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Abstract. Propagation of light through curved graded index optical waveguides sup-
porting an arbitrary high number of modes is investigated. The discussion is re-
stricted to optical wave fields which are well confined within the core region and
losses through radiation are neglected. Using coupled mode theory formalism, two
new forms for the propagation kernel for the transverse electric (TE) wave as it trav-
els along a curved two-dimensional waveguide are presented. One form, involving
the notion of ”bend” modes, is shown to be attractive from a computational point of
view as it allows an efficient numerical evaluation of the optical field for sharply bent
waveguides.
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Key words: Curved waveguides, Coupled Mode Theory, harmonic oscillator.

1 Introduction

Large multimode optical fibres are finding increasing application in many areas of ap-
plied science. In practice, macrobending occurs in a large deflection of the fibre axis such
as that associated with spooling or the presence of loops. These deviations influence the
signal propagation as a result of mode coupling phenomena. This, in turn influences
the intermodal dispersion that may limit the achievable data transmission rate. Bends
can also be imposed and designed so as to convert from fundamental to the high-order
modes in optical fibres [1]. Wave propagation in a bent waveguide can be analyzed via
various means ranging from numerical techniques such as the popular Beam Propagation
Method (see for instance [2] and references therein) to semi-analytical approaches like
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the Ray Tracing technique [3] or the Beam Tracing Method [4]. For certain waveguide for
which propagation modes are analytically known or, at least, can be easily numerically
calculated, the Coupled Mode Theory (CMT) offers an efficient alternative for describ-
ing the propagation along curved waveguides [3, 5]. Basically, the CMT transforms the
original wave equation into a system of N first order ordinary differential equations (N
is the number of modes) also called coupling matrix which is then solved using standard
integration schemes. Problems arise when the number of propagation modes becomes
too large: plastic optical fibres, for instance, can support several hundred thousand up
to a million of modes. In these extreme cases, standard coupled mode theory becomes
numerically intractable because of the computational overhead, and so there is a need
for devising new strategies. The aim of this work is to shed a new light on this issue
and to propose an improvement of the standard CMT by considering the coupling of the
so-called ”bend” modes. Bend modes are local eigenmodes that satisfy the wave equa-
tion in the curved waveguide with constant curvature. By construction, these modes are
decoupled for circular bends and propagate almost adiabatically if the radius of curva-
ture changes sufficiently slowly. More generally, the associated coupling matrix is nearly
diagonal in most cases whereas the use of standard CMT would yield a fully populated
matrix.

In this paper, the discussion is restricted to slowly varying planar waveguides with
a parabolic graded index profile. Furthermore, the optical wave field is assumed to be
well confined within the core region, and losses through radiation are neglected. It is fur-
ther assumed that the waveguide is weakly guiding and that the paraxial approximation
holds. Under these assumptions, the problem is shown to be equivalent to the classical
time-independent harmonic oscillator. In this scenario, the solution admits an integral
formulation involving the Feynman propagator; this is discussed in Section 2 and Sec-
tion 3. Using the coupled mode theory (CMT) formalism, it is shown that the coupling
matrix can be integrated analytically and the exact solution is recovered numerically via
the computation of a matrix exponential. The theory is presented for both standard and
improved CMT in Section 4 and Section 5. Numerical experiments carried out in Section
6 confirm the efficacy and advantages of the proposed approach.

2 Problem statement

We aim to study the propagation of a monochromatic TE (transverse electric) wave E=
Êe−iωt in a weakly guiding two-dimensional dielectric waveguide whose graded-index
profile n in the core of width 2a has the parabolic form

n2(u)=n2
0

(

1−2∆
(u

a

)2)

, |u|≤ a, (2.1)

where ∆=(n2
0−n2

c)/2n2
0 denotes the usual profile height parameter, n0 is the refractive

index along the waveguide’s axis and nc is the index of the cladding. Eq. (2.1) is naturally
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Figure 1: The geometry of the curved waveguide.

written in the local coordinate system (s,u) which follows the waveguide. This new
coordinate system is defined by the transformation: r= r0(s)+un, where r0(s) is a point
of a smooth curve C following the centre of the waveguide along its bent path as indicated
in Fig. 2 and s is the arc length. The local basis vectors t and n are the usual unit tangent
and normal vectors defined by

dr0

ds
= t and

dt

ds
=κn. (2.2)

Here κ = ρ−1 is the curvilinear curvature and ρ the local radius of curvature. By con-
struction, we have that (s,u) define orthogonal curvilinear coordinates. More precisely,
we find that (dr)2 = h2ds2+du2, where the Jacobian of the transformation is given by
h= |∂sr|=1−κu. By expressing the Laplacian operator in the new coordinate system, we
find that Ê must satisfy the following wave equation

∂s

(

h−1∂sÊ
)

+∂u

(

h∂uÊ
)

+hk2n2(u)Ê=0, (2.3)

where k=ω(ε0µ0)1/2 is the vacuum wavenumber and ε0 and µ0 denote the usual free-
space dielectric and permeability constants.

To make some progress, we assume that the angle ϕ between a tangent to the centre-
line and the horizontal line (see Fig. 1) is a smooth function of a slow variable σ= εs/a,
where ε is a small dimensionless parameter. With this definition, the unit tangent vector
has the explicit form t = (cosϕ,sinϕ) and straightforward calculation from (2.2) shows
that κa= ε|∂σ ϕ|. Since ∂σ ϕ∼O(1), the small parameter ε may be thought of as a ratio of
the half-width a to a typical radius of curvature, and the limiting case ε=0 corresponds to
a straight waveguide. Note that, the Frenet-Serret equations (2.2) imply that C is a non-
degenerate curve, i.e., the curvature κ must be strictly positive. A simple way to alleviate
this apparent limitation is to orientate the normal vector as n=(−sinϕ,cosϕ) and let the
curvature be a signed function with κa= ε∂σ ϕ. In this work, we are interested in large
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multimode waveguides, that is we assume that the waveguide parameter defined as

V= kn0a
√

2∆

is a large number. Furthermore, consideration will be limited to the practically important
case in which the index difference is small compared to unity (that is we consider the
weak guidance limit ∆→ 0). In these conditions, the main propagation direction of the
electromagnetic energy is along the length of the waveguide. It is then convenient to
extract from the s-dependence of the electric field a carrier wave moving in the s direction
so we put Ψ = Êexp(−ikn0s). Now, to allow a precise measure of the various terms
involved in (2.3), it is judicious to rescale the longitudinal and transverse coordinates as
follows

x=u

√
V

a
and z= s

√
2∆

a
. (2.4)

The next step is to define the small parameters

ǫ=
ε√
2∆

≪1 and δ=
(2∆

V

)
1
2 ≪1, (2.5)

so that the scale factor h and its inverse look like

h=1−δǫx∂σ ϕ and h−1=1+δǫx∂σ ϕ+O(δ2ǫ2), (2.6)

which after substitution in (2.3) gives

δ2

2
∂2

zzΨ+i∂zΨ=HΨ+γxΨ+O(δǫ). (2.7)

Here, the transverse operator H is the z-independent Hamiltonian

H=−1

2

(

∂2
xx−v

)

(2.8)

corresponding to the straight waveguide. The potential v stands for the quadratic well
of finite depth v(x)=x2, where |x|≤

√
V and v(x)=V otherwise. Therefore, the interface

core-cladding is now located at |x|=
√

V. In (2.7), function γ can be interpreted as the
normalized curvature within this new coordinate system. It depends on the slow variable
σ=ǫz and is defined as

γ=η∂σ ϕ with η=ǫδ−1. (2.9)

Thus, the effect of the curvature is conveniently measured as the ratio of the curvature
term ǫ with respect to the scaling parameter δ and we can already anticipate non negli-
gible effects as soon as these two quantities are of comparable amplitude. In the present
analysis, we shall limit ourselves to scenarios in which the second derivative paraxial
term can be ignored. In this case one finds that Ψ must satisfy the simplified one-way
equation

i∂zΨ=HΨ+γxΨ. (2.10)
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3 Formal solution

Eq. (2.10) is nothing else but the Schrödinger equation which describes the motion of a
harmonic oscillator in the presence of a varying external force. Here, the parabolic well
is unfortunately finite and this renders the mathematical analysis very difficult as the
presence of the induced radiation field in the cladding must be carefully treated. In the
present study we shall restrict ourselves to the analysis of an optical wave field which is
well confined within the core region, i.e., we assume that Ψ≈0 at x±

√
V. The truncation

of the graded refractive index at the core-cladding interface can be then neglected and
one can assume that the parabolic profile extends to infinity. If this is done then the
solution of the initial value problem (2.10) is obtained via the integral

Ψ(x,z)=
∫

R

K(x,z;x′,0)Ψ(x′,0)dx′. (3.1)

In [6], the propagator kernel K(x,z;x′,0) is given explicitly using Feynman’s path formal-
ism. The technique is however cumbersome and an easier derivation presented in [7]
shall be followed here. It suffices to look for the form K = K0eiS, where K0 is the well
known propagator for the non-perturbed simple harmonic oscillator, i.e.,

K0(x,z;x′,0)=
1√

2πisinz
exp

(

i
(x2+x′2)cosz−2xx′

2sinz

)

. (3.2)

Now, using the fact that ∂xK0= i f (x,x′,z)K0, where

f (x,x′,z)=
xcosz−x′

sinz
, (3.3)

we find the equation for the phase as

−∂zS= f (x,x′,z)∂xS+γx− i

2
∂2

xxS+
1

2
(∂xS)2 (3.4)

with the initial condition that S = 0 at z = 0. Thanks to linearity of f with respect to x
and x′ the real-valued phase function S admits the separable form S = â(z)x+ b̂(z)x′+
ĉ(z). The closed form solution for these functions is given in [6,7] and reminded here for
completeness:

â(z)=− 1

sinz

∫ z

0
γ(ǫz′)sinz′dz′, b̂(z)=

∫ z

0

â(z′)
sinz′

dz′, ĉ(z)=−1

2

∫ z

0
â2(z′)dz′. (3.5)

Despite the elegance of the integral approach, the numerical evaluation of (3.1) is not
trivial as both K as well as the input optical field are highly oscillatory functions of the
transverse coordinate x, with the number of oscillations growing linearly with V. There
is, however, a scenario for which (3.1) admits a closed form solution: when the input field
is an off-axis Gaussian beam of width w0 centered on τ0. In this particular case, standard
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calculations will show that the light intensity distribution along the transverse section
remains Gaussian, that is

Ψ(x,z)=
A

√

q(z)
exp

(

iχ(x,z)− (x−τ(z))2

w2(z)

)

, (3.6)

where function q describes an elliptical path in the complex plane as we have q(z) =
cosz+2isinz/w2

0. The width of the beam, which is given by w(z)=w0|q(z)| is a π-periodic
function with respect to the normalized coordinate axis z and χ is a real-valued phase
function. Its exact form is not essential for our discussion and this is left to the reader.
The main point is to observe that the gaussian distribution is centered about

τ(z)=
∫ z

0
γ(ǫz′)sin(z′−z)dz′+τ0cosz. (3.7)

In the simplest scenario, where γ is a constant, the bend path is circular and the shift has
the oscillatory behavior τ(z)=−γ+(γ+τ0)cosz. So a simple way to avoid the oscillation
is to inject a gaussian field centered on τ0 =−γ. The beamwidth variation can also be
avoided for the specific value w0 =

√
2, which is precisely the one of the fundamental

mode of the straight waveguide. In a more general case, if we assume that the geometry
of the waveguide, i.e., the normalized curvature γ, can be described via discrete super-
position of its Fourier components γΩ=AΩcos(Ωz+φ), we can easily anticipate that the
τ-Fourier components will behave like AΩ/(Ω2−1). At the resonant frequency |Ω|=1,
τ grows linearly with z and the light energy will eventually escape the core region to
be scattered in the cladding. In practice, any fluctuations with a strong spatial frequency
component around the resonant frequency will, via radiation loss, have their light energy
filtered out. This resonance effect is precisely that used in fibre Bragg grating structures
to block certain wavelengths. In the context of the present paper, it is required that γ
is a slowly varying function so this scenario is obviously not encountered, but we shall
comment on this further when necessary. Note the highly oscillating case, i.e., Ω≫1, can
be handled via multiple-scale asymptotic analysis and this is discussed in [8].

4 Standard coupled mode theory

Another classical method for solving the one-way equation (2.10) is to express the field
distribution in the waveguide by using standard coupled mode theory, i.e., Ψ is expanded
in the eigenfunction basis ψν of the unperturbed waveguide via the scalar product

Ψ(x,z)=ΨT(x)Dβ(z)a(z), (4.1)

with Ψ=(ψ0,ψ1,···)T. The diagonal matrix Dβ contains the propagation constants,

(Dβ(z))νν =e−iβνz
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and the vector a(z)=(a0(z),a1(z),···)T contains the modal amplitudes. In (4.1), the sum-
mation extends over the discrete spectrum of the guided modes of the straight waveguide
satisfying the eigenvalue problem

Hψν=βνψν, (4.2)

with the boundary condition ψν(x)→0 as |x|→∞. Eigenvalues of (4.2) are real positive
quantities. They characterize the number of oscillations of the guided modes across the
transverse section of the waveguide. Due to the finiteness of the waveguide we have
necessarily βν<V/2. Above this cut-off value, modes are not guided anymore and belong
to the continuum set of radiation modes [9]. As in the previous section, we shall consider
optical wave fields which are well confined within the core, so that, in the summation
(4.1), the modes of the parabolic waveguide are essentially the same as the modes of an
infinitely extended square-law medium. These ideal modes are given by

ψν(x)=
1

√

π
1
2 2νν!

Hν(x)e−
x2

2 , (4.3)

where Hν denotes the usual Hermite polynomial. It can be shown that for a sufficiently
large number of modes (V large enough), the finiteness of the waveguide will have little
effect on most of the guided modes and (4.3) is a very good approximation [10]. The
associated eigenvalues are the discrete energy levels of the harmonic oscillator: βν =
ν+1/2. Now, from the recurrence relations for the Hermite polynomials (see [11]) we
find that

xψν =2−
1
2
(√

νψν−1+
√

ν+1ψν+1

)

(4.4)

and by using orthogonality properties of guided modes, (2.10) is transformed into the
system of ordinary differential equations

da

dz
=Q(z)a=−iγ

(

eizA+e−izAT
)

a, (4.5)

where the lower diagonal matrix A is the algebraic representation of the creation opera-
tor [12]:

A=
1√
2















0 0
1 0 0√

2 0 0√
3 0 0

. . .
. . .















. (4.6)

The system (4.5) is the standard discrete form of the (time-dependent) forced har-
monic oscillator in one dimension [7]. Note that the total energy in the system is con-
served (i.e., ∂z‖a‖2=0) since the coupling matrix is skew-Hermitian. Now, provided that
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the (infinite) Magnus series converges

Q̂(z)=
∫ z

0
Q(z)dz− 1

2

∫ z

0

[

∫ z′

0
Q(z′′)dz′′,Q(z′)

]

dz′

+
1

4

∫ z

0

[

∫ z′

0

[

∫ z′′

0
Q(z′′′)dz′′′,Q(z′′)

]

dz′′,Q(z′)
]

dz′+··· , (4.7)

(here [·,·] denotes the matrix commutator: [X,Y]=XY−YX) then the solution can be writ-
ten in the exponential form a(z) = exp(Q̂(z))a(0). The problem simplifies if we exploit
the well known commutating properties of the creation and annihilation matrix opera-
tors, i.e.,

[AT,A]=
I

2
, (4.8)

where I is the identity matrix. Thanks to the relation (4.8), the Magnus series (4.7) reduces
only to the first two terms. This allows us to write the explicit solution as

a(z)=eiΘ(z)e−iηΩ(z)a(0), (4.9)

where η is the curvature measure given in (2.9), Θ is the phase function

Θ(z)=
1

2

∫ z

0

∫ z′

0
γ(ǫz′)γ(ǫz′′)sin(z′−z′′)dz′dz′′ (4.10)

and Ω stands for the bidiagonal matrix

Ω(z)= g(z)A+g(z)AT. (4.11)

Here, g contains the ”history” of the curvature along the waveguide axis, i.e.,

g(z)=
∫ z

0
∂σ ϕ(ǫz′)eiz′dz′. (4.12)

In the case of a circular path, the coupled system admits 2π-periodic solutions in z (up
to a phase). In physical dimensions, this corresponds to a periodicity length, sometimes
called the beat length, of

L=
2πa√

2∆
,

which is also predicted by ray-theory [3]. We can also observe that this is precisely the
perturbation period corresponding to the resonance described earlier. Finally, combining
(3.1) together with (4.1) and (4.9) yields the separable form of the solution

K(x,z;x′,0)=eiΘ(z)ΨT(x)Dβ(z)e
−iηΩ(z)Ψ(x′). (4.13)

Eq. (4.13) can be interpreted as the spectral decomposition of the Feynman propagator
in the straight waveguide modal basis and in the absence of external perturbation, K=K0
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and (4.13) reduces to the Mehler’s Hermite polynomial formula. Physically, the scattering
matrix coefficient (e−iηΩ(z))ζν gives the amplitude of mode ζ at z if only mode ν is present
at the waveguide input z=0. Although an alternative representation can be found in [6,7],
the exponential form in (4.13) allows a simple description of the mode mixing dynamics.
Indeed, for sufficiently small curvature, η is a small quantity and the first terms of the
infinite series

e−iηΩ= I−iηΩ+
(−iηΩ)2

2!
+··· (4.14)

should then provide a good approximation. Because of the bidiagonal structure of the
coupling matrix, the integer power of Ω corresponds to the number of modes coupled
with a given mode at the waveguide input. For instance, truncating the series (4.14) up
to K+1 terms means that mode ν will be scattered into modes ranging from ν−K to ν+K.
For any arbitrary curvature, the numerical evaluation of the scattering matrix involves
computing the exponential of a large bidiagonal matrix whose size grows linearly with
V. Though there are numerous techniques available for this purpose [13], these are likely
to become ineffective in the limit of large V due to the computational overhead. We shall
take another approach and exploit the algebraic structure of Ω: we first expand Ωp (p is
an integer) in terms of integer powers of the matrix A. This yields the explicit form the
matrix coefficients as (see [14] for more details):

(Ωp)ζν =
⌊p/2⌋
∑
q=0

gp−qgq(Ap−2q)ζν ∑
0≤i1≤···≤iq≤p−q

q

∏
l=1

(Dil−l)νν, (4.15)

where D0 =ATA and Di stands for the ”shifted” diagonal matrix whose non-zero entries
are

(Di)νν=
ν+i+1

2
.

Since A has a 1-band structure, its power is also a 1-band matrix; more precisely we find
that (we take ζ≥ν)

(Ap−2q)ζν =
1

2ζ−ν

√

ζ!

ν!
, if ζ−ν= p−2q, (4.16)

and (Ap−2q)ζν = 0, otherwise. Now, expanding the exponential in its power series, we
finally obtain, after some algebra, the explicit form for the scattering matrix coefficient:

(e−iηΩ)ζν =
(−iηg)m

m!
√

2m

√

ζ!

ν!

{

1+
∞

∑
n=1

Cνmn|ηg|2n
}

, (4.17)

where coefficients of the series are given explicitly as

Cνmn=
(

− 1

2

)n m!

(2n+m)! ∑
0≤i1≤···≤in≤m+n

n

∏
l=1

(ν+1+il−l). (4.18)
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Note that the mode number separation m=ζ−ν is assumed positive in (4.17) and negative
values are simply recovered by observing that the matrix Ω is Hermitian. Coefficients
associated with the second order correction term (in η) have the simple expression

Cνm1=− ν

2(m+1)
− 1

4
, (4.19)

and if we define the M+1-term series Sd
M=∑

M
i=0 id, we obtain, for the next order correction

term

Cνm2=
m!

4(m+4)!

(

S0
m+2ν(ν−1)+

1

2

[

S1
m+2(2ν2+ν−1)+S2

m+23ν+S3
m+2

])

. (4.20)

Higher order terms become too cumbersome to be included in the paper. Despite the
apparent complexity of (4.18), coefficients Cνmn can be computed at a negligible cost and
tabulated once for all; only functions Θ(z) and g(z) needs to be computed at each z-
step. Here again, if we assume that the geometry of the waveguide is described via a
discrete superposition of its Fourier components, then the scattering matrix will be fully
populated whenever there is a non zero component associated with a nearly-resonant
frequency |Ω|≈ 1 since we have in this case |g|∼ |Ω2−1|−1. Away from the resonance,
(i.e., Ω≪1), then g∼O(1) and the numerical convergence of the infinite series in (4.17)
is controlled by the curvature strength η. In practice, we have observed that, for the
low order mode scattering, η should be at most of order O(1) to avoid very expensive
numerical calculations. This will be made more precise in the last section of this paper.

5 Coupled bend mode theory

Despite the progress made so far, we have to bear in mind that the normalized curvature
measure behaves as η ∼ κa∆−1

√
V, and so the condition that η should not exceed unity

does not necessarily hold. This limitation can be explained very simply: for sufficiently
large curvature, a bend tends to shift a beam (consisting of a packet of modes) off the
centre axis towards the outside of the bend. Thus, expanding the beam in the straight
waveguide eigenmode basis can turn out to be very cumbersome as this may give rise
to very strong coupling among a large number of ”straight” modes. This effect is high-
lighted by the need to consider a large number of terms in the series (4.17).

In order to take advantage of the weak dependence of the curvature with respect to
the arc length, a better option is to treat γ as a fixed parameter and consider the eigen-
mode of a curved waveguide ψb

ν=ψb
ν(x;γ) (the superscript ”b” refers to the bend modes).

These eigenmodes satisfy

(H+γx)ψb
ν =βb

νψb
ν , (5.1)

where the eigenvalue depends implicitly on the local radius of curvature, βb
ν = βb

ν(γ).
Propagation constants associated with highest order modes are expected to have a small
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imaginary part due to some leakage of light energy into the outer cladding. Here again,
we shall simplify the analysis by restricting ourselves to bend modes which are well
confined in the core region so that their value at the core-cladding interface is negligible.
These modes are therefore purely real and can be normalized so that they satisfy the
orthogonality condition

∫

R

ψb
νψb

µdx=δνµ. (5.2)

Now, let us assume for the moment that these bend modes are known and expand Ψ in
the eigenfunction basis of the curved waveguide as

Ψ(x,z)=ΨT
b(x;γ)Dβb(z)b(z) (5.3)

with Ψb=(ψb
0 ,ψb

1 ,···)T. The diagonal matrix Dβb contains the phase of each mode,

(Dβb(z))νν =exp
(

−i
∫ z

0
βb

νdz
)

,

and the vector b(z)= (b0(z),b1(z),···)T contains the bend mode amplitudes. Employing
the bend mode expansion in Eq. (2.10), yields a new coupled system

db

dz
=Qb (5.4)

with coupling coefficients given by the overlap integrals

(Q)νµ =−exp
(

i
∫ z

0
(βb

ν−βb
µ)dz

)

∫

R

ψb
ν(∂zψb

µ)dx. (5.5)

Applying the chain rule ∂zψb
µ = ǫ(∂σγ)∂γψb

µ, we find that the coupling terms are now
proportional to ǫη and we can anticipate that in many situations, ǫη is sufficiently small
so that the first terms of the infinite Feynman-Dyson series:

b(z)=
{

I+
∫ z

0
Q(z′)dz′+

∫ z

0
Q(z′)

∫ z′

0
Q(z′′)dz′dz′′+···

}

b(0) (5.6)

should provide a good approximation.

The price to pay for such improvement is the evaluation of the bend modes. In gen-
eral, (5.1) does not yield closed form solutions for a given index profile and one must
resort to numerical techniques [15]. However, for the parabolic index grading the ideal
eigenmodes of (5.1) admit an analytical form. Indeed, by doing the simple change of
variable x̃= x+γ, it is easy to show that

HΨ+γxΨ=−1

2

(

∂2
x̃x̃− x̃2

)

Ψ− γ2

2
Ψ, (5.7)
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and we get ψb
ν(x) = ψν(x̃), thus bend mode shapes are simply given by the equivalent

straight modes with a shift of the waveguide axis. Furthermore, βb
ν =βν−γ2/2, so

Dβb(z)=exp
(

i
∫ z

0

γ2

2
dz

)

Dβ(z). (5.8)

Finally, we can calculate explicitly the z-derivative of a bend mode and the resulting
coupling matrix has the simple form:

Q=ǫ∂σγ
(

eizA−e−izAT
)

. (5.9)

Here again, we can exploit the commutating properties of the creation and annihilation
matrices to obtain the explicit solution as

b(z)=eiΘb(z)eηǫΩb(z)b(0), (5.10)

where Θb is the phase function

Θb(z)=
ǫ2

2

∫ z

0

∫ z′

0
∂σγ(ǫz′)∂σγ(ǫz′′)sin(z′−z′′)dz′dz′′, (5.11)

and Ωb stands for the z-dependent bidiagonal matrix

Ωb(z)= g′(z)A−g′(z)AT. (5.12)

Here, g′ contains the ”history” of the rate of change of curvature along the waveguide
axis

g′(z)=
∫ z

0
∂2

σσ ϕ(ǫz′)eiz′dz′. (5.13)

If the curvature grows at a constant rate (spiral-like path), then the coupled system
admits 2π-periodic solutions in z, which, in physical dimensions, corresponds to the
same periodicity as the circular beat length introduced in the previous section. By ex-
ploiting the band factorization of Ω

p
b, we finally find the general form for the bend mode

scattering matrix coefficient:

(eηǫΩb)ζν =
(ǫηg′)m

m!
√

2m

√

ζ!

ν!

{

1+
∞

∑
n=1

Cνmn|ǫηg′ |2n
}

, (5.14)

where coefficients of the series are identical to those associated with the scattering matrix
of the straight modes (see (4.18)). Finally the envelope of the transverse field can be
recombined as the combination of bend modes via the new spectral decomposition

K(x,z;x′,0)=eiΘb(z)ΨT
b(x;γ(ǫz))Dβb(z)eηǫΩb(z)Ψb(x′;γ(0)). (5.15)

Clearly the new decomposition (5.15) offers a substantial improvement over the one as-
sociated with the straight mode coupling (4.13) since the numerical convergence of the
series (5.14) is now controlled by the order of magnitude of ǫη.



E. Perrey-Debain and I. D. Abrahams / Commun. Comput. Phys., 11 (2012), pp. 525-540 537

6 Numerical examples and concluding remarks

In this last section, we aim to investigate the accuracy of the straight and bend mode
scattering matrix coefficients on two specific examples. We shall study light beam prop-
agation along sinusoidal bends described by the trigonometric function

ϕ=−cos(ǫz). (6.1)

The choice for the cosine is simply to ensure that the curvature is zero at the waveguide
input z=0 so that bend modes coincide with straight modes. To simplify the analysis, we
consider that the input is excited by the fundamental mode only, with a0(0)= b0(0)= 1.
From (4.9) and (5.10), only the first column of the scattering matrix is populated and we
have simply

aζ(z)=eiΘ(z)(e−iηΩ(z))ζ0 and bζ(z)=eiΘb(z)(eηǫΩb(z))ζ0. (6.2)

Fig. 2 (left) shows the evolution of the power |aζ(z)|2 carried by the first four straight
modes ζ = 0,1,2,3. These results correspond to the waveguide A which parameters are
indicated on Table 1 (in each case the number of guided modes can be estimated as
N ≈V/2). In all calculations, the first 8 terms in the infinite series have been taken into
account. We checked the accuracy of these results with those computed by applying a
standard 4th order Runge-Kutta method directly to the coupled mode system (4.5). The
good agreement is conveniently displayed in Table 2 where the real part of aζ(z) is shown
for the first four modes at z=8π where the scattering of the fundamental mode is strong.
Here, 2 to 3 digits are recovered and better accuracy can easily be obtained by taking
more terms in the series. Table 3 shows similar results at z= 14π; here the scattering is
weak so the series is quickly convergent and the agreement is even better. As expected,
strong scattering occurs in the region of highest curvature (the exact location of the max-
imum (i.e., γ = η) is indicated in the last column of Table 1). Fig. 2 (right) shows the
evolution of the power |bζ(z)|2 carried by the first four bend modes ζ = 0,1,2,3 for the
same waveguide. These results are computed using only the first order correction term,
i.e.,

bζ ≈eiΘb(z)
(ǫηg′)ζ

√

2ζζ!

{

1+
1

4
|g′|2(ǫη)2

}

. (6.3)

This shows weak coupling, where only the first two bend modes are excited, the am-
plitudes of the other modes being negligible. Here, the fundamental mode propagates

Table 1: Waveguide parameters.

V ∆ ε η ǫη
√

V (z/2π)max curv.

Waveguide A 100 0.01 0.005 2.5 0.17 10 3.5355
Waveguide B 1000 0.001 0.001 15.8 0.35 31.6 5.5902
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Figure 2: Evolution of the modal power carried by the straight modes (left) and bend modes (right) along the
waveguide A.
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Figure 3: Left: Evolution of the modal power carried by the bend modes along the waveguide B. Right:
Distribution of the straight mode amplitudes at z=11π.

almost adiabatically as no more than 5% of its power is transferred to other modes. In
this example, the bend mode scattering matrix is nearly bidiagonal and the first two terms
of the Feynman-Dyson series (5.6) is a good approximation.

In the next example, we consider an extreme scenario (waveguide B) where the cur-
vature perturbation is high (η =15.8). This value would require a very large number of
terms in the straight mode scattering series to ensure convergence. Instead, we computed
the amplitudes of the bend modes, the evolution of which are displayed in Fig. 3 (left).
As illustrated in Table 4, comparisons with results from the Runge-Kutta method are ex-
cellent. We can observe the quasi-periodic nature of the coupling except in the region
of high curvature where ∂σγ ≈ 0. Fig. 3 (right) illustrates the repartition of the ampli-
tudes of the straight modes in that region (these were computed using the Runge-Kutta
method), clearly indicating the very large number of modes, and associated high accu-
racy, required using the traditional approach. By contrast, the same optical field can be
recovered using just 3 or 4 bend modes.

Through the above numerical experiments we have confirmed the accuracy of our
approach. Moreover, we were able to identify an intermediate regime when η∼1, that is

κa∼∆V− 1
2 ,
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Table 2: Comparison of real part of aζ(z); analytical vs 4th order Runge-Kutta at z=8π for waveguide A.

ζ Analytical Runge-Kutta
0 0.2145 0.2152
1 −0.3789 −0.3795
2 0.4690 0.4695
3 −0.4704 −0.4707

Table 3: Comparison (real part of aζ(z)) analytical vs Runge-Kutta (4th order) at z=14π for waveguide A.

ζ Analytical Runge-Kutta
0 0.763998231 0.763998233
1 −0.191927322 −0.191927321
2 −0.020563261 −0.020563261
3 0.006522258 0.006522258

Table 4: Comparison (real part of bζ(z)) analytical vs Runge-Kutta (4th order) at z=π/2 for waveguide B.

ζ Analytical Runge-Kutta
0 0.43234937 0.43234944
1 −0.42530277 −0.42530280
2 −0.30581691 −0.30581693
3 0.17150603 0.17150604

for which straight modes are found to be moderately coupled. In the bend mode basis,
the condition is relaxed as we found that moderate coupling occurs when ηǫ ∼ 1. In
physical dimensions, this means

(κa)2 ∼∆
3
2 V− 1

2 .

In practice, the coupled ”bend” mode theory is shown to be attractive from a computa-
tional point of view as it allows an efficient numerical evaluation of the optical field for
sharply bent waveguides. Of course, these regimes have been identified in the context
of parabolic index profile waveguides but there are reasons to believe that these should
remain valid for a wider range of graded index profiles. Finally, we are confident that the
methodology presented here should serve as a basis for the analysis of curved fibres of
circular cross-section; this work is ongoing by the authors.
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