Rc). (3.31)

Following a procedure similar to that for deriving Eq. (3.14) in Section 3.1, we have
the rate of change of the total free energy

Ḟ=
∫

dr
(

∇µφ · Jφ−µφv·∇φ
)

+
∫

dS
(

Lφ(φ̇−vτ∂τφ)
)

+∑
α

∫

dr(∇µα · Jα−µαv·∇cα),

in which the continuity equation (2.3) for ion concentration has been used with the bound-
ary condition Jα ·n=0 at the solid surface. Then we construct the functional A as

A[v, Jφ, J1, J2,φ̇]=Φ+ Ḟ+
∫

dr(− p̃∂ivi), (3.32)

which is to be minimized with respect to the rates {v, Jφ, Jα,φ̇} (α=1,2).
Minimizing A with respect to v, we obtain the Stokes equation

∇·σ−∇ p̃+µφ∇φ+∑
α

µα∇cα=0,

and the slip boundary condition as expressed in Eq. (3.20) but with Lφ redefined in Eq.
(3.28). To show the effects of electric field more clearly, we introduce p= p̃−∑α cαµα as
the new pressure and then make use of the expression for µα in Eq. (3.29). The Stokes
equation becomes

∇·σ−∇p+

[

µ− ǫ̃E2

2

]

∇φ−kBT∑
α

∇cα+ρeE=0, (3.33)

with µ=−∇·(K∇φ)−rφ+uφ3. By including the acceleration terms, the Stokes equation
is immediately generalized to the NS equation

ρ

(

∂v

∂t
+v·∇v

)

=∇·σ−∇p+µ∇φ− ǫ̃E2

2
∇φ−kBT∑

α

∇cα+ρeE. (3.34)
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A comparison with Eq. (2.12) shows that there are three extra terms appearing in Eq.
(3.34). They are µ∇φ for the capillary force, − ǫ̃

2 E2∇φ due to the Maxwell stress, and
−kBT∑α∇cα due to the osmotic pressure gradient (which is missing in Eq. (2.12)). Com-
paring Eq. (3.34) with Eq. (3.21), we see that the last three terms in the right-hand side of
Eq. (3.34) are included for electrokinetic effect.

Minimizing A with respect to Jα yields

Jα=−cα Mα∇µα =−Dα∇cα−eqα Mαcα∇V−MαBαcα∇φ, (3.35)

which, in combination with the continuity equation (2.3), leads to the NP equation. A
comparison of Eq. (3.35) with Eq. (2.4) shows that the last term in the right-hand side of
Eq. (3.35), which arises from the solvation free energy (3.24), reflects the blocking effect
of fluid-fluid interface on ion transport.

Minimizing A with respect to Jφ and φ̇, we obtain equations (3.16) and (3.18), re-
spectively, but with µφ and Lφ redefined in (3.27) and (3.28). It is noted that σ̃, which
denotes the surface charge density difference, appears explicitly in the surface quantity
Lφ in (3.28). This indicates that σ̃ would affect both the slip and the relaxation at the
fluid-solid interface.

In summary, our variational model for two-phase immiscible EOF consists of the fol-
lowing governing equations

• (2.1) for electric potential V (the Poisson equation),

• (2.3) and (3.35) for ion transport (the Nernst-Planck equation),

• (3.17) for phase field (i.e., fluid-fluid interface movement) (the Cahn-Hilliard equa-
tion),

• (3.34) for momentum transport (the Navier-Stokes equation),

• the incompressibility condition ∇·v=0,

with the boundary conditions at the fluid-solid interface

• ∂nV=σ/ǫ,

• ∂nµα =0,

• the relaxational boundary condition (3.18) and ∂nµφ=0,

• the slip boundary condition (3.20) for tangential velocity and vn = 0 for normal
velocity.

Here, µφ, Lφ, and µα are expressed in Eqs. (3.27), (3.28), and (3.29), respectively.
A phase-field model has recently been presented for electrowetting [28] through a

similar variational approach. Our model is different from that model in the following
sense:
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1. We use two concentrations cα for cations and anions to describe the ion distribution
and transport, rather than a single change density as in [28]. This is essential to
an accurate description of the structure of EDL and the Smoluchowski slip therein,
to be demonstrated in our simulations for single-phase EOF. In our free energy ex-
pression, Fent[cα(r)] comes from entropy. It leads to the osmotic pressure gradient
−kBT∑α∇cα in the momentum equation and the diffusive flux in ion transport.
There is a similar term in the free energy in [28], in the form of Fρ =

λ
2

∫

Ω
ρ2, where

λ is a small coefficient, ρ the charge density, and Ω the spatial domain in which
the fluids are contained. It seems to us that there is a reminiscence of entropy in
Fρ, which is minimized by uniform charge distribution (subject to charge conserva-
tion).

2. The surface charge density σ appears explicitly in our model, from the boundary
condition for the Poisson equation to the variation of electrostatic energy. We note
that the surface charge density σ is essential to the formation of EDL, in both phys-
ical reality and mathematical formulation.

3. In our free energy expression, the solvation free energy Fsol[φ(r),cα(r)] is introduced
to prevent ions from penetrating through the fluid-fluid interface into the noncon-
ductive fluid. Such a mechanism is absent in [28].

Numerical results presented in Section 4 will show that (a) an accurate modeling of
the EDL necessitates two concentrations for cations and anions, and the surface charge
density as well; (b) under an applied bias field, the solvation free energy leads to a grad-
ual redistribution of charge from the EDL to a layer next to the fluid-fluid interface; (c)
numerical implementation with the GNBC leads to the amplification of EOF by wall slip-
page and the partial slip around the MCL. It is noted that in [28], although the slip bound-
ary condition is derived, the numerical examples are still presented with the no-slip con-
dition.

It’s worth pointing out that while phase-field models can introduce a regularization
to remove the non-integrable stress singularity in the neighborhood of the MCL with the
no-slip boundary condition, the role of fluid slip at solid walls still needs to be taken
into account explicitly, especially when the flow has a characteristic length down to the
submicrometer or nanometer scale [19, 21, 24]. The microscopic mechanism (diffusion
across fluid-fluid interfaces or slip at solid surfaces) has a significant effect on the flow in
the vicinity of the MCL (i.e., the inner solution).

3.3 Dimensionless equations

Our variational model is phenomenological and involves many parameters. They are ρ
and η in the momentum equation, K, r, and u in the Cahn-Hilliard free energy for the
fluid-fluid interface (with ξ =

√
K/r being the length scale for interfacial thickness), Mφ

and Γ for the evolution of φ, Bα, Dα and Mα =Dα/kBT for the transport of ions, the per-
mittivity ǫ, and the slip length ls. Introducing the reference quantities Lre f for length, Ure f
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for velocity, Cre f for concentration, and Ere f for electric field, we can nondimensionalize
the governing equations with the dimensionless variables defined as follows:

r= r′Lre f , v=v′Ure f , t= t′
Lre f

Ure f
, p= p′

ηUre f

Lre f
,

cα= c′αCre f , E=E′Ere f , V=V ′Lre f Ere f , σ=σ′eLre f Cre f .

The values of the above model parameters and reference quantities are listed in Table
1. Dropping the primes denoting dimensionless quantities, we have the nondimension-
alized system consisting of the bulk equations

∇·(E(φ)∇V)=∑
α

qαcα,

∂cα

∂t
+v·∇cα =Dα∇2cα+Pαqα∇·(cα∇V)+Cα∇·(cα∇φ), (α=1,2),

∂φ

∂t
+v·∇φ=Ld∇2µ+∑

α

Lα∇2cα−Le∇2(∇V)2,

R
(

∂v

∂t
+v·∇v

)

=−∇p+∇2v+[Bµ−Q(∇V)2]∇φ−S∑
α

∇cα−F
(

∑
α

qαcα

)

∇V,

and the GNBC at the solid surface

(Ls(φ))
−1

v
slip
τ =BL∂τφ−∂nvτ+FVσ̃sγ(φ)∂τφ,

∂φ

∂t
+vτ∂τφ=−VsL−VeVσ̃sγ(φ),

with µ=−∇2φ−φ+φ3 and L= ∂nφ−
√

2
3 cosθssγ(φ). The dimensionless parameters ap-

pearing in the above system are given by

R=
ρξUre f

η
, B=

rξ

ηUre f
, Q=

ǫ̃ξE2
re f

2ηUre f
, S=

kBTξCre f

ηUre f
,

F=
eξ2Cre f Ere f

ηUre f
, Ld=

rMφ

ξUre f
, Lα =

BαMφCre f

ξUre f
, Le =

ǫ̃MφE2
re f

2ξUre f
,

Dα=
Dα

ξUre f
, Pα=

eDαEre f

kBTUre f
, Cα=

BαDα

kBTξUre f
, E(φ)= ǫ(φ)Ere f

eξCre f
,

Ls(φ)=
η

β(φ)ξ
, Vs =

KΓ

Ure f
, Ve =

VsF
B =

eξ3ΓCre f Ere f

Ure f
.
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Table 1: Parameters and values.

Symbol Description Value

ρ mass density 103kg·m−3

η shear viscosity 10−3kg·m−1 ·s−1

r and u fluid-fluid interfacial parameters 5.3×107J·m−3

ξ=
√

K/r fluid-fluid interfacial thickness 10−9m

Mφ mobility coefficient for φ 3.8×10−17m3 ·s·kg−1

Γ rate coefficient for φ 3.8×1010s·kg−1

B energy barrier for ion confinement 1.85×10−19J

D diffusion constant for ions 2×10−9m2 ·s−1

T temperature 298.15K

ǫ permittivity 7.08×10−10F·m−1

ls slip length 5×10−10m

Lre f length unit 10−9m

Ure f velocity unit 30m·s−1

Cre f concentration unit 1mol·m−3(=1mM)

Ere f field strength unit 109V·m−1

4 Results and discussion

To obtain numerical solutions for the model, we use a pressure-Poisson solver for the
NS equation [58], a semi-implicit scheme for the CH equation [59], and a conservative
finite difference method for the NP equation [60]. The numerical method adopted here is
mostly the same as that in [19]. In this section, we first present the setup of the simulated
systems, including the relevant parameters, initial conditions, and boundary conditions.
We then carry out single-phase EOF simulations. This is to show some finite-size effects
and to (partially) verify the validity of our numerical implementation. In our two-phase
EOF simulations, we focus on the flow phenomena with an interplay between the micro-
scopic slip at the solid surface and the apparent slip accumulated in the EDL. We also
present results for charge transport and the effects of contact angle.

4.1 Setup

As illustrated in Fig. 1, simulations are carried out for flows in a two-dimensional (2D)
channel with the length W and the height 2H. The model parameters are listed in Table 1.
Here the same material parameters are used for the electrolyte (fluid 1) and the dielectric
fluid (fluid 2), including the mass density, viscosity, and permittivity. The same diffusion
coefficient D and barrier height B are used for cations and anions. The interfacial tension

γ= 2
√

2
3

r2ξ
u ≃50mN·m−1 is comparable to that between the mineral oil and water [61]. The

surface charge density at the electrolyte-solid interface is set to be σ1 =−2×10−3C·m−2,
while σ2 = 0 for the dielectric fluid means that there is no surface charge at the other
fluid-solid interface.
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In the x direction, periodic boundary conditions are used for the order parameter φ,
fluid velocity v = (vx,vz), and ion concentrations cα, while a Neumann-type boundary
condition

−∂V

∂x
=E0 (4.1)

is used for the electric potential V to apply the bias field E0x̂.

The simulation is divided into two steps. In the first step, we compute the equilibrium
state without bias field (i.e., E0 =0) from a profile with two planer interfaces for φ and a
uniform distribution of ions. The initial conditions are

φ(x,z;t=0)=







tanh x−xl√
2ξ

, x≤ (xl+xr)/2,

−tanh x−xr√
2ξ

, x> (xl+xr)/2,
(4.2)

c1(x,z;t=0)=
(

c0− σ1

eH

) 1−φ(x,z;t=0)

2
, (4.3)

c2(x,z;t=0)= c0 1−φ(x,z;t=0)

2
, (4.4)

where xl (xr) is the location of the interface on the left (right), c0 is the bulk concentration,
and ∆c=−σ1/eH is required by the overall electroneutrality condition

σ1+
∫ H

0
ρedz=0, (4.5)

which is also called the compatibility condition for the Poisson equation (2.1). Due to the
symmetry of the system, simulations are carried out in the lower half of the channel, i.e.,
[0,L]×[0,H], with the symmetry boundary conditions applied at the middle level z=H.
The dimensionless Poisson-Nernst-Planck-Cahn-Hilliard system without fluid velocity is
solved until the rate of change falls below a given tolerance, say, 10−6 here. In the second
step, we turn on the bias field in the x direction to induce the EOF. The flow phenomena
are investigated over a long time interval.

4.2 Single-phase EOF

Partly as a calibration, numerical results are obtained for single-phase EOF, in which φ
remains at φ=−1 for the electrolyte. We use c0=1mM for the bulk concentration of ions
and σ1 =−2×10−3C·m−2 for the surface charge density. Correspondingly, the Debye
length defined in (2.10) is λD ≃9.711nm and the zeta potential ζG given by the Grahame
equation (2.11) is ζG ≃−26.26mV. Since the present model employs the NP equation to
describe the ion distribution and transport, we can investigate the electric potential and
ion concentrations for both H ∼ λD with overlapped EDL fields and H ≫ λD without
overlapped EDL fields.



S. Shao and T. Qian / Commun. Comput. Phys., 11 (2012), pp. 831-862 849

0 50 100 150 200 250 300

−0.026

−0.024

−0.022

−0.02

−0.018

−0.016

−0.014

 H (nm)

ζ 
(V

)

0 50 100 150 200 250 300
0

1

2

3

4

 z (nm)
 C

o
n

ce
n

tr
a

tio
n

 (
m

M
)

 

 

 Anion
 Cation

Figure 2: Zeta potential ζ in single-phase EOF, defined as the potential variation from z = H to z = 0 at
equilibrium, is plotted as a function of H. The inset shows the ion concentrations for H=12.5,25,50,100,300.

We first set E0 = 0 and find the equilibrium states for different channel heights. In
Fig. 2, we plot the zeta potential ζ, here defined as the potential variation from z= H to
z = 0, as a function of H, half of the channel height. The ζ-H curve shows a strong H
dependence for small H, with ζ approaching ζG ≃−26.26mV predicted by the Grahame
equation (2.11) as H→∞. Actually, the zeta potential for H=300 agree with the prediction
of the Grahame equation in the first four figures after the decimal point. The inset of Fig.
2 shows the ion concentrations for different values of H. It is observed that (a) for very
small channel height (in comparison with λD) with overlapped EDL fields, the channel
is mostly a unipolar solution of cations that neutralizes the negative surface charge [43];
(b) for large channel height without overlapped EDL fields, the cations and anions have
nearly the same concentration (i.e., c0) far away from the wall.

We then turn on the bias electric field E0 = 106V·m−1. The steady state is obtained
by marching the dimensionless Poisson-Nernst-Planck-Navier-Stokes system until the
relative change between two successive time steps is less than a given tolerance, say, 10−6

here. To show the electrokinetic effect in confined geometry, the velocity is measured by
Ueo defined in (2.15) with ζ = ζG. Here the Navier slip boundary condition is used with

the slip length given by ls=0.5nm. In Fig. 3, we plot the flow rate Q=H−1
∫ H

0 vx(z)dz as a
function of H. It is seen that Q increases with the increasing H and approaches a constant
as H →∞, thus indicating the plug-flow profiles plotted in the inset of Fig. 3. It is also
observed that (a) the average velocity and the maximum velocity both increase with the
channel height; (b) plug-flow profile becomes more obvious for larger channel height; (c)
the flow enhancement due to slip is confirmed. For H = 300, the factor is about 1.05, in
agreement with the theoretical prediction 1+ls/λD [7, 8].
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Figure 3: Flow rate Q= H−1
∫ H

0 vx(z)dz in single-phase EOF is plotted as a function of H for steady states.

The inset shows the velocity profiles vx(z) at x=0 for H=12.5,25,50,100,300.

To summarize, the above results show that our numerical calculations that involve the
Poisson equation, Nernst-Planck equation, and Navier-Stokes equation with the Navier
boundary condition can reach high accuracy, with or without overlapped EDL fields. As
for the Cahn-Hilliard equation, the method is the same as that in [19,21], with its accuracy
already demonstrated. Below we use the same codes to simulate two-phase EOF.

4.3 Two-phase EOF

Initially, the nonconductive fluid 2 is located in the central region of the channel, with an
extension W0= |xr−xl| in the x direction. The rest of the space is occupied by fluid 1, the
electrolyte. In the simulation results presented below, the initial extension of fluid 2 is
fixed at W0 =25nm, H is fixed at 25nm, the velocity is measured by Ueo defined in (2.15)
with ζ=ζG given by the Grahame equation (2.11), and the time unit is 1/30ns. For simple
Lennard-Jones liquids, continuum hydrodynamic formulation has been found valid for
channels of width as small as a few tens of σLJ , the length parameter in the Lennard-
Jones potential [19, 20]. This indicates that the continuum formulation can still be used
for channel width 2H = 50nm. What makes the issue more complicated is the addition
of ions in the present study as it is usually very difficult for a continuum formulation to
take into account the steric effects due to the finite size of ions. Bearing this in mind, we
have to assume that the ion size is at most comparable to the size of solvent molecules.

4.3.1 θs =90◦

We start from the static contact angle θs = 90◦ with the static fluid-fluid interfaces per-
pendicular to the solid walls. In Fig. 4, we plot the fluid velocity at the center of the left
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Figure 4: vx at (x= 0,z= H) (the center of the left boundary of the channel) plotted as a function of time.
The inset is an enlarged view for the initial stage from t=0 to 400, with the two curves for case (1) and case
(2) being indistinguishable.

boundary of the channel as a function of time for three different cases: (1) W = 100nm,
E0 = 106V/m; (2) W = 100nm, E0 = 105V/m; (3) W = 200nm, E0 = 105V/m. In case (1),
vx(0,H) shows a fast increase in the beginning and reaches the local maximum 0.510 at
t=20. Then it decreases to the local minimum 0.292 at t=97. After that, it shows a slow
increase over a long time interval and reaches the steady value 2.103 at about t= 14000.
As to the other two cases, similar behaviors are observed though more time is needed for
vx(0,H) to reach the steady value. In the inset of Fig. 4, the initial stage is better viewed
for from t= 0 to 400. It is seen that the two curves for case (1) and case (2) are indistin-
guishable. This indicates that in the initial stage, the velocity field is proportional to the
applied bias field according to the initial charge distribution. (Note that vx(0,H) is mea-
sured by Ueo which is also ∝ E0.) In this stage, the driving force comes from the charged
EDL. It takes a long time to reach the final steady state due to the slow charge transport.
Initially, the charge is concentrated in the EDL next to the solid walls. Due to the slow
transport in the flow, the charge gradually accumulates next to the fluid-fluid interfaces,
with positive charge on the left of the left interface and negative charge on the right of the
right interface, as shown in Fig. 5, as the applied field is in the +x direction. It is noted
that case (1) and case (2) have the same initial charge distribution but different strengths
of applied electric field. Therefore, charge transport is slower in case (2) than in case (1)
and hence it takes much longer time to reach the steady state, as indicated in Fig. 4. As
for case (3), W is doubled and hence the approach to the steady state is even slower.

The time variation of charge distribution is closely related to that of the flow field.
The profiles of vx at the left boundary x=0 (the inlet) at different time instants are shown
in Fig. 6. In the initial stage (from t= 0 to t= 400), the driving force on the fluid is con-
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Figure 5: The net charge density fields for case (1) at (a) t=0, (b) t=400, and (c) t=14338. In (a) and (b),
the charge is concentrated in the EDL next to the solid surface. Due to the slow transport in the flow, the
charge gradually accumulates next to the fluid-fluid interfaces, as shown in (c).
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Figure 6: vx plotted as a function of z at the left boundary x=0 for case (1). Different curves correspond with
different time instants marked on the curves. Note that the time variation of vx(0,H) shown here corresponds
with that in Fig. 4.

centrated in the EDL next to the solid walls. Consequently, the EOF is started near the
confining walls and soon approaches the plug-flow profile, as shown by the curves at
t=1,3,5,20,100,400 in Fig. 6. After that, there is a slow charge redistribution over a long
time interval. As the charge is concentrated near the fluid-fluid interfaces finally, the
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Figure 7: The velocity fields for case (1) at (a) t= 400 and (b) t= 14338. The thick solid lines represent the
fluid-fluid interfaces determined by φ = 0. Far away from the fluid-fluid interfaces, the flow shows plug-flow
profile in (a) but parabolic profile in (b), due to distinct charge distributions. The interfaces are flat because of

the very small capillary number ηUeo/γ∼4×10−4.
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Figure 8: The order parameter fields for case (1) at (a) t=0, (b) t=400, and (c) t=14338.

vx(z) profiles at the left boundary become almost parabolic, as seen from Fig. 6. Com-
pared to the plug-flow profile, the parabolic profile has the velocity variation less con-
fined near the solid boundaries and hence acquires a lower viscous dissipation. That is,
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charge transport makes the operating state less dissipative. This explains the faster flow
accompanying the parabolic profile.

For comparison, we also plot the velocity fields at t= 400 and t= 14338 in Fig. 7. At
t=400 in the initial stage, the vx(z) profiles far from the fluid-fluid interfaces are of plug-
flow type seen in single-phase EOF. At the fluid-fluid interfaces, vx(z) shows negligible
variation. Between these two distinct behaviors, there is a transition region measuring
∼ 10nm in the x direction, with slip at solid surface. At t= 14338, the vx(z) profiles far
from the fluid-fluid interfaces become parabolic due to charge redistribution, as already
seen in Fig. 6. The order parameter fields at three time instants are plotted in Fig. 8,
which shows the movement of fluid-fluid interfaces. The interfaces are approximately
flat because the capillary number ηUeo/γ∼4×10−4 is very small.

4.3.2 θs =60◦ and 120◦

We now turn to θs =60◦ and 120◦. Here θs is measured in the side of the nonconductive
fluid 2. The other parameters are H=25nm, W =100nm, W0 =25nm, and E0 =106V/m.
In Fig. 9, we plot the fluid velocity at the center of the left boundary of the channel as
a function of time for three different values of θs. It is observed that larger velocity is
reached with smaller contact angle and this becomes more obvious as charge redistribu-
tion goes on. Physically, a smaller contact angle makes the charge less concentrated in
the tiny region close to the contact line, and consequently, the MCL involves less viscous
dissipation. This leads to a larger fluid flux under the same driving field. The charge
density fields for θs =60◦ and θs =120◦ will be shown below.
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Figure 9: vx at (x= 0,z= H) (the center of the left boundary of the channel) plotted as a function of time
for three different static contact angles. The other parameters are H = 25nm, W = 100nm, W0 = 25nm, and
E0=106V/m. The inset is an enlarged view for the initial stage from t=0 to 400.
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Figure 10: The order parameter fields for θs = 60◦ at (a) t = 0, (b) t = 400, and (c) t = 10000. The two
interfaces are approximately symmetric to each other even in the presence of flow because the capillary number
ηUeo/γ∼4×10−4 is very small.
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Figure 11: The net charge density fields for θs = 60◦ at (a) t= 0, (b) t= 400, and (c) t= 10000. In (a) and
(b), the charge is concentrated in the EDL next to the solid surface. Due to the slow transport in the flow, the
charge gradually accumulates next to the fluid-fluid interfaces, as shown in (c).
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Figure 12: The velocity fields for θs =60◦ at (a) t=400 and (b) t=10000. The thick solid lines represent the
fluid-fluid interfaces determined by φ = 0. Far away from the fluid-fluid interfaces, the flow shows plug-flow
profile in (a) but parabolic profile in (b), due to distinct charge distributions.

The order parameter fields at three time instants are plotted for θs = 60◦ in Fig. 10,
which shows the movement of fluid-fluid interfaces. The two interfaces are approxi-
mately symmetric to each other even in the presence of flow because the capillary num-
ber ηUeo/γ∼4×10−4 is very small. The charge transport is illustrated in Fig. 11, which
shows the charge density fields at three time instants for θs =60◦. Similar to what is ob-
served for θs = 90◦ in Fig. 5, the charge is initially concentrated in the EDL next to the
solid walls, and due to the slow transport in the flow, the charge gradually accumulates
next to the fluid-fluid interfaces, with positive charge on the left of the left interface and
negative charge on the right of the right interface. A comparison between Fig. 5(c) and
Fig. 11(c) shows that a smaller contact angle makes the charge less concentrated close to
the contact line. This leads to a lower viscous dissipation and hence a larger fluid flux.

The velocity fields at t=400 and t=10000 are plotted for θs=60◦ in Fig. 12. Similar to
what is observed for θs = 90◦ in Fig. 7, far away from the fluid-fluid interfaces, the flow
shows plug-flow profile in the initial stage but parabolic profile in the late stage, due to
distinct charge distributions. The slip region in the vicinity of the MCL is also observed.

The order parameter fields, net charge density fields, and velocity fields for θs =120◦

are given in Fig. 13, Fig. 14, and Fig. 15, respectively. They show essentially the same
salient features as those for θs =60◦. As already mentioned, it is noted that compared to
Fig. 5(c) and Fig. 11(c), Fig. 14(c) shows the most concentrated charge distribution close
to the contact line. This leads to the highest viscous dissipation and hence the smallest
fluid flux as seen in Fig. 9.
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Figure 13: The order parameter fields for θs = 120◦ at (a) t = 0, (b) t = 400, and (c) t = 10000. The two
interfaces are approximately symmetric to each other even in the presence of flow because the capillary number
ηUeo/γ∼4×10−4 is very small.
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Figure 14: The net charge density fields for θs = 120◦ at (a) t= 0, (b) t= 400, and (c) t= 10000. In (a) and
(b), the charge is concentrated in the EDL next to the solid surface. Due to the slow transport in the flow, the
charge gradually accumulates next to the fluid-fluid interfaces, as shown in (c).
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Figure 15: The velocity fields for θs = 120◦ at (a) t= 400 and (b) t= 10000. The thick solid lines represent
the fluid-fluid interfaces determined by φ=0. Far away from the fluid-fluid interfaces, the flow shows plug-flow
profile in (a) but parabolic profile in (b), due to distinct charge distributions.

5 Concluding remarks

In this paper, we have derived a continuum hydrodynamic model for two-phase immis-
cible EOF at solid surfaces through a variational approach based on the Onsager principle
of minimum energy dissipation [21]. This model couples the incompressible NS equation
for momentum transport, the NP equation for ion transport, the CH phase-field equation
for interface motion, and the Poisson equation for electric potential. In our variational
approach, the boundary conditions at solid surfaces, including the GNBC for slip, are
derived as the constitutive equations at fluid-solid interfaces. Numerical results in 2D
channels, which involve overlapped EDL fields, have been obtained to demonstrate the
validity and applicability of the model, and a few salient features of two-phase immisci-
ble EOF at solid surfaces, including the Smoluchowski slip in the EDL and the wall slip
in the vicinity of MCL.

Compared to the model presented in [28] for electrowetting, our model uses two con-
centrations for cations and anions to describe the EDL, with the surface charge density
explicitly taken into account. The structure of EDL and the Smoluchowski slip therein
have been demonstrated in Section 4.2. Our model also introduces a phase-field barrier
that prevents ions from penetrating through the fluid-fluid interface into the nonconduc-
tive fluid. Numerical results in Section 4.3 have shown the blocking effect of this barrier
on ion transport. The problem encountered in long-time computations in [28] is there-
fore avoided. Finally, the GNBC is explicitly employed in our numerical implementation,
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while in [28] the numerical examples are presented with the no-slip condition.

Motivated by the results presented here, we plan to apply our model to investigate
the electrowetting dynamics with a focus on the boundary slip and the charge transport
in electrolyte droplets. We also plan to extend our model to incorporate a diffuse charge
layer bound at the fluid-fluid interface [31, 32]. Finally, the finite size (excluded volume)
effects in ionic solutions [62] are worth exploration as well. It is expected that the steric
effects due to the finite size of ions will lower the high concentration near the MCL, as
shown in Fig. 14, due to a balance between the electric driving force and the hard sphere
repulsion.
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