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Abstract. We investigate the ultra weak variational formulation (UWVF) of the 2-D
Helmholtz equation using a new choice of basis functions. Traditionally the UWVF
basis functions are chosen to be plane waves. Here, we instead use first kind Bessel
functions. We compare the performance of the two bases. Moreover, we show that it
is possible to use coupled plane wave and Bessel bases in the same mesh. As test cases
we shall consider propagating plane and evanescent waves in a rectangular domain
and a singular 2-D Helmholtz problem in an L-shaped domain.
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1 Introduction

Interest in methods which use non-polynomial basis functions has increased recently be-
cause of their potential computational efficiency, especially, for higher frequency prob-
lems. Nevertheless, the numerical approximation of wave propagation problems still
remains challenging and time consuming. One of these non-polynomial basis func-
tions methods, herein studied, is called the ultra weak variational formulation (UWVF).
The UWVF was first introduced and analyzed by Cessenat and Després [6–8] for the
Helmholtz equation and Maxwell equations. To date the UWVF has been applied in
many physical problems, for example, audio acoustics [21], ultrasound acoustics [17],
electromagnetics [18], optoelectronics [22] and elasticity [19].
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The UWVF is a volume based method and uses triangular or tetrahedral meshes sim-
ilar to those used in the finite element method (FEM). However, in the UWVF, solutions
are computed on element edges in the 2-D case (and on element faces in the 3-D case).
When simulating at high frequencies, the UWVF is more efficient than traditional FEM,
see, for example, [8].

The original UWVF uses plane waves as a basis functions in part because integrals
encountered in the method can be computed efficiently in closed form. Other non-
polynomial basis methods include the discontinuous enrichment method (DEM) [9], par-
tition of unity finite element method (PUFEM) [23], least squares method (LSM) [24]
and discontinuous Galerkin method (DGM) [10]. In fact, it has been recently shown
(see [11, 18]) that the UWVF is a special form of an upwind DGM. Some of these meth-
ods (PUFEM, LSM, UWVF and DGM) have also been compared to each other for 2-D
Helmholtz problems.

Namely, the UWVF and PUFEM were compared to each other in [16] where the au-
thors showed that the UWVF worked better at high frequencies and PUFEM at low fre-
quencies. It has also been shown in [13] that at high frequencies the UWVF and DGM
provide better accuracy than LSM while at low frequencies all three methods have simi-
lar errors. The use of Bessel basis functions has been studied in the DGM applying them
to ultrasound and electromagnetic problems [2], and in the LSM [24].

In the UWVF, accuracy can be improved by refining the grid and/or using more basis
functions on an element. However, if the elements are small compared to the wave-
length, or too many basis functions are used, or when simulating at low frequencies,
ill-conditioning may occur. One possible technique for improving the UWVF at low fre-
quencies is to use a hybridized mixed FEM introduced in reference [25]. However, mo-
tivated by the work of Gittelson, Hiptmair and Perugia [14] and Barnett and Betcke [3],
Bessel basis functions are considered in this paper. The goal is to improve the UWVF
for problems with small elements or singularities. Unfortunately, for the Bessel basis, the
UWVF-integrals must be computed using quadratures. On the other hand, Barnett and
Betcke [3] reported interesting results for problems with singularities using only Bessel
basis functions. Our intention is to use plane wave basis and Bessel basis functions in the
UWVF.

We shall study 2-D Helmholtz problems. One of our model problems will be a sin-
gular 2-D Helmholtz problem on an L-shaped domain that was also a model problem
in [12, 16]. In addition, we shall study propagating plane and evanescent waves in a
rectangular domain.

This paper is organized as follows. In Section 2 the Helmholtz problem and UWVF
are introduced. In Section 3 the different choices of basis functions are given. Section 4 is
devoted to numerical simulations and is divided in two parts: the first problem studies
a propagating plane wave and evanescent wave in a rectangular domain and second
studies a singular 2-D Helmholtz problem. Finally, we draw conclusions in Section 5.
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2 The ultra weak variational formulation

Let Ω be a bounded polygonal domain in R2 with the boundary Γ and unit outward
normal n. We consider the homogeneous Helmholtz problem: find u such that

∆u+κ2u=0, in Ω, (2.1a)

∂u

∂n
−iσu=Q

(

−
∂u

∂n
−iσu

)

+g, on Γ, (2.1b)

where κ 6= 0 is the wavenumber, σ is the coupling parameter (real and positive, usually
σ=ℜ{κ}), Q∈C, |Q|≤1, defines the type of the boundary condition and g is the source
term on the boundary. From Eq. (2.1b) the following boundary conditions can be derived:
Neumann boundary condition (Q=1), Dirichlet boundary condition (Q=−1) and mixed
or the Robin boundary condition (Q 6=1,−1). In addition, with the choice Q=0, g=0 and
σ = κ. Eq. (2.1b) corresponds to the lowest order Engquist Majda absorbing boundary
condition.

Following the original work of Cessenat and Després [6, 8] the ultra weak varia-
tional formulation can be derived using a Trefftz-type approach [12] or a discontinuous
Galerkin (DG) approach [4,18]. The DG approach outlined herein follows the techniques
from references [1, 4].

Let us introduce a field v such that iκv =−∇u. Then we can write the Helmholtz
problem (2.1a)-(2.1b) as a first order system

−iκv=∇u, in Ω, (2.2a)

−iκu=∇·v, in Ω, (2.2b)

−iκv ·n−iσu=Q(iκv ·n−iσu)+g, on Γ. (2.2c)

We partition the domain Ω into non-overlapping elements Ωk such that Ω=∪N
k=1Ωk (see

Fig. 1 for some notation related to the mesh).
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Figure 1: The exterior boundary of an element Ωk is denoted by Γk and the outward unit normal by nk. The
interface between elements Ωk and Ωj is denoted as ∑k,j.

Let uk=u|Ωk
and vk=v|Ωk

. Multiplying Eqs. (2.2a) and (2.2b) by the complex conjugate
of a smooth test vector τk and a scalar φk, respectively, and integrating over an element
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Ωk we have
∫

Ωk

(−iκvk ·τk+uk∇·τk)dV=
∫

∂Ωk

unk ·τkdA, (2.3a)

∫

Ωk

(−iκuk ·φk+vk ·∇φk)dV=
∫

∂Ωk

v·nkφkdA, (2.3b)

where nk is the outward normal unit vector to the element Ωk.
Adding Eqs. (2.3a) and (2.3b) and replacing in the right hand side u by û and v by v̂

(to be specified shortly), one obtains

∫

Ωk

(

vk ·(iκτk+∇φk)+uk(iκφk+∇·τk)
)

dV=
∫

∂Ωk

(ûnk ·τk+v̂·nkφk)dA.

Choosing τ and φ to be smooth solutions of the adjoint Helmholtz problem

(iκτk+∇φk)=0 and (iκφk+∇·τk)=0, in Ωk, (2.4)

we obtain
∫

∂Ωk

(ûnk ·τk+v̂·nkφk)dA=0. (2.5)

We use Eq. (2.5) on each element by giving definitions for the fluxes û and v̂. Using a DG
approach we introduce standard notation for averages and jumps as follows

{{u}}=
uk+uj

2
, {{v}}=

vk+vj

2
, (2.6a)

[[u]]=uknk+ujnj, [[v]]=vk ·nk+vj ·nj. (2.6b)

On interior faces we define fluxes, using a similar strategy to reference [15], by

û={{u}}−
κ

2σ
[[v]] and v̂={{v}}−

σ

2κ
[[u]]. (2.7)

Multiplying Eq. (2.5) by κ and using the fluxes (2.7), the definitions of averages and jumps
(2.6a)-(2.6b), Eq. (2.5) can be rearranged, for an interior edge, to obtain

∫

∑k,j

κ(ûnk ·τk+v̂·nkφk)dA

=−
∫

∑k,j

1

2σ

[

(−iσuk+iκvk ·nk)(−iσφk+iκnk ·τk)
]

dA

+
∫

∑k,j

1

2σ

[

(−iσuj+iκvj ·nj)(−iσφk−iκτk ·nk)
]

dA

=−
∫

∑k,j

1

2σ
XkY kdA+

∫

∑k,j

1

2σ
XjFk(Yk)dA, (2.8)
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in which we have defined Xk =(−iσuk+iκvk ·nk) (similarly Xj), Yk =(−iσφk+iκnk ·τk)
and Fk(Yk)=(−iσφk−iκτk ·nk).

On an exterior boundary edge Γk = ∂Ωk∩Γ, we define fluxes v̂= v and û= u. Then,
using the above definition of Fk(Yk), we can write

∫

Γk

κ
(

uknk ·τk+vk ·nkφk

)

dA

=−
∫

Γk

1

2σ

(

−iσuk+iκvk ·nk

)(

−iσφk+iκnk ·τk

)

dA

+
∫

Γk

1

2σ

(

−iσuk−iκvk ·nk

)(

−iσφk−iκnk ·τk

)

dA

=−
∫

Γk

1

2σ
XkYkdA+

∫

Γk

1

2σ
Fk(Xk)Fk(Yk)dA. (2.9)

Adding Eqs. (2.8) and (2.9) and rearranging terms we can write Eq. (2.5) as

∫

∂Ωk

1

σ
XkY kdA−

N

∑
j=1,k 6=j

∫

∑k,j

1

σ
XjFk(Yk)dA=

∫

Γk

1

σ
Fk(Xk)Fk(Yk)dA.

Taking into account the boundary condition from Eq. (2.2c) and summing over all ele-
ments we have the UWVF of finding Xk∈L2(∂Ωk), k=1,··· ,N, such that

N

∑
k=1

∫

∂Ωk

1

σ
XkY kdA−

N

∑
k=1

N

∑
j=1,k 6=j

∫

∑k,j

1

σ
XjFk(Yk)dA

−
N

∑
k=1

∫

Γk

Q

σ
XkFk(Yk)dA=

N

∑
k=1

∫

Γk

1

σ
gFk(Yk)dA (2.10)

for all Yk ∈L2(∂Ωk), k=1,··· ,N.
The problem can be discretized by choosing basis function {ϕk,ℓ}

pk

ℓ=1 on Ωk, 1≤k≤N,
that satisfy Eq. (2.4). Then

X a
k =

pk

∑
ℓ=1

Xk,ℓ

(

−
∂ϕk,ℓ

∂nk
−iσϕk,ℓ

)∣

∣

∣

∂Ωk

, (2.11)

where we have used Eqs. (2.2a) and (2.2b). Similarly for Yk we can write

Y a
k =

(

−
∂ϕk,ℓ

∂nk
−iσϕk,ℓ

)

, for 1≤ ℓ≤ pk. (2.12)

Using X a
k and Y a

k in Eq. (2.10) gives a non-singular matrix problem for the coefficients

{Xk,ℓ}
pk,N
ℓ=1,k=1 for any κ > 0 [7]. In particular, using Eqs. (2.11) and (2.12), in (2.10) we

can write the problem in a matrix form as (D−C)X = b with unknown weights X =
(X11,··· ,X1pk

,X21,···)T. Matrices D and C are sparse block matrices and matrix D is Her-
mitian block diagonal. In order to improve conditioning, we use the preconditioned form
(I−D−1C)X=D−1b (see [16, 20]).
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3 Choice of basis functions

In the UWVF the basis functions are usually chosen to be plane waves because the in-
tegrals in (2.10) can be computed in closed form. The plane wave basis functions are
defined by

ϕk,ℓ=exp(iκkdk,ℓ ·x) in Ωk and 0 elsewhere, (3.1)

where the directions for the plane wave basis in element Ωk are given by

dk,ℓ=
(

cos
(

2π
ℓ−1

pk

)

,sin
(

2π
ℓ−1

pk

))

, ℓ=1,··· ,pk.

Considering the case when κ→0, we see that the plane wave basis behaves as

eiκd·x≈1+iκx·d+O(|κ|2|x|2)→1 as κ→0.

Hence ill-conditioning is expected for small κ (or small h, or by other arguments for
large pk). Trying to enhance the accuracy and avoid ill-conditioning we introduce a new
basis using the Bessel functions of the first kind and order ℓ. Motivated by the work of
Gittelson, Hiptmair and Perugia [14] we use Bessel basis with a scaling term

ϕk,ℓ=
Jℓ(κk|xk−x0,k|)

Jℓ(κkLk)
eiℓθ in Ωk and 0 elsewhere, (3.2)

where ℓ is the order of Bessel function, θ is the polar angle about x0,k, the centroid of the
element Ωk and Lk is a scaling parameter. For the above Bessel basis with the scaling we
have

Jℓ(κ|xk−x0,k|)

Jℓ(κLk)
eiℓθ→

( κr

κLk

)ℓ

eiℓθ =
( r

Lk

)ℓ

eiℓθ as κ→0,

which represents harmonic polynomials suggesting better behavior at low frequencies or
when the elements are small compared to the wavelength [14]. In addition, this suggests
that Lk = hk might be a useful choice. Another choice is a Bessel basis without scaling
written as follows

ϕk,ℓ= Jℓ(κk|xk−x0,k|)e
iℓθ in Ωk and 0 elsewhere. (3.3)

In the case of a Bessel basis, the integrals in Eq. (2.10) must be computed using quadra-
tures (here, Legendre-Gauss quadratures are used) and therefore it takes longer to com-
pute the integrals than in the case of a plane wave basis. We have not attempted to
optimize this aspect of the Bessel UWVF here and so do not report computer time.

The order ℓ of the Bessel function basis in element Ωk is chosen to be

ℓ= s−
pk−1

2
−1,

where pk is the number of basis functions and s= 1,··· ,pk. We choose the order ℓ to be
an integer and therefore the number of basis functions pk must be odd. We obtain Bessel

function orders − pk−1
2 ,··· , pk−1

2 . Moreover, we require pk ≥3.
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4 Numerical simulations

This section is divided in two parts: first we consider the propagating plane wave or
evanescent wave problem in a rectangular domain and second we study singular 2-D
Helmholtz problem. All simulations are coded using Matlab. The UWVF integrals (2.10)
for Bessel bases are computed using 128 point Legendre-Gauss quadratures. This large
number of points is used because we want to focus on basis functions and have a very
accurate approximation of the integrals.

4.1 Propagating plane wave and evanescent wave in a rectangular domain

We will approximate the solution to the Helmholtz problem (2.1a)-(2.1b) on Ω=[−1,1]2

with Q= 0 and g= ∂uex/∂n+iσuex, where σ= κ and in the case of a plane wave source,
uex = exp(iκd·x). Here d=(cos(π/p),sin(π/p)) and p is the number of basis functions
(the same number of directions is used in all elements in this experiment so pk = p for
all k). In the case of an evanescent wave uex =exp(i(α1(x+1)+α2y)), where α2

1+α2
2 =κ2,

α1= iκ
√

β2−1 and α2=βκ with β>1. In our simulations we make an arbitrary choice of
β=20 when κ=0.05.

The coarsest and densest uniform meshes are shown in Fig. 2.
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Figure 2: The computational domain is [−1,1]×[−1,1]. The coarsest (h=1.0) and densest (h=0.03125) meshes
for the rectangular domain. Meshes are derived from the coarse mesh by uniform subdivision.

As basis functions we consider the plane wave basis equation (3.1), Bessel basis with
scaling equation (3.2) (term in denominator Lk = h for all k) and Bessel basis without
scaling equation (3.3). Results are shown in Fig. 3 when the wave number κ=0.05 on all
elements, the number of basis functions p=5 and the mesh size h varies. In this case the
wavelength is λ= 2π/κ ≈ 126 so the domain is small compared to the wavelength and
this is a low frequency problem.

On the right in Fig. 3 is shown the maximum condition number of the matrix D versus
the length of the shortest edge in the mesh and on the left, relative error (%) versus the



T. Luostari, T. Huttunen and P. Monk / Commun. Comput. Phys., 11 (2012), pp. 400-414 407

length of the edge. Relative errors are computed from

error(%)=
||uex−uapp||ℓ2

||uex||ℓ2

×100%, (4.1)

where uex is the exact solution and uapp is the approximation using the UWVF. The rela-
tive errors are computed by interpolating to a uniform dense array of points.

Fig. 3 shows that Bessel basis with scaling has the lowest condition number and the
plane wave basis and Bessel bases without scaling have almost the same condition num-
bers. However, the errors remain the same for both Bessel bases. For the plane wave
propagation problem it can be seen that when the elements are small and the error level
is small the effect of ill-conditioning increases the error for plane wave basis whereas er-
rors for both Bessel bases remain decreasing. However, for the evanescent wave problem
the ill-conditioning does not seem to affect the error levels. It is also noticeable that error
levels for the evanescent wave problem are greater than error levels in the plane wave
propagation problem even though the same number of basis functions is used, see also
the case in Table 1 and Fig. 4 (see [26] for approximation theory relevant to this case). In
addition, on the right in Fig. 3 we can see that condition number increase at the same rate
as h→0, so scaling does not ultimately eliminate ill-conditioning.

In practice the UWVF is often used on a fixed mesh varying the number of basis func-
tions p. Let us consider the evanescent wave problem varying p when κ = 0.05 and the
mesh size h=0.25. Table 1 gives the error levels and in Fig. 4 is shown the 1-norm condi-
tion number of the matrix D and the 1-norm condition number estimate of the problem,
i.e., condest (I−D−1C).

Table 1: Results for the evanescent wave problem using the plane wave basis, scaled Bessel basis and unscaled
Bessel basis when κ=0.05 and h=0.25 on a square.

p PW scaled Bessel unscaled Bessel
error (%) error (%) error (%)

3 1.2667 1.2912 1.2914
5 0.2109 0.2179 0.2179
7 115.0009 0.0062 0.0062
9 8.3419e6 6.0748e-5 6.0746e-5

Results shown in Table 1 and Fig. 4 show that ill-conditioning may cause increasing
of error for the plane wave basis whereas both Bessel bases act stably having converging
error levels as a function of the number of basis functions. In addition, the scaling term
in the Bessel basis has an affect damping the condition number of the matrix D and the
global condition number estimate of the problem. However, when p=3 the scaled Bessel
basis has a greater condition number than plane wave basis and unscaled Bessel basis.

Results shown in Figs. 3 and 4 and in Table 1 show that ill-conditioning may hamper
the accuracy for the plane wave basis if the error target is small. However, if the error
level goal is, say ≤1%, it is more efficient to use plane wave basis functions in the UWVF.
Nevertheless, the Bessel basis (scaled or unscaled) does enhance robustness.
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Figure 3: Relative error (%) vs. h for
plane wave propagation (a) and evanes-
cent wave (c) (on the left panel). The
condition number of matrix D vs. element
size h for both problems is shown in panel
(b).
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the right panel).

4.2 A singular Helmholtz problem

We now consider a singular solution to the Helmholtz problem in an L-shaped domain as
a model problem, see Fig. 5. This test case is similar to the problem in references [12, 16].
The exterior boundary Γ is divided into two disjoint parts Γ1 and Γ2 and thus Γ=Γ1∪Γ2.
The two edges meeting at the origin are denoted by Γ1 and the other edges belong to the
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Figure 5: The L-shaped domain meshes used in simulations. The uniform mesh on the left consists of 65
vertices and 96 elements. The lightly refined non-uniform mesh on the center consists of 233 vertices and 422
elements. The densest non-uniform mesh on right consists of 704 vertices and 1304 elements.

boundary Γ2. We want to approximate u such that

∆u+κ2u=0, in Ω,

u=0, on Γ1,

∂u

∂n
+iσu=

∂uex

∂n
+iσuex, on Γ2,

where the Dirichlet condition is implemented by choosing Q=−1 on Γ1 and uex(r,θ)=
J2/3(κr)sin(2θ/3), where r= |x|. This exact solution u=uex has a singular gradient at the
origin (of course uex∈H1(Ω)).

In the first L-shaped domain example we compare the accuracy of plane wave basis
and the Bessel bases. For the uniform mesh (Fig. 5(a)) the number of basis functions per
element is chosen by trying to keep the error roughly constant.

However, in practice it is efficient to use a non-uniform mesh. For a non-uniform
mesh we must vary pk to control conditioning and choose the number of basis functions
as in [16] by

pk =round

(

κkhk+C(κkhk)
1
3
)

, (4.2)

where hk is the length of the longest edge of the element, C is a constant (C = 5 in our
simulations below unless otherwise stated) and if pk is even we set pk = pk−1. We have
not proved that (4.2) is optimal but we have found that it works rather well, for example,
in reference [16], (formula (4.2) is motivated by the theory of fast multipole method [5]).

Because of the varying element size the errors in this section are computed from

error(%)=
||uapp−ue||L2

||ue||L2

×100%. (4.3)

Results are shown in Table 2.
From Table 2 we see that using Bessel bases we obtain almost the same error as when

using the same number of plane wave basis functions when the uniform mesh is used.
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Table 2: On the uniform and lightly refined meshes for the L-shaped domain we show results for the plane
wave basis, Bessel without scaling basis and scaled Bessel basis (terms in denominator Lk=hk

max (the maximum
of an element Ωk edge)). The number of basis functions on element Ωk is denoted by p, the wavenumber is
κ, the maximum of 1-norm condition number of elementwise block matrix D is max (Dcond) and the error is
computed from (4.3).

Uniform mesh Lightly refined mesh
Basis κ p error (%) max (Dcond) p error (%) max (Dcond)

PW

0.05 5 1.5173 1.3196e6 3 0.4999 11.2229
0.5 5 1.0571 1.3132e4 3 0.4791 11.1942
5 7 1.8760 4.7782e3 3···7 2.6257 2.3514e4
50 25 2.8962 3.3511e5 7···27 2.1779 1.2786e8

Bessel

0.05 5 1.5173 1.0516e6 3 0.4971 8.6893
0.5 5 1.0573 1.0723e4 3 0.4588 8.6974
5 7 1.8527 4.2595e3 3···7 2.0908 2.1132e4
50 25 2.8893 2.6502e5 7···27 2.1539 1.1437e8

0.05 5 1.5173 6.0353e3 3 0.4971 4.4679e5
scaled Bessel 0.5 5 1.0573 61.6910 3 0.4588 4.4679e3

(hk
max) 5 7 1.8527 349.0382 3···7 2.0908 130.8977

50 25 2.8893 2.4433e7 7···27 2.1539 1.2311e14

Moreover, for the uniform mesh case similar behavior of the maximum condition number
of matrix D can be noticed for the plane wave basis and Bessel basis without scaling as is
to be expected following our previous simulation of propagating plane wave and evanes-
cent wave. Results shown in Table 2 for the lightly refined non-uniform mesh demon-
strate that we obtain similar accuracy levels for plane wave basis and Bessel basis which
are consistent with uniform mesh results. For the non-uniform mesh the number of ba-
sis functions on each element is given by Eq. (4.2). Results show that the scaled Bessel
basis may even increase the condition number although errors are similar for scaled and
unscaled Bessel bases.

Next we use a slightly different approach to this problem applying the modified
Bessel basis in which we take into account the singularity in the exact solution. The
modified Bessel basis is defined by

ϕk,ℓ=



















J|ℓ|
(

κk|xk−x0,k|
)

eiℓθ, in Ωk and if ℓ=−
2

3
,

Jℓ
(

κk|xk−x0,k|
)

eiℓθ, in Ωk and if ℓ 6=−
2

3
,

0, elsewhere,

the order ℓ of Bessel function in an element Ωk is

ℓ=



























s−
pk−3

2
−1, when s=1,··· , pk−2,

2

3
, when s= pk−1,

−
2

3
, when s= pk.
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Table 3: Results for the uniform and lightly refined L-shaped domain using plane wave (PW), modified Bessel
and PW+modified Bessel basis functions. The number of basis functions on element Ωk is denoted by p,
wavenumber is κ, the maximum of 1-norm condition number of elementwise block matrix D is max (Dcond)
and error is calculated using (4.3).

Uniform mesh Lightly refined mesh
Basis κ p error (%) max (Dcond) p error (%) max (Dcond)

PW

0.05 5 1.5173 1.3196e6 3 0.4999 11.2229
0.5 5 1.0571 1.3132e4 3 0.4791 11.1942
5 7 1.8760 4.7782e3 3···7 2.6257 2.3514e4
50 25 2.8962 3.3511e5 7···27 2.1779 1.2786e8

modified Bessel

0.05 5 1.0836 1.0511e6 3 2.3495 65.0767
0.5 5 0.2504 1.0723e4 3 0.4688 14.3588
5 7 0.0931 4.2595e3 3···7 1.2629 2.1132e4
50 25 0.0208 2.6588e7 7···27 0.0336 1.1437e8

PW+modified Bessel

0.05 5 1.0827 1.3196e6 3 2.3529 65.0767
0.5 5 0.2498 1.3132e4 3 0.4960 14.3588
5 7 0.1194 4.7782e3 3···7 1.8532 2.3514e4
50 25 0.0246 2.6588e7 7···27 0.0454 1.2786e8

The modified Bessel basis is used only in elements which share the vertex at the singular
point. Moreover, we set the modified Bessel basis origin, i.e., x0,k, to the singular point
x0,k =(0,0). The basis reflects the known singular behavior at that vertex.

Because of quadratures, it is not efficient to use the Bessel basis everywhere in the
computational domain. Instead we use a regular plane wave basis and modified Bessel
basis in the same mesh. We use the modified Bessel basis functions on elements that
share a vertex at the singular point and elsewhere we use the plane wave basis. Results
are shown in Table 3 using uniform mesh (Fig. 5(a)) and lightly refined mesh (Fig. 5(b)).
For the uniform mesh the number of basis functions per element is chosen by trying to
keep roughly constant the error level. In the case of non-uniform mesh the number of
basis functions is computed from (4.2).

For the uniform mesh, Table 3 shows that the singularity at (0,0) adversely effects
the accuracy using a plane wave basis particularly at high frequencies. In addition, we
see that using the modified Bessel basis in the uniform mesh we can get more accurate
results than using a pure plane wave basis. Moreover, if κ is high, the effect of the mod-
ified Bessel is better at improving the accuracy, and we see that it is possible to use the
coupling of a plane wave basis and a modified Bessel basis. If κ = 0.05,··· ,5 the worst
condition number comes from an element where the plane wave basis is used because it
is the same for both plane wave basis case and plane wave+Bessel basis case. The lightly
refined mesh (Fig. 5(b)) results are similar to the uniform mesh results. We emphasize
that the number of basis functions were chosen differently in the uniform mesh case and
for graded meshes. In the case of the lightly refined mesh the modified Bessel basis does
not help the accuracy much if κ 6=50.

Finally we consider the densest mesh (Fig. 5(c)) when the accuracy parameter C= 5
and C=8 in Eq. (4.2). Results are shown in Table 4. As before the modified Bessel basis
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Table 4: Results using the plane wave and plane wave+modified Bessel basis functions in a non-uniform mesh
(the densest mesh right in Fig. 5). The number of basis functions on element Ωk is denoted by p, wavenumber
is κ, the maximum of 1-norm condition number of elementwise block matrix D is max (Dcond) and the error is
calculated from (4.3).

Basis κ p error (%) max (Dcond)

PW (C=5)

0.05 3 0.1862 9.1622
0.5 3 0.1917 9.1622
5 3···5 1.2076 1.3343e3

50 3···17 1.0350 5.0378e6

PW+ modified Bessel (C=5)

0.05 3 0.1875 2.2074e3
0.5 3 0.1928 475.5730
5 3···5 1.2125 1.3343e3

50 3···17 1.0761 5.0378e6

PW (C=8)

0.05 3 0.1862 9.1622
0.5 3 0.1917 9.1622
5 3···7 0.0848 1.1854e6

50 5···23 0.0933 2.4522e11

PW+modified Bessel (C=8)

0.05 3 0.1875 2.2074e3
0.5 3 0.1928 475.5730
5 3···7 0.0901 1.1854e6

50 5···23 0.1370 2.4522e11

is only on elements near the singular point i.e., the modified Bessel basis is used on five
elements that touch (0,0).

Table 4 demonstrates that properly refining the grid near the singular point enhance
the accuracy and that plane waves can approach the accuracy of the modified Bessel
method, mitigating the pollution from the singularity. The modified Bessel basis does
not help the accuracy and therefore plane wave basis and plane wave+modified Bessel
basis results do not differ much. As we expect the C parameter affects on the accuracy.
However, the condition number of matrix D increases as the number of basis functions
pk increases.

5 Conclusions

In this paper we investigate the use of Bessel functions in the UWVF. Our first numerical
example shows that Bessel bases work better than the plane wave basis for the propagat-
ing plane wave problem in a rectangular domain. However, the accuracy levels of plane
wave basis and Bessel bases were almost the same for the evanescent wave problem. Re-
sults also show that using Bessel basis with scaling results in a lower condition numbers
for the block matrix D (if p>3). The effect of ill-conditioning was seen for the plane wave
basis when the element size was small whereas the increasing condition number did not
increase the error for the Bessel basis with or without scaling. On the other hand, in the
evanescent wave problem the ill-conditioning did not affect the accuracy levels either for
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the plane basis or for the Bessel bases. However, in the evanescent wave problem error
levels were higher than in plane wave propagation model problem. If very high accuracy
is needed, the Bessel bases are more robust. However, for an error of around 1% our re-
sults suggest to use the plane wave basis functions in the UWVF. Taking into account the
cost of quadratures in the case of Bessel bases reinforces this view.

For the singular 2-D Helmholtz problem, the Bessel basis without scaling worked
similarly to the plane wave basis. Our results clearly show the pollution effect of the
singularity on the error particularly at higher κ. Two remedies are available. The first is
to couple the plane wave basis and modified Bessel basis. Results show that the plane
wave and modified Bessel basis improve the accuracy in the case of a uniform mesh.
However, in the case of a non-uniform mesh, when the elements were small compared
to wavelength the modified Bessel basis did not work well and at low wavenumbers the
errors increased. The second approach, also applicable in three dimensions, is to use
plane waves on a suitably refined mesh.

Acknowledgments
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