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Abstract. In this article, we consider a domain consisting of two cavities linked by a
hole of small size. We derive a numerical method to compute an approximation of the
eigenvalues of an elliptic operator without refining in the neighborhood of the hole.
Several convergence rates are obtained and illustrated by numerical simulations.
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1 Introduction

1.1 Motivation

In a lot of physical problems, the boundary of the computational domain is perforated.
This configuration can lead to numerical difficulties when the diameter of the holes are
really smaller than the other characteristic lengths. Indeed, it can be very costly to com-
pute a sharp numerical approximation of the solution of such problems for two main
reasons: With a standard method like finite elements or finite differences, a refined mesh
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cannot be avoided in the neighborhood of the hole; the mesh generation of a perforated
structure can be a hard task.

Many authors have studied the effect of the perforation of the boundaries both from
the theoretical and the numerical point of views, see for example [13,16-19]. However,
fewer results have been obtained for the eigenvalue problem in the case of a three dimen-
sional domain.

In [10], Gadyl’shin considered a two dimensional domain consisting of two domains
linked by a small hole. He derived a complete asymptotic expansion of the scattering fre-
quencies of the Laplacian operator equipped with Dirichlet boundary condition. In [2],
these results were extended to the eigenvalues and eigenvectors of an elliptic operator
with varying coefficients. In this paper, we are interested in a three dimensional configu-
ration with varying coefficients and Neumann boundary condition.

1.2 A Neumann eigenvalue problem

1.2.1 The geometry

Let OQint and Qext be two open subsets of R3 with
QintNQext =@ and 35) > 0: [—28,200]> NOQintNIQext = ([—200,200)* x {0}).  (1.1)

LetXC [—1,1]2 be an open subset of R2. For é < 6y, we consider the domain Q?, see Fig. 1,
consisting of Qext and Qi linked by an iris &5 =62 = { (x,y) e R?: (3,%) €L}

Q(S = QintUQextU (25 X {0}) C]R3‘ (12)

This domain tends to O := QintUQext C RZ, when 6 — 0.
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Figure 1: The computational domain Q°.
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1.2.2 The original problem

In these domains we consider the eigenvalue problems

—V-(aVu‘S) =Abu’, in O°

: 6 ,,0 1 o\ . ’ ’

find (A5,up) e RxH' (Q) ).{ St =0, n nOUy . (13a)
: —V-(aVuy) =Anbu,, in Q,

find (A, u,) €ERx HY(Q): 1.3b
n ( nun) X ( ) { dnity =0, on 90, ( )

witha€ L®(Q) and be L= (Q)) two functions of Q with infycqa(x) >0, infycqb(x) >0 and
whose restrictions to Qine and ey are regular and can be expanded in the neighborhood
of 0 with the form

alog, ()= Y afix'yZ,  bloy,(x)= ) b5, with af bR ER,  (14a)

i,jk>0 i,jk>0
alo, ()= Y ai XYz, bla, ()= Y by, with g b R (14b)
i,j,k>0 i,j,k>0

In order to shorten the expressions, we adopt the notations ay = a;,,, and by = by -

The discrete sets of eigenmodes (ud,A%),>0 (resp. (un,Ay)n>0) can be chosen to be a bi-
orthogonal basis of L2(Q)°) and H!(Q°) (resp. L2(Q)) and H!(Q)) and to satisfy

0=AS<AI<AS<--- and  lim A= +oo, (1.5)

n—r+o00

respectively,

0=X=A1<A;<-- and lim A,=+c0 and VneN, u,|n

=0 or un]Q
n——+00

int ext = O (16)

Some natural questions arise: Does the eigenvalue A% converge to A,? Is it possible to
obtain an asymptotic expansion of A%? With this asymptotic expansion, is it possible to
compute a numerical approximation of A with a small computation cost?

1.3 Main theorem
The next Theorem gives positive answers to these three questions.
Theorem 1.1. Let n €N and let « be the positive real defined in Section 3.1.
(i) If Ay, is a simple eigenvalue of the limit problem, then \Y, can be expanded as follows

2

int ,ext ﬁn 0
2y'ag” | ())25—1—(95_)0(521115), (1.7)

a5 Job)

A=A, +2mu

with the notation

u(0)=u|, (0) if uln,, =0 and 7(0)=u

a,,(0) i ulo,=0. (18
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(ii) If A, is a double eigenvalue of the limit problem (A, =A,11), then A=A, +Os_,(6?) and

AS 1 can be expanded as follows

2

A=Ay 427 2)5+(95_>0(521n5). (1.9)

aéntagxt ( (ﬁn(O))z L (ﬁn+1(0))

aglt—i-agﬂ fQ (b“")2 fQ (b”n+1)

Remark 1.1. Formulas (1.7) and (1.9) involve only quantities which are independent of
. Consequently truncating these expressions by eliminating the remainders furnish an
approximation of A% which does not require any mesh refinement.

Remark 1.2. Due to (1.6), one has either u,|q,, =0 or u,|q
always defines 1(0).

=0. Consequently, (1.8)

ext

1.4 Matched asymptotic expansions

The first order asymptotic expansions of an eigenvalue A reads
A=A 467 +05.,0(6) (1.10)

and has been derived in parallel to the derivation of the first order asymptotic expansion
of the eigenfunction u®. The model (1.3a) involves two characteristic lengths of different
magnitude: the size of the hole § which is much smaller than the diameter of the cavity.
Multiple scalings should be used to obtain an approximation of the eigenvector ¢ uni-
formly valid. The first scaling corresponds to the x-variable and takes care of the cavity
phenomena. The second scaling X = x/J permits to describe the boundary layer phe-
nomenons located in the neighborhood of the hole. Guided by the well known method
of Matching of Asymptotic Expansions, see [11] and [20], we look for the asymptotic ex-
pansions of the two functions 6+ u4(x) and 6115 (X) :=u (6X). At first order, they take
the form

145, (%) = 45 (%) + 6143, (%) +050(6), (1.11a)
I (X) :=u’ (6X) =T19(X) +0T1L%(X) +5IndTIL Y (X) +05_,0(6). (1.11b)

The functions u/, are defined on the domain () and are possibly singular in the neigh-
borhood of the origin. The functions II; are defined on a normalized version of the
neighborhood of the hole

Q:=R%\{(x,,0): (xy) ER*\Z}. (1.12)
These two asymptotic expansions match asymptotically in an intermediate region.

Remark 1.3. The presence of poly-logarithmic gauge functions 6”In”¢ is rather not clas-
sical for three dimensional problems. They are due to the non constancy of the coefficient
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a. Indeed in the case of a constant 2 we have IT"! =0. Moreover in the case of non con-
stant coefficient, it is possible to show that Logarithms appear also in the eigenvalue and
far-field expansions of second order which take the form

AL = A0+ 0AL + 02420452 InoA% +05,0(62), (1.13a)
ul (x) =l (x) +0ul (x) +02u>0(x) + 62 Indu> (x) +05_0(52). (1.13b)

1.5 Content

In this paper we will not give the complete proof of Theorem 1.1 which is mainly based
on the third order matched asymptotic expansions, on the min-max principle [14] and on
a quasi-mode approach [8]. A complete proof for a two dimensional Dirichlet-Laplacian
can be found in [3].

This paper will be focused on the description of the coefficients of the asymptotic ex-
pansions (1.10), (1.11a) and (1.11b) and on the question of their existence and uniqueness
in the case of a simple eigenvalue. Moreover, the formulas (1.7) and (1.9) will be shown
to be in good agreement with some direct numerical simulations.

2 Matched asymptotic expansions of simple eigenvalues

In this section, we suppose that A, is a simple eigenvalue. We will only deal with the case
Up|Op =0. The case u,|q,, =0 can be deduced by symmetry.

The coefficients of the three asymptotic expansions (1.10), (1.11a) and (1.11b) have
been formally derived using the Van Dyke matching principle [20]. The problems defin-
ing these coefficients will be proved to be well-posed in Section 3.

2.1 The limit coefficients

The far-field and eigenvalue limit coefficients are rather naturally defined by
ul=u, and AV=A,. (2.1)
Moreover, the near-field limit coefficient H?l is defined on Q by

{ —V‘(ﬂOVH%)IO; in ﬁ and anngzor on aﬁ/ 2.2)

&, (X) =110, (0) +0r—100(1) and  ITla  (X)=0r—+oo(1),

with R=+v/X2+Y2+Z2, Qi the lower half space and Qe the upper half space. As it will
be proved in Section 3.1, see Remark 3.1 and Lemma 3.1, this coefficient can be expanded
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in the neighborhood of +-co with the form

anth 1 1
|5, (X) =15 |0 (0)—_mto (U )E-l-OR_)m(ﬁ),
B 2.3)
4 (X):ﬂu .. (0 ) +0g i)
1 Oint bnt_|_ Sxt 1] Qint — 400 R2

2.2 The first order coefficients

The first order asymptotic expansions are given by (1.10), (1.11a) and (1.11b) where the
first order coefficients AL €R, ul:Q— R, IT1/°:Q0—R and IT;:Q0— R remain to be defined.
The terms u), and A} are solutions of the well-posed coupled problem

V-(aVu,lq)-l-)\nbu;:—)\%bun, in QO and 0,ul=0, on 90\ {0},
anttX

1 0

n 1nt+ oxt 4n

1r0.
’th ) €H <ant)/ (2.4)

amtzx 1
1 ﬁ 1] Qe (0) = = H'(Qext),
with r=/x2+y2+z2. The coefficient u} can then be expanded in the neighborhood of 0
with the help of the Kondratiev’s theory, see [7,12],

1 aga 1. 4 1
un’Qint(x) = m n’th( ) +Sn(x)+rn(x)/
+4a; r
ag‘toc 1 1 ) (2.5)
u}l’ﬂext(x) = W n’th( ) 7 +S71(X)+r7l(x)/
with
1 _ ag'e ualay, (0) ailn(t) 0X ag,l},o y 501 In =%
Sy ’Qint (X) - 1nt+aext 2 abnt r ubnt ? abnt + 2 ’

int

ext
ag- “n\oim(o)(”l,o,ox 0,10 Y 001(__1 r+2))

1nt ext ext . ext . ext
ag" +ag 2 agt r - oag* r o ag r 2

1
Si’l ’Qext (X) =
and r},:Q— R such that the two restrictions 7} | and } |

borhood of 0. R
The coefficients H}{O and H}{l are defined in the infinite domain () by

it o are continuous in the neigh-

—V - (aoVIL) =V ((ay,00X +a0,10Y +a001Z)VIL)), in Q,

anH,lq’():O, on 8@,

T, (X) =315 |0 (0) X +3y1s | 0 (0) Y 453y (X) + 1k (0) 40, 0(1),
11, () =831 |0 (X) + 100 (0) 07 50(1),

(2.6a)
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—V-(QOVH%):O, in O and annirlzo, on G(A),

int

un|0; (0)  af'a agg,
I, (X)=2ne /0 OL 4o o(1
n |Qint( ) 2 abnt+ﬂ8Xt abnt V—)O( )/ (26b)
nl0, (0)  alla 455,
Hl'l/\ X)= 112 int - 0 —— 40 1).
n |Qext( ) 2 ﬂbnt+ﬂ8Xt QSXt 1’~>0( )

3 Existence of the coefficients of the asymptotic expansions

3.1 Existence and uniqueness of the IT,

The question of existence and uniqueness of the Laplacian problems equipped with Neu-
mann boundary condition is a rather well understood topic, see for example [1]. For

~

F € L*(Q)) compactly supported, let us recall that there exists a unique IT€ H{. _ ((A)) satis-

fying R R
V-(aVII)=F, in Q, 0,I1=0, on 9Q), IT=0g_,;c(1). (3.1)

This is mainly due to the Hardy inequality

dy>0: ’Y(HVHHLZ(Q)'i'HHLR LZ(Q))

and to the equivalence of the last problem with the variational formulation

Find TTEK}: / aVIT-VIT = /A FIT, forall IT €Kl (3.3)
QO
with the Kondratiev’s space
K= {105 R: VITE12(0) andieLz(ﬁ)}. (3.4)
1+R

We will now prove the existence and uniqueness of 10 and IT!. Let ¥iny and eyt be
two regular cut-off functions satisfying

Tint(x) :0/ in ﬁext/ (3 5a)
Yint(X)=¢(R), in Qny, '

)
Y X X :0, i ﬁin ’
o (X) e (3.5b)
(X) = ?(R)/ mn Qext/
with ¢(R)=0for R<1and ¢(R)=1for R>2.

Theorem 3.1. For all reals A and B, there exists a unique Il g € Hlloc(ﬁ) satisfying

{ —V-(agVIIx) =0, in Q and Onllap=0, on 20, (3.6)

Iaglg, (X)=A+0r10(1) and Ilaplg  (X)=B40r-+0(1).
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Proof. We consider the function IT(X) = IT4 p(X) —¥int(X) A —¥ext(X) B which satisfies
(3.1) with
FX)=-V- (ao(AV‘I’int(X)—i—BV"I’ext(X))). (3.7)

Since the function F is compactly supported, the problem (3.6) is well posed. O

Remark 3.1. The coefficients IT9 and 14!, defined by (2.2) and (2.6a), can be expressed
as

H =II4p with A=u,|q, and B=0,
int
ext int int ext
11 ) 1 agta dgg, I i uOOl
I, =114 with A_Em int n|th( ) and B_E int_|_jext gext ’Qint(o)‘
ag*+ag ag 4g +dg A

Remark 3.2. The existence and uniqueness of IT'? can be as well demonstrated. This
requires extra arguments that are not central in our study. We have chosen not to give the
details in this article.

Now we will be interested in the obtention of the asymptot1c expansion of I, p in the
neighborhood of R =+oc0. Let us introduce the function I'l, € H (Q)) satisfying

{ V- (aoVIL,) =0, in Q and 9,11, =0, on 90), (3.8)

H*’ﬁintzl—i_oRﬁ‘Fw(l) and H*’ﬁextzoR%%wo(l)'

The function IT, is related to I14 g by IT4 p=B+(A—B)II,. In order to solve this problem,
we will use a simple layer formulation based on the operator S

/
S: (H}(Z)) - Hi (%), AHSA(X):% Z%d}(’. (3.9)
Taking into account the two transmission conditions IL, |y, , =IL |z, and a9.IL |5, =
189,11, |5, and the representation formulas, see [9],
I |y, =142S3.1L, ]y, and IL|s, =-2S3.IL]s,., (3.10)
we get the formulation
Find A, € (H?(£))" such that SA, =1, on %, (3.11)
with A, related to the two normal derivatives by
t t
1L s, = ﬁ% and 0.IL|s = ﬁ%. (3.12)
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Then, the restrictions of I'l, to ﬁint and ﬁext are given by the representation formula

ag"t 1 A (X)) . oA
——0 __(— [ 229X, in Qint,
mo) et (& L xxX) im0 613)

af)nt < 1 Ae(X7) , oA
—2 (= | =2 4X ), n ey
ag"t—i—abnt 47t Js ||IX=X'|| ! ext

Expanding (3.13), the first order asymptotic expansion of IT, for R = || X|| — +oo reads

o 1 A
- mﬁ OR—>+oo (ﬁ) ,In Qing,
I, = 0 Jint 0 . (3.14)
0o @ O
Wﬁ"‘OR—H—m (ﬁ)’ in Qe
where a = (477) ! fz A (X")dX" with A, defined by (3.11). The next Lemma follows.
Lemma 3.1. I1y4 p can be expanded with the form
gt 1
Mplg,, ) =A+(B=A) g 2 +O0k 1o (z2)-
0 it 0 ) (3.15)
_ 0 &
HA,B’(A)M (X) =B+ (A—B)WE +OR_>+OQ (ﬁ) .

Remark 3.3. The coefficient « depends on the shape of X but is independent of the value
of ai"t and a$*. This quantity is related to the so called acoustic conductivity of the hole
c and to the effective size of the hole s by s =c/m =aJ, see [19]. It can be numerically
computed for every X, see Section 4. Moreover it has been analytically computed for
some simple X with area A, see [15]

_2p_2 A . . . .
e a="==,/2Z for X a circle with radius p;

o =2 \/% % for X an ellipse with minor axes 2 and b. The function K denotes

the complete elliptic integral of first kind.

The coefficient « can be rather easily approximated by the coefficient a of the circle with
same area

2 A
aapp: ; ; (316)

This approximation does not require any numerical computation and is rather accurate
for not too elongated holes. In Fig. 2 we illustrate the accuracy of this approximation in
the case of an ellipse of minor axes @ and b and a rectangle [0,a] x [0,b]. The relative error
is less than 5% for 0.4 <b/a<1.
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a—aapp a—aapp

0.25+ P 0.25F

0.204 0.20+

0.154 0.15+

0.104 0.104

0.054 0.054
. . . . b/a . . . : : b/a
0.2 04 0.6 08 1.0 02 04 0.6 08 1.0

Figure 2: Efficiency of the approximation of & by agpp = %\/é for ellipses (left) and for rectangles (right).

3.2 Existence and uniqueness of 1) and A}

The two coefficients u} and A} do have to solve the problem (2.4). The following Lemma
ensures the existence and uniqueness of u} and A} up to the knowledge of the u,-
component of 1. This component can be chosen arbitrarily.

Lemma 3.2. Problem (2.4) has solutions. Moreover if (u},A}) and (u}, ,, A} ) are solutions, one
has AL =Al , and
, 2
ajtagt (o, (0))
aglt_i_agxt fQ b(un)z
Proof. The function u} does notbelong to H!(Q)). Consequently, the Fredholm alternative

cannot be directly applied. For this reason, we introduce the auxiliary function w}, €
H'(Q)

A =27a

n

and 3yeR: u,lql*—u,lq:'yun. (3.17)

int

at o«

1 _ 1
wnlnm(X)—un(X)+x(r)unlnim(0)M;r

it (3.18)
Wl (X) = 13(x) —x(r)unmm(mwﬁ,
with x a regular cut-off function satisfying (see (1.1))
x(z)=1, if z<d and x(z)=0, if z>2d. (3.19)
Using (2.4), w} belongs to H(Q)) and satisfies
V- (aVw}) +Asbwi=F}, in Q and 9aw;=0, on 9Q, (3.20)

with F} € (H'(Q))” defined by

: Y _ _ " o«
Fn’th(x)_ /\nbun(x)+(v (HV) +A”b) (X(r)un‘ﬂim(o) ag‘t—l-ag"t V)I

F”Q (X):—(V.<th)—|—/\nb) (X(r)un’()- (())L)(tﬁ)
n ext int ubnt+ﬂ8Xt r
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Since /\2 is a simple eigenvalue of the elliptic operator on ()i, the problem (3.20) defining
w), has solutions if and only if

/ Flu, =0, (3.21)
QA

Moreover this solution is determined up to its u,-component, i.e., if w}l and w,l{* are two
solutions of (3.20) then
JyeR: w —w *Fyuy. (3.22)

The necessary and sufficient condition (3.21) for existence of ul will now be made
explicit. Since u, =0, in Qex¢ and V- (aVun) +Aubu, =0, in Qing, (3.21) takes the form

ext

A}Q/Q b(un)zz/('} V.(QV(X(r)unQint(O)ﬁg))un

int int

ext

a 44
f/ )tn] oy, ( )ﬁ; (v- (aVun)). (3.23)

Let us denote by B, the ball of center 0 and of radius 7. Since the domain Qim\B,7 tends
to Qint when 7 — 0, we have due to Lebesgues Theorem

ext

1 2_ . . aoig
N[, bl tim | /th\gnv (o (1l 0) ) Y

int

a(e)xt o

7/ 1nt\Bl1 Un |02y (0 )W? (V' (aVun))} . (3.24)

Two Green formulas lead to

ext
4y

o
/mt\ WV-(aV(x(r)un]Qim(O)W;)>un
27T aext o
[/ / aa () un |y, ( )7 0 )unr sm(@)d@dq)]( =17)

6nt + qut

ag' 2 .
_/mt\Ban (X(r)unlgmt(o)w;)Vunr sin(0)drdbde, (3.25a)

B LV (@V))

/mt\ WX(r)u”’th(O)Wr
27T ext a ) .
[/ / ax(r)un|oy, (0) ——— 1nt+aext — 0, Uyt s1n(9)d6dq)} (r=mn)

ant M
_/Qm\Bun<X<1’)un’th( )m )Vunr sin(0)drdfdg, (3.25b)

with the spherical coordinates (7,0, ¢) defined by x=rsin(0)cos(¢), y=rsin(0)sin(¢) and
z=rcos(0). Inserting (3.25a), and (3.25b) in (3.24), we obtain (x(r)=1 and 9, x (1) =0, for
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small 7)
2 o
A;lq/imb( :—11712%{/ / Mn’th( )W;)un( x)r?sin (0)d0 dg
/ /zn ]y, (0 )%%MM )2 sm(@)d@dqo}( 7). (3.26)
ay +ag T

Using the first order Taylor expansions of uy, d,u, in Qi and (1.4b), we obtain
un(X) =ty |y, (0)+O0r50(r), un(x)=0,50(1) and  a(x)=al"+0,(r). (3.27)

Inserting (3.27) in (3.26), we have

1 2_ 1 int [T [T 2 ag ~
AL / b(ur)” = lim £ o / /0 (a3 (0)) o —usin (6)dBd g+ O, (1) - (3.28)
i 2 0 0

int

Taking the limit, get (3.17). O

4 Numerical simulations

In this section, we will present two series of numeral experiments illustrating Theorem
1.1. The numerical computations are based on the parallel version of the CESC library of
CERFACS (boundary element and finite element code) and of the ARPACK library (large
scale eigenvalue problems solver).

For both series of experiments, Ai, A, and u, are evaluated with a P;-continuous
(piecewise linear continuous approximation on a tetrahedral mesh) finite element ap-
proximation. The parameter J takes 11 values going from 1 to 1072 § =10"%/% with
0 <k <10. The coefficient a = (477) ! [ A (X')dX is either numerically computed by
solving (3.11) or approximated by ®app = (2/7)\/ A/ 7. The numerical computation of
« relies on Pj-continuous (piecewise linear continuous approximation on a triangular
mesh) boundary element approximation. The computation of A), requires a refined mesh
in the neighborhood of the hole. Even if the geometry is simple, 2.5 million degrees of
freedom are required for the smallest §. The computation of u, and A, is achieved on a
coarse mesh and is therefore less costly and easier to handle (one does not have to face
some errors of the mesher: For very small mesh step our mesher was simply not able to
generate a regular mesh without dividing the computational domain in many regions).

We report in Figs. 5, 6, 7 and 8 the results of our simulations for n =1 to 4. For n=0,
we do not show the results since Aj=XAg=A}=0.

During all the computations, we have tried to diminish as much as possible our
numerical errors. For the smallest values of § the encountered linear systems become
rather large (millions of unknowns) and the errors committed by the eigenvalue solver
ARPACK cannot be completely neglected.
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T

Figure 3: The geometry for both experiments.

Figure 4. The shape of the holes X for both experiments.

4.1 First experiment

Let /Mt =0.6, /2t =1.0, £,=0.8, /;=0.3. The two cavities, see Fig. 3, are defined by

= [ 522 [ 2o

The shape of the hole X, see Fig. 4 is a polygon with vertexes A = (0,0), B= (0.1,0),
C=(0.1,—0.08), D=(—0.08,—0.08), E=(—0.08,0.1) and F=(0,0.1) with

€=0.0578--- and  agp,=0.0538--. 4.1)

The coefficient functions 2 and b are constant and equal to 1.

4.2 Second experiment

Let £, =1.0, £,=0.8 and ¢, =0.3. The interior cavity is
e Ay by 20,
== 55 %[ =35 <=0
The exterior cavity is a pyramid with basis the polygon linking (0.2,—0.4,0),

(—=0.7,—0.4,0), (—0.5,0.2,0) and (0.2,0.2) and with upper vertex (0.1,0.1,0.7). The shape
of the hole is a centered circle of radius 0.1. It corresponds to

&= 0tgpp =0.0637- . (4.2)
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I = A X = 2571/ he I = 2571/ I = A1/ M
101 10-! 10-2 10-!
10-2 10-2 10-3 10-2
1073 1073 1074 1073
104 10 1075 /"\/\/ 10
1075 5 05 5 1076 5 o5
1072 1071 1 1072 107! 1 1072 1071 1 1072 107! 1
Figure 5: Error AS— (A, +0AY) in log-log scale for the first experiment.
I = A X = 2571/ e I = 25212 I = A1/ M
101 10-! 10-2 10-!
10-2 10-2 10-3 10-2
1073 1073 1074 1073
104 10 1075 /"\/\/ 10
1075 5 o5 5 1076 5 o5
1072 1071 1 1072 107! 1 1072 1071 1 1072 107! 1

Figure 6: Error Af;f()\,,+(5/\¥) in log-log scale for the first experiment with & replaced by agpp.

I = A X = 2571/ he I = 2571/ I = A1/ M
10! 10! 107! 10!
102 102 102 102
107? 10°° 10-? 10°°
10-4 104 10-4 104
1075 5 o5 5 1078 5 o5
1072 1071 1 1072 107! 1 1072 1071 1 1072 107! 1

Figure 7: Error A9 — (A, +0AY) in log-log scale for the second experiment.

Table 1: The values of A, and AL (see (1.10)).

15t experiment | 2" experiment
n| Ay AL An AL
0 0 0 0 0
1 0 2.02 0 2.17
2| 987 | 0757 | 924 | 0426
3 | 1542 0 16.7 | 0.251
411542 | 101 |19.7 1.11

The functions a and b are piecewise constant and given by

a‘Qint =

2’ a ’Qext = 1’

b‘Qint = 1’

b‘Qext :2
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(4.3)
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An+6AL An+0AL
A A
—————— A .
A A
20p Pra
18- B
161 n=3and 4 bvee r—— — n=4
M b = 3
15-
8 e n=2

First experiment Second experiment

Figure 8: The eigenvalue /\?;, its limit A,; and its approximation A,,+(5/\% with respect to é.

5 Conclusions

In this article we derived the first order asymptotic expansion of the eigenvalues and
eigenvectors of a three dimensional elliptic operator equipped with Neumann boundary
condition. This expansion allows to compute with a small computation cost a numerical
approximation of these eigenvalues.

The reader can also remark that this work can easily be adapted to deal with a
multiperforated straight structure if one can manage the boundary homogenisation,
see [6,17,19]. It would be of interest to see the impact of varying coefficients on the
blockage coefficient C which measures the permeability of the wall and is related to the
effective size of the hole s =a¢ of Remark 3.3 and to the area A of the cell containing one
hole by
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