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Abstract. This work concerns multiple-scattering problems for time-harmonic equa-
tions in a reference generic media. We consider scatterers that can be sources, obstacles
or compact perturbations of the reference media. Our aim is to restrict the computa-
tional domain to small compact domains containing the scatterers. We use Robin-to-
Robin (RtR) operators (in the most general case) to express boundary conditions for
the interior problem. We show that one can always factorize the RtR map using only
operators defined using single-scatterer problems. This factorization is based on a de-
composition of the diffracted field, on the whole domain where it is defined. Assuming
that there exists a good method for solving single-scatterer problems, it then gives a
convenient way to compute RtR maps for a random number of scatterers.
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1 Introduction

The present study has been motivated by the computation of wave propagation in locally
perturbed periodic media. The typical application is numerical modeling of photonic
crystals (see e.g. [7, 10]). The starting point is the method developed in [5] and [4] for the
treatment of one small local defect (typically localized in one or a few periodicity cells).
Our objective in this paper is to treat the case of several well separated defects of this na-
ture by exploiting the existing method for one single defect. This problem enters the more
general framework of multiple-scattering (see for instance [8]). The outline of the article
is the following: in Section 2 we present our model problem in the more general case of a
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propagation medium which is a perturbation of a given reference medium (which will be
the periodic medium in the application) and we present our main objective: determine
a transparent “Robin-to-Robin boundary condition” to reduce the effective computation
to a small neighbourhood of the local defect. In Section 3 we present a method of de-
composition of the solution of the multiple scattering problem into a sum of solution of
single-scattering problems. This is the basis of the factorization of the transparent opera-
tor as a product of two operators that can be determined by solving only single-scattering
problems (Section 4). Finally, in Section 5 we present numerical results obtained by ap-
plying this method to the case of a periodic reference medium.

2 Model problem and objectives

2.1 Setting of the problem

Let
(
Ωj

)
, 1 ≤ j ≤ N, be a family of bounded, connected, open sets of Ω = R

n, with at
least a Lipschitz boundary. The domain Ωint :=

⋃
j Ωj will play the role of the desired

computational domain (with the subscript “int” standing for interior). They are supposed
to contain the support of the sources and the regions where the true propagation domain
differs from a reference media which is supposed to have a simpler structure. When N=1
or equivalently when only one of the Ωj’s exists, one can speak of a single-scattering
problem. To be more precise, we wish to solve the following Helmholtz equation in Ω:

Find u in H1(Ω) such that:

−∆u−n2(ω2+iεω)u= f , in Ω, (2.1)

where ε>0 represents the absorption of the medium (possibly arbitrary small).
We suppose that the functions f ∈L2(Ω) n∈L∞(Ω) are such that:

• supp f ⊂Ωint, so we will write f j ∈L2(Ω)=χΩj
f such that supp f j ⊂ Ωj.

• There exists a reference function nre f ∈L∞(Ω), such that supp (n2−n2
re f )⊂Ωint.

• For almost every x∈Ω, 0<n−≤n(x)≤n+, 0<n−≤nre f (x)≤n+.

With these technical hypothesis, the problem is well posed by Lax-Milgram’s theorem.

Remark 2.1. In order to avoid lengthy notations, we have omitted on purpose the case
where the domain Ω contains obstacles where the solution is not defined. This case can
of course be treated using the method we will present here, provided that the Ωj’s are
such that they contain all these obstacles.

It is interesting to remark that the model problem (2.1) takes into account “real”
scattering problems, i.e. problems of the form: Find the total field utot such that utot =
uinc+udi f f , where uinc is the “incident” field, udi f f the “diffracted” field and

−∆utot−n2(ω2+iεω)utot=0, in Ω,
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Figure 1: Example of geometry, for N=4 (obstacles are figured in grey).

with udi f f ∈ H1(Ω) and ∆uinc+n2
re f (ω

2+iεω)uinc = 0, as the problem posed in terms of

diffracted field rewrites:

−∆udi f f −n2(ω2+iεω)udi f f =(n2−n2
re f )(ω

2+iεω)uinc, in Ω,

which is of the same kind than (2.1) since supp (n2−n2
re f )⊂Ωint. Moreover one could add

non-compactly supported sources to the incident field, provided one can effectively com-
pute the incident field in the unperturbed medium (see for instance [3] for the treatment
of non-compactly supported sources in homogeneous media).

We are speaking of multiple scattering problem because of the existence of several
disconnected domains Ωj’s. The simplest reference medium is the case of homogeneous
medium (nre f =constant) for which there exists many methods for solving both single-
scattering or multiple-scattering problems. The present study has been motivated by the
case where nre f is a periodic function: nre f (x1+L,··· ,xn+L)= nre f (x1,··· ,xn). In such a
situation, an efficient method for solving single-scattering problems has been designed
in [5] and [4]. In this case, the scatterer Ω1 is a square union of periodicity cells, and one
constructs a transparent boundary condition on ∂Ω1 to reduce the effective computation
to the domain Ω1. What is important to emphasize is that the cost of the resolution
of this local problem as well as the construction of the transparent boundary condition
increases rapidly with the size of the domain Ω1, that is why it is not interesting to treat a
multiple scattering problem in a single interior domain that would contain all the domain
Ωj introduced before (the scatterers). This is particularly clear when one wishes to treat
the case of small but distant scatterers. We aim at finding a method, as it is the case for
many methods for solving multiple-scattering problem, that relies on existing methods
for single-scattering problems. In this paper, this project will be achieved in the context
of the so-called Robin-to-Robin boundary conditions (see Section 2.2) on the boundary
of: Ωe =Ω\

⋃
j Ωj. This construction requires the study of Helmholtz problems defined

on Ωe, with Robin data on ∂Ωe.
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2.2 The exterior problem

As announced before, we will use Robin-boundary data’s on our artificial boundaries.
One should note that of course it is possible to use the classical Neumann or Dirichlet
datas (which we will use in our numerical examples for simplicity), and that all the fol-
lowing results still hold with these datas, provided that one uses the correct trace spaces.
We must now introduce a few notations. Let us define the trace operator:

Ee : u∈H1(∆,Ωe or Ω\Ωe) −→ (∂ne u−βu)|∂Ωe
∈H−1/2(∂Ωe), (2.2)

where ne is the exterior normal to Ω\Ωe, β 6=0. We then consider problems of the form:
For any ϕ∈H−1/2(∂Ωe), find ue(ϕ) ∈H1(Ωe) such that:

−∆ue(ϕ)−n2
re f (ω

2+iεω)ue(ϕ)=0, in Ωe, (2.3)

Ee(ue(ϕ))= ϕ, on ∂Ωe, (2.4)

and we assume for the rest of the article that β is chosen such that the problem is coercive
(in the complex sense). It is the case for instance as soon as ℑ(β)> 0. We will call this
problem an exterior multiple-scattering problem.

We also need to define the “conjugated” (with respect to Ee) trace operator:

Se : u∈H1(∆,Ωe or Ω\Ωe) −→ (∂ne u+βu) |∂Ωe
∈H−1/2(∂Ωe). (2.5)

This operator allows us to define the RtR operator for the exterior problem (2.3)-(2.4), as:

Λe : ϕ∈H−1/2(∂Ωe) −→ Se(ue(ϕ))∈H−1/2(∂Ωe), (2.6)

which leads to a reformulation of (2.1) on a bounded domain.

2.3 Reformulation on a bounded domain

Let us introduce the solution uint of the following boundary value problem: Find uint ∈
H1(Ω\Ωe) such that:

−∆uint−n2(ω2+iεω)uint= f , in Ωint, (2.7)

−Se(uint)+Λe(Ee(uint))=0, on ∂Ωe. (2.8)

It is well known that (2.7)-(2.8) is equivalent to (2.1) in the sense that:

• If u is the solution of (2.1) u|Ωint
=uint.

• Starting from uint the solution of (2.7)-(2.8), the solution u of is given by:

u=

{
u=uint, in Ωint,
u|Ωe

=ue(Ee(uint)), in Ωe.
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Figure 2: Example of exterior problem with two scatterers.

That is why we call this boundary condition a transparent RtR boundary condition. What
follows has been directly inspired by two articles [6, 9] dedicated respectively to direct
and inverse multiple-scattering problems in homogeneous media. Our contribution has
been essentially to reformulate, formalize and generalize the key-idea of the wave split-
ting developed in these two articles. This consists in decomposing the exterior field in N
single-scatterer-“diffracted” fields. This will allow us to factorize Λe using only single-
scatterer operators.

3 Decomposition of the solution of the exterior problem

Let us define precisely what we mean by decomposition of solution of the exterior prob-
lem. For any exterior multiple-scattering problem, such as the simple example with two
scatterers on Fig. 2, it is convenient to identify a data on ∂Ωe with the vector of its restric-
tions on the ∂Ωi. In other words, if ϕ is a data for the exterior problem, we will still call
ϕ=(ϕi)1≤i≤N where ϕi = ϕ|∂Ωi

. Of course, to get one component of the complete data on

∂Ωe, we use the following trace operators:

Ej : u∈H1(∆,Ωj or Ω\Ωj) −→ (∂nj
u−βu)|∂Ωj

∈H−1/2(∂Ωj), (3.1)

where we set nj=ne on ∂Ωe∩∂Ωj. Naturally, we associate with each Ωj a single-scatterer

exterior problem which uses the data given by Ej: For ϕ̃ ∈ H−1/2(∂Ωj), find ue,j(ϕ) ∈

H1(Ω\Ωj) such that:

−∆ue,j(ϕ̃)−n2
re f (ω

2+iεω)ue,j(ϕ̃)=0, in R
n\Ωj, (3.2)

Ej(ue,j(ϕ̃))= ϕ̃, on ∂Ωj. (3.3)

Let us now explain what we mean by being able to solve a single-scattering problem.
By this, we mean that one is able to compute the solution of (3.2)-(3.3) in all R

n\Ωj. In
the case of a homogeneous media and of spherical Ωj’s, one can expand the solution in

terms of Bessel’s function in all R
n\Ωj, and thus proceed to an analytic resolution of the

exterior single-scattering problem (see [6] for instance).
Here we are interested by more general media, and particularly in periodic media. If

one chooses Ωj’s that are squared union of periodicity cells, one can resort to the semi-

analytic method of [5]. The idea is to decompose the space in four half-planes (ΩH
k )1≤k≤4

surrounding Ωj:
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In each ΩH
k , one applies the Bloch-Floquet transform in the direction of the boundary of

ΩH
k , and gets a family of half wave-guide problems that can be solved thanks to local

cell-problems (see [4]), which can be solved numerically. In practice, this gives a way
to reconstruct sequentially the solution in all R

n\Ωj periodicity cell per periodicity cell,
combining the local cell-problems and the inverse Bloch-Floquet transform. Moreover, a
system of integral equations on the boundary of each ΩH

k can be derived, and its solution
combined with the RtR operator of each half-plane gives the RtR operator for the single-
scattering problem, which will be of use in the following.

The meaning of the decomposition can now be explained. We want to know whether
for each ϕ ∈H−1/2(∂Ωe) there exists (ϕ̃i)i such that, in Ωe:

ue(ϕ)=∑
i

ue,i(ϕ̃i), (3.4)

which is illustrated on Fig. 3. Of course we also would like such a decomposition to be
unique. This will be the object of the two following subsections. The numerical use of
formula (3.4) is clear, provided that:

• One is able to construct the ϕ̃i from ϕi: as we shall see, the proof of the existence of
the ϕi is constructive.

• Compute ue,i(ϕ̃i) from ϕ̃i which corresponds to solving a single-scattering problem.˜ ˜

ue(ϕ)
ϕ1 ϕ2

+

ϕ̃1

ue,1(ϕ̃1)

ϕ̃2

ue,2(ϕ̃2)

Figure 3: Example of decomposition with two scatterers.
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Figure 4: The operator Θij.

3.1 Existence of the exterior decomposition

In the case of a homogeneous media, existence is obtained through explicit integral rep-
resentation formulas (see [6] or [9]). We shall adopt here a more abstract and general
approach. As suggested by Fig. 3, constructing the decomposition will require to look
carefully at the traces of the solution of an exterior single-scattering problem on the
boundaries of the other scatterers. In other words, we see on Fig. 3 that we need to
know E1(ue,2(ϕ̃2) to find ϕ̃1 and reciprocally. This leads us to introduce new operators
which will allow us to express this link between traces. Using the single-scatterer exterior
problems (3.2)-(3.3), we define the propagation operators Θij:

Θij : ϕ∈H−1/2(∂Ωj) −→ Ei(ue,j(ϕ))∈H−1/2(∂Ωi), (3.5)

as described on Fig. 4. One remarks that Θii = Id(H−1/2(∂Ωi)).

Remark 3.1. As explained in the previous section, being able to solve a single-scattering
problem as explain in section means in particular that one is able to compute each of the
operators Θij.

We use the identification of an element of H−1/2(∂Ωe) with the vector of its restric-
tions on each H−1/2(∂Ωj) to define the following operator:

Θ : ϕ∈
N

∏
j=1

H−1/2(∂Ωj) −→ Θϕ=

(
N

∑
j=1

Θij ϕj

)

1≤i≤N

∈
N

∏
i=1

H−1/2(∂Ωj). (3.6)

We can rewrite Θ as a pseudo-matrix: Θ=
(
Θij

)
1≤i,j≤N

. This new operator will be useful

to characterize our decomposition. Indeed, first assume that there exists a decomposition
of the field:

ue=
N

∑
j=1

ue,j(ϕ̃j).
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We will then get, applying the trace operator Ei:

Ei(ue)=
N

∑
j=1

Ei(ue,j(ϕ̃j)),

which can be rewritten using the Θi,j’s:

Ei(ue)=
N

∑
j=1

Θij

(
Ej(ue,j(ϕ̃j))

)
,

which is also, by definition of the exterior single-scatterer problem:

Ei(ue)=
N

∑
j=1

Θij ϕ̃j.

If we call ϕ the vector of the boundary values of ue, i.e. ϕj=Ej(ue) we get the equation:

ϕ=Θϕ̃. (3.7)

This is the key relation that will allow us to prove the existence of a decomposition, and
explicit the fundamental link between the operator Θ and the decomposition:

Theorem 3.1. The operator Θ is invertible from ∏
N
j=1 H−1/2(∂Ωj) to ∏

N
j=1 H−1/2(∂Ωj) if and

only if the solution of the exterior problem has a unique decomposition in the sense of Eq. (3.4) for
all data ϕ. More precisely:

(i) Θ surjective ⇔ existence of a decomposition.

(ii) Θ injective ⇔ uniqueness of the decomposition.

Proof. (i) Θ surjective ⇒ existence of a decomposition.

Let ϕ be the vector of boundary datas of the exterior solution. then as Θ is surjective, ∃ ϕ̃
such that ϕ=Θϕ̃. We consider then the ue,i(ϕ̃i), whose sum is by linearity of the problem
solution in Ωe of the exterior problem, with data

Ee

(
n

∑
i=1

ue,j(ϕ̃i)

)
=Θϕ̃= ϕ,

since (3.7). By uniqueness of the exterior solution, we get ue =∑i ue,i(ϕ̃i) in all Ωe, which
proves existence of the decomposition.

Existence of a decomposition ⇒ Θ surjective.

Let ϕ=(ϕi)1≤i≤N be a vector of ∏
N
j=1 H−1/2(∂Ωj). We know that there exists a decompo-

sition ue,i(ϕ̃i) of ue(ϕ), the solution of the exterior problem for the boundary data ϕ. By
(3.7), we have ϕ=Θϕ̃ which proves surjectivity.
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(ii) Θ injective ⇒ uniqueness of the decomposition.

If we take two decompositions ue,i(ϕ̃i) and ue,i(ψ̃i), then we get Θ(ϕ̃−ψ̃)=0 since (3.7),
from which we get ϕ̃= ψ̃ by injectivity of Θ, which proves uniqueness.

Uniqueness of the decomposition ⇒ Θ injective.

Let (ϕ̃i)1≤i≤N be such that Θϕ̃ = 0. We notice that the only exterior solution with zero
boundary data is ue(0)=0. However, if consider the ue,i(ϕ̃i), their sum is solution of the
same exterior problem (2.3)-(2.4) than ue(0), with, since (3.7), the boundary data

Ee

(
n

∑
i=1

ue,j(ϕ̃i)

)
=Θϕ̃,

i.e. zero.By uniqueness, ∑i ue,i(ϕ̃i)=ue(0), so ue,i(ϕ̃i) is an exterior decomposition of ue(0).
By uniqueness of this decomposition, ϕ̃=0, and Θ is injective.

To conclude about the existence of an exterior decomposition, it consequently remains
to prove that Θ is surjective. This will result from the following property:

Lemma 3.1. For i 6= j, the operators Θij are compact from H−1/2(∂Ωj) to H−1/2(∂Ωi), and the
operator Θ is of Fredholm type.

Proof. It is a direct consequence of the definition of Θij. For ϕ in H−1/2(∂Ωj), ue,j(ϕ) is in

H2
loc(R

n\Ωj), so for i 6= j, its boundary data on ∂Ωi is at least in H1/2(∂Ωi). So the range

space of Θij is included in H1/2(∂Ωi), which is compactly embedded in H−1/2(∂Ωi), so
Θij is compact. Now we notice that Θ can be written Id+K which is compact as we have
just proved. So Θ is of Fredholm type.

According to Theorem 3.1 and Lemma 3.1, proof of the existence and uniqueness of
the decomposition is reduced to the injectivity of Θ, that is to say the uniqueness property.

3.2 Uniqueness of the decomposition

The uniqueness property will be a direct consequence of the following uniqueness result:

Theorem 3.2. Let ue be the solution of the exterior problem (2.3)-(2.4). If there exists a decompo-
sition such that:

ue ≡∑
i

ũi, in Ωe, ũi∈H1(Ω\Ωi),

−∆ũi−n2
re f (ω

2+iεω)ũi =0, in Ω\Ωi,

then this decomposition is unique.
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Ω1 w1∈H2

loc
Ω2 Ω1 w2∈H2

loc
Ω2

Figure 5: Domain of definition of w1 and w2.

−w2

Ω1

w1 Ω2

Figure 6: The function w.

Proof. The proof we derive here has been strongly inspired by [9] for the homogeneous
media. However we use slightly different arguments to obtain the final conclusion, which
allows us to state our result in our more general setting. We first consider the case of two
scatterers (we will see that the case of N scatterers can be easily deduced from this one).
Let v1, v2 be another decomposition, and:

wi= ũi− ṽi defined in Ω\Ωi,

then remark that in Ω\Ω1∪Ω2:

w1+w2=(ũ1+ũ2)−(ṽ1+ ṽ2)=u−u=0, in H1(Ω\Ω1∪Ω2).

In particular, we have: w1|∂Ωj
=−w2|∂Ωj

, j=1,2. As

−∆wi−n2
re f (ω

2+iεω)wi =0, in Ω\Ωi,

we moreover have wi∈H2
loc(Ω\Ωi), as shown on Fig. 5.

In other words, w1 is regular in the neighbourhood of ∂Ω2, so one can take the trace
of its normal derivative. The same thing will hold for w2 in the neighbourhood of ∂Ω1.
As one can also take the trace of the normal derivative of w1+w2 as it is zero and conse-
quently regular in the neighbourhood of ∂Ω1 and ∂Ω2, we get:

∂nw1|∂Ωj
=− ∂nw2|∂Ωj

, in H−1/2(∂Ωj), j=1,2.

We consider the function w defined by: w=w1 in Ω2 and w=−w2 in Ω\Ω2 which solves
the Helmholtz problem separately in Ω2 and Ω\Ω2, and is continuous in value and nor-
mal derivative on the boundary of Ω2. Then, w solves the homogeneous Helmholtz equa-
tion for the reference medium, in all Ω. Thus w= 0, and consequently w2 = 0 in Ω\Ω2.
We use the same arguments to prove that w1=0.

For N scatterers, we take a particular wj and we call w̌1=wj, w̌2=∑i 6=j wi, and use the
same argument to prove that wj = 0. We iterate the procedure to prove the result on all
the wi’s left.
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We can finally deduce the following result:

Theorem 3.3. The operator Θ is invertible from ∏
N
j=1 H−1/2(∂Ωj) to ∏

N
j=1 H−1/2(∂Ωj).

Proof. We know from Lemma 3.1 that the invertibility of Θ is ruled by Fredholm alter-
native. Theorem 3.1 says that the injectivity of Θ is equivalent to the uniqueness of the
exterior decomposition. Moreover, Theorem 3.2 applied to two decompositions ue,i(ϕi)
ue,i(ψi) shows that ϕi=ψi and gives uniqueness of the decomposition. As a consequence,
Θ is injective, so it is also surjective and even an isomorphism by virtue of Fredholm
alternative.

From this last theorem, we immediately get the following existence result:

Theorem 3.4. For every data ϕ∈ ∏
N
j=1 H−1/2(∂Ωj) = H−1/2(∂Ωe), there exists a unique de-

composition of the solution of the exterior problem (2.3)-(2.4).

Our constructive proof of the existence of the decomposition allows us to know how
to solve (2.3)-(2.4) for the data ϕ, easily starting from exterior problem of the kind (3.2)-
(3.3), i.e. for a single-scatterer, and applying the algorithm:

• Solve ϕ̃=(Θ)−1 ϕ.

• Solve N problems of the kind (3.2)-(3.3) with boundary data ϕ̃i on ∂Ωi.

• Sum in Ωe of the solutions of these problems, and we get the solution of the scattering-
problem with N scatterers.

An interesting remark is that if we choose a Gauss-Seidel algorithm to invert Θ, then we
get an algorithm proposed in [1] for solving multi-scattering exterior problems.

4 Factorization of the operator Λe

In this section, we explain how to exploit the decomposition to construct a factorization
of the operator Λe with the help of operators that can be constructed by solving single-
scattering problems. We define the trace operators “conjugated” of the Ej:

Sj : u∈H1(∆,Ωj or Ω\Ωj) −→ (∂nj
u+βu)|∂Ωj

∈H−1/2(∂Ωj), (4.1)

which are analogous to Se, but on a single boundary. For the same reason that we have
introduced the Θij’s, we introduce the operators Λ̃ij, which are Robin-to-Robin operators:

Λ̃ij : ϕ∈H−1/2(∂Ωj) −→ Si(ue,j(ϕ))∈H−1/2(∂Ωi). (4.2)

Note that the Λij’s are constructed as the Θij’s from the solution of single-scattering prob-
lems, the difference being that we take the “conjugated” trace operator.
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Lets get back to the solution of the original exterior problem (2.3)-(2.4). We use the
decomposition (3.4) and apply the operators Ei and Si:

Ei(ue(ϕ))=
N

∑
j=1

Ei(ue,j(ϕ̃j)) and Si(ue(ϕ))=
N

∑
j=1

Si(ue,j(ϕ̃j)),

which gives using the operators Θij and Λ̃ij:

Ei(ue(ϕ))=
N

∑
j=1

Θij

(
Ej(ue,j(ϕ̃j))

)
and Si(ue(ϕ))=

N

∑
j=1

Λ̃ij

(
Ej(ue,j(ϕ̃j))

)
.

Using the definition of Λe, (3.3) and the fact that ϕ|∂Ωi
= ϕi, we obtain:

ϕi=Ei(ue)=
N

∑
j=1

Θij ϕ̃j and (Λe ϕ)i =(Se(ue(ϕ)))i=Si(ue(ϕ))=
N

∑
j=1

Λ̃ij ϕ̃j.

If we define Λ̃ : ∏
N
j=1 H−1/2(∂Ωj)−→∏

N
j=1 H−1/2(∂Ωj) the same way as Θ, then the last

two equalities become, as Θ is invertible since Theorems 3.2 and 3.1:

Λe ϕ= Λ̃(Θ)−1ϕ. (4.3)

Then it is obvious since (4.3) that Λe can be factorized the following way:

Λe = Λ̃(Θ)−1.

We have of course the following result, as a direct consequence of (2.7)-(2.8):

Theorem 4.1. Problem (2.1) is equivalent to:

−∆uint−n2(ω2+iεω)uint= fi, in Ωi=1,··· ,N, (4.4)

−Se(uint)+Λ̃((Θ)−1(Ee(uint)))=0, on ∂Ωe (4.5)

in the sense that if uint is the solution of this new problem, u|Ωint
=uint and u|Ωe

=ue(Ee(uint)).

This shows how we should choose boundary datas for the interior problem in order
to get the restriction of the solution in all Ω, and how to describe these boundary datas
using only the ones corresponding to single scatterer problems.

5 Numerical results

In this section, our reference media will be periodic, and we will use the method of [5]
to solve single-scattering problems, and use the same first order Raviart-Thomas finite
elements for the discretization (we omit the details).
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We will know present some numerical results. As we have seen in the previous sec-
tions, to get the solution everywhere in Ωe it is enough to know the ϕ̃j’s and then to apply
equation (3.4) to get the solution of the multiple-scattering problem. Of course, one can
always solve the problem (4.4)-(4.5), and then apply the inverse of Θ to the Robin-trace of
its solution to get the ϕ̃j’s. However, from a practical point of view, we want to avoid the
inversion of the full matrix Θ. That is why we have introduced the ϕ̃j’s as new unknowns
in our problem, and we solve the augmented system:

−∆uint−n2(ω2+iεω)uint= fi, in Ωi, i=1,··· ,N, (5.1)

−Se(uint)+Λ̃(ϕ̃)=0, on ∂Ωe, (5.2)

Θϕ̃=Ee(uint), on ∂Ωe, (5.3)

which is of course equivalent to (4.4)-(4.5). We will now present several numerical il-
lustrations. The solution will be represented on 13 periodicity cells in each direction (one
defect will be at the center), that contains all the obstacles, with the following parameters:

• We use the frequency ω= 5 and the absorption parameter ε= 0.1. The media n2
re f

we will use will be of magnitude 1 to 5 (1 for the homogeneous media, 1 and 5 for
the piecewise constant case), so the wavelength and the size of the periodicity cell
will be of the same order, as well as the scatterers.

• The periodicity cell will be a square of length 1, on which we use a uniform struc-
tured quadrilateral grid. We use Nx = Ny= 40 squares in each direction x and y,
thus resulting to a mesh precision h=0.025.

• Eqs. (5.2)-(5.3) are handled as described in [5] through the Floquet-Bloch transform.
We use piecewise constants to handle the Floquet-variable, with Nk=60 basis func-
tions on [0,2π].

5.1 Validation in the case of a homogeneous media

A homogeneous media being only a particular case of periodic media, it is natural to use
it to validate our method as we can compute a reference solution by other means. We
will consider a source problem with several obstacles, and apply our method to get the
solution. We use the media and source presented on Fig. 7. We next show on Fig. 8 the
solution of each of the single-scattering problem with data ϕ̃j, which is given when we
solve the interior problem, and then we combine this to get the global solution (on Fig. 9).
It is clear that each of the single-scatterer diffracted field corresponds to what we would
have got if we had only solved the single-scatterer problem. In particular, the last single-
scattered field corresponds to a source problem without obstacles, and the global solution
is a perturbation of this solution. We have also tested our method by increasing the size
of the Ωj’s, and we still get the same results. Finally, we have validated our method by
comparing the results we obtained with those obtained by another computational code
that puts all the obstacle inside the same computational domain, with suitable boundary
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Figure 7: Media used in Subsection 5.1 (homogeneous) and Subsection 5.2 (piecewise constant).

Figure 8: Solution of each of the single-scattering problem, interior and global solution for a homogeneous
media.

Figure 9: Interior and global solution for a homogeneous media.
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Figure 10: Solution of each of the single-scattering problem, interior and global solution for the piecewise
constant periodic media of Fig. 7.

conditions. We have used Marc Durufle’s code MONTJOIE (see [2]), which can handles
perfectly matched layers, suitable for homogeneous media. We get the same results as
those of Fig. 9, that is why we have not reproduced them here.

5.2 A more general periodic media

We will now present results in the case of a more complicated periodic media. We will
again consider a source problem, in a periodic media where nre f is piecewise constant,
as shown on Fig.7. Again, we show on Fig. 10 the solution of each single-scattering
problem, and the interior and global solutions. It is of course less obvious in this case to
give a qualitative interpretation of the solutions, due to the very complicated structure
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of the solution. Nevertheless, we see that the three squared obstacles give diffracted
fields of the same kind, and that the solution is clearly a source solution perturbed by the
obstacles.
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