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Abstract. We present a three dimensional preconditioned implicit free-surface cap-
ture scheme on tetrahedral grids. The current scheme improves our recently reported
method [10] in several aspects. Specifically, we modified the original eigensystem
by applying a preconditioning matrix so that the new eigensystem is virtually inde-
pendent of density ratio, which is typically large for practical two-phase problems.
Further, we replaced the explicit multi-stage Runge-Kutta method by a fully implicit
Euler integration scheme for the Navier-Stokes (NS) solver and the Volume of Fluids
(VOF) equation is now solved with a second order Crank-Nicolson implicit scheme to
reduce the numerical diffusion effect. The preconditioned restarted Generalized Mini-
mal RESidual method (GMRES) is then employed to solve the resulting linear system.
The validation studies show that with these modifications, the method has improved
stability and accuracy when dealing with large density ratio two-phase problems.

AMS subject classifications: 65E05

Key words: VOF, level set, free surface, unstructured finite volume method, implicit method,
restarted GMRES, tetrahedral grid.

∗Corresponding author. Email addresses: lvxin@cimne-sgp.com (X. Lv), qingping.zou@maine.edu (Q.-P.
Zou), dominic.reeve@plymouth.ac.uk (D. E. Reeve), zyong@alfaisal.edu (Y. Zhao)

http://www.global-sci.com/ 215 c©2012 Global-Science Press



216 X. Lv, Q.-P. Zou, D. E. Reeve and Y. Zhao / Commun. Comput. Phys., 11 (2012), pp. 215-248

1 Introduction

We have recently reported a novel Coupled Level Set/VOF method for interfacial flow
simulations on three dimensional unstructured tetrahedral grids [10]. At each time step,
we evolve both the level set function and the volume fraction. The level set function
is evolved by solving the level set advection equation using a high resolution charac-
teristic based finite volume method. The volume fraction advection is performed using
a bounded compressive Normalised Variable diagram (NVD) scheme. The interface is
reconstructed using both the level set and the volume fraction information. In partic-
ular, the interface normal vector is calculated from the level set function while the in-
tercepts are determined by enforcing mass conservation based on the volume fraction.
The novelty of the method is that we use an analytic method to find the intercepts on
tetrahedral grids, which makes interface reconstruction efficient and conserves volume
of fluid exactly. The level set function is then reinitialized to the signed distance to the
reconstructed interface. Furthermore, the adaptive combination of high resolution dis-
cretization schemes ensures the preservation of the sharpness and shape of the interface
while retaining boundedness of the volume fraction field. Since the level set function is
continuous, the interface normal vector calculation is straightforward and accurate com-
pared to a classic volume-of-fluid method, while tracking the volume fraction is essential
for enforcing mass conservation. The method is also coupled to a well validated finite
volume based Navier-Stokes incompressible flow solver (Tetrinke) [11,12]. The code val-
idation presented in [10] shows that the proposed method can conserve the mass very
accurately and is able to maintain the sharpness of the interface. The coupling of level set
and VOF is not the focus of this paper, the details of which can be found in [10]. In our
earlier work [10], the discretized equations are marched forward in time using explicit
schemes to reduce overall memory consumption. But this low memory demand comes
with the sacrifices of stability and convergence speed. Therefore several convergence
accelerating techniques including multigrid and implicit residual smoothing are needed
to compensate the performance drop. Our numerical analysis has confirmed its good
performance using several classical benchmark problems. However, the approximations
and point implicit treatment introduced in that method to achieve low-cost computation
can destroy the balance between the left-hand side and right-hand side of the equation
and can thus slow the convergence rate when dealing with a stiff system (two-phase flow
simulation with large density ratio is a good example). Moreover, such explicit schemes
will be subject to CFL restrictions. In some simulations, time step size restriction can
become a constraining factor, severely limiting the period of the flow simulation. Wave
overtopping simulation in coastal engineering is a typical example of this kind, which
requires thousands of waves to be simulated before reasonable statistical results can be
readily obtained.

Another key feature of our previously proposed free-surface capture scheme is so
called air-phase deactivation technique, which deactivates the gaseous phase computa-
tion if the density ratio between the two phases exceeds a specified magnitude. It is well
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known that solving a two phase flow will pose difficulties when the density ratio be-
tween the liquid and gaseous phase is large. This obstacle mainly comes from the fact
that in such a case, the pressure gradient distribution is discontinuous across the inter-
face. This implies that any small pressure gradient that is transmitted from the liquid
to the air region due to numerical error will accelerate the air considerably. This in turn
will lead to inaccuracy, causing more spurious pressures. The whole cycle may, in fact,
lead to a complete divergence of the solution. In the implementation presented in [10],
a switch subroutine was designed and its function was monitoring the density ratio be-
tween the two phases. If the ratio is too large, say above 200, it automatically deactivates
the computation for the air phase. All of the necessary information needed in the com-
putation of the liquid phase is then extrapolated from inside the liquid phase itself. The
position of deactivation interface serves as a tuneable parameter and enables the user to
find a balance between the stability and accuracy. Generally, this parameter is between
0 and 0.5. A smaller number will ensure a more accurate result but the time step size
must be reduced accordingly to make the solver stable. In our experience, this parameter
can never take a value under 0.4 in the explicit framework. Technically, therefore, the
method reported in [10] is a single-phase free surface capture scheme. The deactivation
of the gaseous phase, which ensures robustness and decreases the total simulation time
significantly, renders the method inappropriate to certain cases where the impact of the
gaseous phase cannot be simply neglected or the interaction of the two phases is cru-
cial. Furthermore, the deactivation of the gaseous phase in any level will cause physical
inconsistency and thus affects the accuracy.

To date, numerous two-phase free surface capture schemes have been proposed in the
literature. These methods have the merit handling very large density ratios without los-
ing accuracy and stability. Among others, the Ghost Fluid Method (GFM) which is based
on the level set method in its original form [28] has received much attention recently, and
has been widely used by many researchers in practical applications of free surface flow
computations. Essentially, GFM exploits the concept of ghost and real fluid cells and
manages them with an overlapping Schwarzlike numerical procedure. In the material
interface region, it sets the values of the pressure and normal velocity in the ghost fluid
cells to those in the real fluid cells. To eliminate an otherwise spurious ”over-heating”
phenomenon, it computes the density of the ghost fluid using an isobaric fix technique.
As explained in [28], this isobaric fix requires the solution of yet another auxiliary partial
differential equation and therefore increases further the computational complexity of the
method. Also as pointed out by some researchers (see [29] for example), the original GFM
fails to solve some air/water problems of interest due to the large density ratio. In [31],
Kang and the co-authors extended GFM to multiphase incompressible flow including
the effects of viscosity, surface tension and gravity. The novelty of their approach is that
they incorporated the boundary condition capturing approach for the variable coefficient
Poisson equation developed in [30] to treat a sharp interface by means other than numer-
ical smearing. They have showed improved accuracy and robustness of their approach
against the original GFM.
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In this study, we propose an alternative approach to overcome the above mentioned
drawbacks by introducing a preconditioning technique and constructing a fully implicit
scheme to alleviate the time step size restriction and improve robustness. In the remain-
der of this paper, we will describe the governing equations for incompressible fluid flow
and the free surface evolution, the basic discretization technique used for tetrahedral
meshes, and the linear system iteration solution procedure. The performance of the
resulting algorithm and its comparisons against the GFM in three dimensions will be
demonstrated by several selected numerical examples. A summary of major findings
and conclusion is also given.

2 Governing equations and numerical methods

Here we consider incompressible flows with two different fluids. The density of one
fluid is ρa and the density of the second fluid is ρg. The nondimensional governing 3D
equations, modified by the artificial compressibility method (ACM) (see [16]), are given
in non-dimensional vector form as,

Γ
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In all the equations above, W is the vector of dependent variables, the velocity vector is

defined as ~U=u·~i+v·~j+w·~k. p and ρ are pressure and density, respectively, β the constant
parameter introduced by ACM (which is set to be 10 for all of the testing cases reported

in this paper). ~Fc and~Fv are the convective flux and viscous flux vectors. ~S contains the
surface tension and gravity terms. The first term on the left-hand side of Eq. (2.1) is a
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partial derivative of pressure with respect to pseudo-time τ (the artificial compressibility
term), which is introduced to couple velocity and pressure fields for the calculation of
pressure based on the divergence-free condition. Γ is a preconditioning matrix that arises
with the implementation of the artificial compressibility method. K is the unit matrix
with its first element being zero, and t is the physical time. Since the surface tension and
gravity play significant roles during the development of a free surface flow process, the
combined effects for surface tension and gravity are included. Fg is the gravity force per
unit mass and is given as

~Fg =
~ng

Fr2
, (2.2)

where Fr is the Froude number and ~ng the unit vector along the prescribed direction of

gravity. ~Fs is the surface tension force per unit volume, given in [22]

~Fs =
κ∇ϕ

We
, (2.3)

where κ is the curvature of the interface and We is the Weber number. The curvature can
be readily computed from the continuous level set function field as

κ =
(

−∇· ∇ϕ

|∇ϕ|
)

. (2.4)

The level set function ϕ is defined to be a signed distance function

|ϕ(~x)|=d(~x)=min
xI∈I

(|~x−~xI |), (2.5)

where I is the VOF interface, ϕ>0 on one side of the interface and ϕ<0 on the other. In
standard level set methods, the advection of ϕ, including a reinitialization step to retain ϕ
as a signed distance function, is not done in a conservative way, not even for divergence
free velocity fields. This implies that the total mass bounded by the zero level set is not
conserved. This drawback has been addressed in our proposed method.

To represent density and viscosity discontinuities over the interface the Heaviside
function:

H(ϕ)=0, ϕ<0, (2.6a)

H(ϕ)=1, ϕ>0, (2.6b)

H(ϕ)=0.5, ϕ=0 (2.6c)

is needed. In practical computations, to achieve numerical robustness, a smeared out
version of Heaviside function is used,
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where ε corresponds to half the thickness of the interface. It should not be too small for
the reason of robustness. In our proposed method, 1∼ 2 times of the smallest grid size
has been found to be sufficient to keep the code stable and accurate.

Finally, the constitutive relations for the density and dynamic viscosity are defined to
close all of the above equations

ρ= Hε(ϕ)ρa+(1−Hε(ϕ))ρg, µ= Hε(ϕ)µa+(1−Hε(ϕ))µg. (2.8)

The total density conservation equation is replaced by the level set equation, and they
are equivalent if ρa and ρg are constant.

The eigenvalue system of the preconditioned equations is provided in Appendix A. In
the development of the baseline differential system presented above, a number of physi-
cal, numerical and practical issues were considered [1]. Firstly, a corresponding artificial

time-derivative term ( ϕ
βρ

∂p
∂τ ) is introduced in the level set equation, which ensures that

the proper differential equation (in non-conservative form) is satisfied. To illustrate this,
consider the level set equation, which includes these artificial time-derivative terms:

ϕ
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∂τ
+
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∂t
+∇·(ϕ~U)=0. (2.9)

Expanding the convection term in Eq. (2.9) and substituting the continuity equation in a
form which isolates the divergence of the velocity field

∇·~U=− 1
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(2.10)

yields after some simplification,

∂ϕ
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+

∂ϕ

∂t
+~U·∇ϕ=0, (2.11)

which is the proper non-conservative form for the level set convection equation.
Secondly, the requirement that the eigensystem is independent of both the density

ratio and the level set function will lead to a performance that is commensurate with that
of single-phase problems for a wide range of multi-phase conditions. These considera-
tions give rise to the preconditioned system in Eq. (2.1), where (βρ)−1 is chosen as the

preconditioning parameter rather than more commonly used β−1, and
ϕ
βρ

∂p
∂τ is added to

the level set equation. Accordingly, the eigenvalues of the inviscid equations are inde-
pendent of the level set function and density ratio. This is not the case for other choices

of preconditioning matrix, Γ. For example, not including the terms
ϕ
βρ

∂p
∂τ in the level set

equation or selecting β−1 as the preconditioning parameter yields the eigenvalues,

Λ̃=
[
U+c,U−c,U,U,U

]
, c=
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U2+
β

ρ

) 1
2
, (2.12)
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where the nondimensional density ρ arises in the eigenvalues which means the equation
system is still density ratio dependent. The local time-steps and matrix dissipation oper-
ators presented below are derived from the inviscid multi-phase eigensystem, which has
been shown to be closely related to the known single-phase eigensystem. This has had
the practical advantage of making the single-phase predecessor code easier to adapt to
the multi-phase system.

Following [10], Eq. (2.1) can be recast in an integral form as follows,

Γ
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]
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Eq. (2.13) is equivalent to the following equation,
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Once the artificial steady state is reached, the derivatives with respect to τ become zero
and the above equation reduces to the following equation,
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Eq. (2.15) shows that the preconditioning matrix does not affect the solution and the orig-
inal unsteady incompressible Navier-Stokes equations are fully recovered. In this work, a
cell-vertex edge based finite volume scheme is adopted. For every vertex q, a control vol-
ume cv is constructed using the median duals of the tetrahedral cells. Following the finite
volume space-integration procedure introduced in [10–12] and using the Euler implicit
time-integration, Eq. (2.14) can be written in discrete form as

Γq∆Vn+1
cv,q

∆W

∆τ
=−Rn+1,m+1

q −Kq
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q

∆t

)

, (2.16)

where subscript q means the quantities are related to the vertex q (from rest of this paper,
this subscript will be discarded for the sake of simplicity). ∆Vn+1

cv,q stands for the volume
of the current control volume surrounding vertex q at n+1 physical time level. ∆t and
∆τ are the physical and pseudo time step size respectively and ∆W the difference of
unknown vector at between pseudo time level m and m+1; i.e.,

∆W=Wn+1,m+1−Wn+1,m. (2.17)

The first term on the right hand side of Eq. (2.16), the total residual including convective
and viscous fluxes, as well as source terms is defined as
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and is evaluated at n+1 physical and m+1 pseudo time step, where ~N ={nx,ny,nz} and
∆S are the normal vector and area of the control volume boundary face associated with

the center of edge qj respectively. Similarly, ~M = {mx,my,mz} and ∆Sq are the normal
vector and area of the control volume boundary face associated with the center of cell j.
nbseg and ncell are the total number of edges and tetrahedral cells associated with node
q. Eq. (2.16) can be linearized in pseudo time as

(

K
(1.5∆Vn+1

cv

∆t

)

+Γ
(∆Vn+1

cv

∆τ

)

+ Âc− Âv− Âs∆Vn+1
cv

)

︸ ︷︷ ︸

Left−hand side Jacobian

(
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cv Wn−1

∆t

)

, (2.19)

where K(1.5∆Vn+1
cv /∆t) emerges from the linearization of physical time term

K(1.5∆Vn+1
cv Wn+1,m+1/∆t) and Rn+1,m is the total residual defined in Eq. (2.16) but eval-

uated at m pseudo time level. Âc, Âv and Âs are the convective, viscous and source
term Jacobian matrices at m pseudo time level due to the linearization procedure and the
derivations of which will be described next. In this study, the source term Jacobian Âs is
ignored.

In this work, Roe’s flux difference splitting formula has been used to evaluate the
numerical convection flux at the Control Volume’s boundary face:

Fc =
1

2

[
Fc(WL)+Fc(WR)−Γ|Γ−1Ac(WRoe)|(WR−WL)

]
. (2.20)

In Eq. (2.20), the superscripts R and L indicate the right and left states respectively. The
flux differencing term in Eq. (2.20), Γ|Γ−1Ac(WRoe)|(WR−WL), can be recast in the form
of Γ|Γ−1Ac(WRoe)|∆W and the full derivative of this term with respect to the solution
vector (in general form) is

∂
[
Γ|Γ−1Ac(WRoe)|∆W

]

∂Wi
=

∂
[
Γ|Γ−1Ac(WRoe)|

]

∂Wi
∆W+Γ|Γ−1 Ac(WRoe)|∂[∆W]

∂Wi
, (2.21)

where the index i represents either control volume i or its direct neighbour. Differenti-
ating ∂

[
Γ|Γ−1Ac(WRoe)|

]
/∂Wi produces third-rank tensors which are not only difficult

to derive but are also quite expensive to compute. Barth [2] has found the full deriva-
tive of ∂

[
Γ|Γ−1Ac(WRoe)|∆W

]
/∂Wi with some clever modifications to eliminate the ten-

sor computations, reducing the complexity of the Jacobian computation to some degree.
Through spectral radius analysis for 1-D flow he showed that for a smooth flow the ap-
proximate Jacobian is reasonably accurate up to CFL = 1000 or even above. However,
for the shock tube problem the difference between the true Jacobian and the approx-
imate Jacobian grows after CFL = 10, and becomes noticeable after CFL = 100, show-
ing that the approximate Jacobian will not be accurate enough for larger CFL numbers.
This result is consistent with what we would expect from inspection of Eq. (2.21). For a
smooth flow, ∆W-the difference in the two reconstructed solutions at a Gauss point-is on
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the order of truncation error, so (∂
[
Γ|Γ−1Ac(WRoe)|

]
/∂Wi)∆W is very small compared

to Γ|Γ−1Ac(WRoe)|∂[∆W]/∂Wi , and the resulting approximate Jacobian will be accept-
able. Near a discontinuity, however, this approximation is not accurate anymore, be-
cause ∂

[
Γ|Γ−1Ac(WRoe)|

]
/∂Wi and ∆W will be O(1). Even though ignoring variations of

Γ|Γ−1Ac(WRoe)| (treating it as a constant) introduces an error in the Jacobian, and thus
causes stability problems when the CFL number is big. But in our situation a CFL num-
ber smaller than 5 is necessary in order to evolve the volume fraction equation correctly.
The cause of this restriction will be explained shortly. This simplification of the Jacobian
of Roe’s flux leads to the linearized form of Eq. (2.20) as:

Fm+1
c = Fm

c +
1

2

(
Ac(WL)+Γ|Γ−1Ac(WRoe)|

)
∆WL+

1

2

(
Ac(WR)−Γ|Γ−1Ac(WRoe)|

)
∆WR

︸ ︷︷ ︸

Âc∆W
These two parts will be moved to the LHS of the discretized equation.

, (2.22)

where

Ac =
∂Fc

∂W
,

and has been defined in the appendix. As pointed out in [1], using the reconstructed
values in each control volume at the Gauss point produces a more effective precondi-
tioning matrix; in this paper, we also use linear reconstruction data in computing the
Jacobian. Because the reconstruction has already been computed, the additional cost of
using this more accurate data is negligible. Also, with this approach we include the ef-
fects of boundary conditions in the approximate Jacobian by computing the Jacobian of
the boundary flux with respect to the solution in the interior of the domain. In this case,
only the Ac term in the Jacobian need be computed. In our experience, the CPU time
demanded for one approximate analytic Jacobian evaluation is 0.4−0.5 of that of a third-
order residual evaluation; reconstruction and limiting costs are not included here, as the
limited reconstruction from the residual evaluation is simply re-used. In Eq. (2.22),

|Γ−1Ac(WRoe)|= T̂|Λ̂|T̂−1,

where T is the matrix whose columns are the right eigenvectors of Âc=Γ−1Ac(WRoe) and
Λ̂ is a diagonal matrix whose elements are the absolute values of the eigenvalues of Âc

(Check Appendix for their detailed definition). The matrix Âc, dependent on left and
right states at the interface, is evaluated using Roe-average variables. In the two-phase
fluid system under consideration, the appropriate Roe average variables are given by [13]
as:

λ=

√

ρR

√

ρL
, ρRoe =λρL, pRoe =

pL+pR

2
, (2.23a)

ϕRoe =
ϕL+ϕR

2
,

(
uRoe, vRoe, wRoe

)
=

(u,v,w)Rλ+(u,v,w)L

1+λ
, (2.23b)
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where density ρ is computed from Eq. (2.8). The left and right state vectors WL and WR

at a control volume surface are evaluated using a nominally third-order upwind-biased
interpolation scheme [10–12]. The viscous flux vector can be expressed in discretized
form as:

Fv =
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Then the viscous flux at m+1 time level can be linearized as
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These terms will be moved to the LHS of the discretized equation.

. (2.25)

In Eqs. (2.24)-(2.25), ~nS = {nx, ny, nz} refers to the surface area vector in cell face normal
direction and (d~S) = {dSx, dSy, dSz} the surface vector that is opposite to node i of the
tetrahedron being considered.

The evolution of the volume fraction (VOF) field is governed by

∂F

∂t
+u·∇F =0. (2.26)
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Due to the fact of ∇·~U =0 for incompressible flow, Eq. (2.26) can be reformulated as

∂F

∂t
+∇(F ·~U)=0. (2.27)

This equation is in divergence form and can be easily discretized using control volume
schemes. Using Euler implicit time-integration, and after performing implicit lineariza-
tion, Eq. (2.27) can be written in discrete form as

( ∆Vn+1
cv

∆τ
+

1.5∆Vn+1
cv

∆t
+AF

)

︸ ︷︷ ︸

Left−hand side Jacobian
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(1.5∆Vn+1
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cvFn+0.5∆Vn−1

cv Fn−1

∆t

)

.

(2.28)

Following the derivations for Eq. (2.19), the total residual including only convective
fluxes is defined as

Rn+1,m+1 =
{nbseg

∑
j=1

[
(~Fc)qj ·~N∆S

]

q

}n+1,m+1

and is evaluated at n+1 physical and m+1 pseudo time step. The Jacobian due to implicit
linearization AF will be derived as follows.

As discussed in [10], the CICSAM (Compressive Interface Capturing Scheme for Ar-
bitrary Meshes) developed by Ubbink and Issa [14] is employed for solving the VOF
equation due to its good performance to maintain the sharpness of the interface while
keeping reasonable accuracy. It makes use of the NVD concept (see [15]) and switches
between different high resolution differencing schemes to yield a bounded scalar field,
but one which preserves both the smoothness of the interface and its sharp definition
(over one or two computational cells).

According to this method, the convection flux (or residual) at the Control Volume’s
boundary face is evaluated as
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{
U ·Fm+1

f ace

}
=

{
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(
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donor +Fm
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2
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2

)}

, (2.29a)

U =unx+vny+wnz, (2.29b)

where β is CICSAM weighting factor introduced in [14] and the contra-variant velocity
U is assumed to be constant during current time step. Note that, as suggested by Ubbink
and Issa [14], to minimize the numerical diffusion effect, a 2nd order Crank-Nicolson
time-integration scheme is used here. Thus, the residual at m+1 pseudo time level can
be linearised as
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The Jacobians for donor and acceptor CVs can be evaluated as

AF,donor =
∂R

∂Fdonor
=

1

2
(1−β)U, AF,acceptor =

∂R

∂Facceptor
=

1

2
βU. (2.31)

Recall that we mentioned earlier in our situation the CFL number may not exceed 5
in order to keep the evolution of the VOF function accurate. This restriction actually
stems from the CICSAM method. The donor-acceptor concept [19, 20] forms the basis of
this compressive differencing scheme, and it requires that a given fluid particle does not
travel across one whole cell in one time step.

As suggested by some other researchers, for an implicit high order scheme, in or-
der to achieve rapid convergence, it is necessary to make the boundary procedure im-
plicit [9, 17]. Explicit treatments will deteriorate the convergence rate and sometimes
lead to instability. In this study, a similar procedure to [17] is adopted. Consider the
free-slip wall (which is also the most common boundary type one would encounter in
free-surface simulations) as an example. At this boundary, only the pressure term will
contribute to the convection flux computation:
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(2.32)

and this flux can be linearized in pseudo time as
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This term will be moved to the LHS.

. (2.33)

At the far field, the fluxes are computed using characteristic boundary condition, and
they can be linearized similarly.

3 The linear system solver

As mentioned previously, the left and right states on CV faces are evaluated using 3rd or-
der MUSCL schemes [11] in order to achieve higher-order fluxes computation. However,
only a first-order representation of the numerical fluxes is considered while performing
implicit linearization. This results in a greatly simplified sparse Jacobian matrix with a
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graph identical to the graph of the supporting unstructured mesh. The penalty for mak-
ing these approximations in the linearization process is that the quadratic convergence of
Newton’s method can no longer be achieved because of the mismatch and inconsistency
between the right- and left-hand sides in the update equation. Although the number of
time steps (Newton iterations, if CFL number tends to infinity) may increase, the cost per
each time step is significantly reduced: it takes less CPU time to compute the Jacobian
matrix and the conditioning of the simplified Jacobian matrix is improved, thus reducing
computational cost to solve the resulting linear system. Another potential problem is that
the viscous Jacobian evaluated with Eq. (2.25), when assembled into the LHS Jacobian,
could make the system ill-conditioned, and thus the resultant linear system will become
extremely hard to solve using a traditional iterative solver. But simply ignoring it leads
to a degeneration of the convergence performance. One possible solution is ignoring the
viscous Jacobian in the several initial steps of the linear solver, and then taking it into
account in the following iterations.

Eq. (2.19) and (2.28) both represents a system of linear simultaneous algebraic equa-
tions and needs to be solved at each iteration step. They can be recast to the form of

Ax=b, (3.1)

where A represents the left-hand side sparse Jacobian matrix with each entry being a
neqns∗neqns square matrix, for Eq. (2.19), the left-hand-side Jacobian matrix is defined as

A=
(

K
(1.5∆Vn+1

cv

∆t

)

+Γ
(∆Vn+1

cv

∆τ

)

+ Âc− Âv− Âs∆Vn+1
cv

)

.

The number of nonzero entries in each row of the Jacobian matrix is related to the number
of edges incident to the node associated with that row. In other words, each edge i,
j will guarantee nonzero entries in the i-th column and j-th row and, similarly, the j-
th column and i-th row. In addition, nonzero entries will be placed on the diagonal of
the matrix representing each of the node point in the computational domain. Using an
edge-based data structure, the left-hand side Jacobian matrix A is stored in sparse triplet
matrix format, only non-zero entries are stored in a compressed manner. The symbol x
represent the unknown vector W defined in Eq. [1] to be solved and b is the right-hand-
side evaluated at m pseudo time level, for Eq. [19],

b=−Rn+1,m−K
(1.5∆Vn+1

cv Wn+1,m−2.0∆Vn
cvWn+0.5∆Vn−1

cv Wn−1

∆t

)

.

The most widely used methods to solve Eq. (3.1) are iterative solution methods and ap-
proximate factorization methods. In this work, the generalized minimal residual (GM-
RES) method of Saad and Schultz [3] is used because of its excellent performance when
dealing with a stiff system where the coefficient matrix is not symmetric and/or posi-
tive definite. The use of GMRES combined with different preconditioning techniques is
becoming widespread in the CFD community for the solution of the Euler and Navier-
Stokes equations [4–7]. Regarding this method, readers are referred to [3, 8, 9, 18, 27] for
more details.
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4 Numerical results

4.1 Breaking dam problem

As the first selected benchmark problem in this work, the collapse of a liquid column
(see [19–21]) will firstly be examined. Measurements of the exact interface shape are not
available, but some secondary data such as the speed of the wave front and the reduc-
tion of the column height are available [22]. Using this case, we will examine the effi-
ciency and accuracy of currently proposed method. Several commonly used techniques
for solving the linear system due to discretization will be compared in terms of CPU time
(efficiency). The effect of the choice of the position of deactivation interface will be further
discussed. The results for different density ratios will also be presented to demonstrate
the capability of current solver when dealing with big density ratio problems. Further-
more, the comparison of current method and the Ghost Fluid Method (GFM, see [26]) in
terms of total CPU time will also be given. Fig. 1 shows a schematic view of the domain
setup which is used for the current flow prediction. The water column is initially sup-
ported on the right by a vertical plate drawn up rapidly at time t = 0.0s. Gravitational
acceleration causes the water column in the left of the tank to seek the lowest possible
level of potential energy. Thus, the column will collapse and eventually come to rest and
occupy the bottom of the tank. The initial stages of the flow are dominated by inertia
forces with viscous effects increasing rapidly as the water comes to rest. On such a large
scale, the effect of surface tension forces is unimportant. For the numerical calculation
no-slip boundary conditions have been applied to the bottom and sides of the tank. This
experiment models a two-dimensional effect; therefore slip conditions have been applied
to the front and back face of the tank. It should be noted that this is a two-phase simula-
tion, i.e., both the water and gaseous phases are computed.

Figure 1: Schematic of dam-breaking testing case. Slip conditions have been applied to the front and back wall
of the tank, non-slip conditions have been applied to the rest of walls (left, right, up and down).
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Figure 2: (a) The height of the collapsing water column versus time; (b) The position of leading edge versus
time. For all simulations, ILU preconditioned GMRES is used to solve the linear system.

To begin with, numerical predictions for five successively finer mesh sizes with
50×30×4 (Length×Height×Width), 60×40×4, 100×60×4, 140×80×4 and 160×100×4
grid points respectively are presented. All of these tetrahedral grids are generated from
uniform spaced structured mesh. The predicted non-dimensional height of the collaps-
ing water column at the left wall versus the non-dimensional time is shown in Fig. 2(a),
and the non-dimensional positions of the leading edge for the same cases are shown in
Fig. 2(b). As shown in the figures, for all of these calculations the predicted results corre-
spond very well with the experimental data presented by Martin and Moyce [22]. The cal-
culated results show that the leading edge moves faster when the resolution of the mesh
increases. Results presented by other researchers show the same tendency (see [23]). The
reason for this is the difficulty to determine the exact position of the leading edge. A thin
layer shoots over the bottom and the rest of the bulk flow follows shortly behind it. The
difficulty is also confirmed by Martin and Moyce in [22] who present two different sets of
experimental data. To determine the overall accuracy of the proposed methods, we car-
ried out a grid convergence study. In this study, the solution on finest-mesh (160×100×4)
at t=0.3s is considered to be the ”benchmark” solution. On all the grids the same physi-
cal time step (0.005s) is employed in order to concentrate on the spatial resolution of the
method. For all the grids, the simulation time is set to 0.3s, at the end of which the infinite
and kth norms of the level set function errors are calculated as follows:

ε∞
N = max

i=1,M

∣
∣ϕN

i −ϕe
i

∣
∣, εk

N =
[ 1

M

M

∑
i=1

∣
∣ϕN

i −ϕe
i

∣
∣
k
] 1

k
, (4.1)

where superscript N represents the grid refinement level (50, 60, 100 and 140) and M the
number of grid points satisfying the condition |ϕi|≤5∆h and ∆h is the local grid size. ε∞

N
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and εk
N are the infinity and kth error norms, ϕN

i is the level set function at node i, and ϕe
i

is the ”exact” level set field.

The results of the grid convergence study are summarized in Table 1 as well as Fig. 3.
The graph shows the variation of the L∞, L1 and L2 norms of errors with grid spacing in
logarithmic coordinates. The lines with slope one and two are also given as reference.

Table 1: The computed error norms L∞, L1 and L2 from Eq. (4.1) on four grids for dam breaking case.

Grids L∞ L1 L2

50×30×4 2.2675e-1 1.6053e-1 1.9300e-1
60×40×4 1.3358e-1 7.8920e-2 1.0364e-1

100×60×4 3.6529e-2 1.1632e-2 2.2163e-2
140×80×4 1.7082e-2 3.7920e-3 9.6768e-3

A conclusion that can be drawn from the results is that the mesh with 140×80×4 grid
points can give accurate enough results for our purpose, and to save CPU time, this mesh
will be used in following tests.

The total CPU time (in minutes) needed by current method using different linear
system solvers for evolving the leading edge to a given position (x = 5a, right wall) on
the five meshes are shown in Fig. 4. All the simulations are carried out on a PC with 4GB
memory and an Intel Dual-Core CPU Q6600 running at 2.4GHz.

It is obvious that GMRES+ILU performs best in this particular case and on the finest
grid (with 160×100×4 grid points) it saves up to 40% time compared to the explicit GFM.
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This big amount of time saving can be easily understood by the fact that in the current im-
plicit implementation, the multi-stage Runge-Kutta explicit time-integration is no longer
needed. This means in each time step, the numerical fluxes are computed only once
other than multiple times. Furthermore, due to the improved convergence performance,
10+ pseudo sub-iterations are enough to produce the same residual drop as the explicit
solver usually does using 30+ iterations (as the explicit solver employs 5-stage Runge-
Kutta scheme, a total of (30+)×5=150+ residual evaluations are needed). The matrix-free
GMRES+LU-SGS (see [18,27]) and GMRES+LU-SGS (see [9]) have shown similar perfor-
mance on this problem and they both outperform non-preconditioned GMRES, which
in turn outperforms the BiConjugate Gradient method (see [8]). In this work, a fixed
number of search directions is employed (l = 20) and a uniform convergence tolerance
ε=10−3 ·|Res(W)|2 has been set for all of the GMRES solvers. And we have found that all
of the preconditioned GMRES solvers always converge within 3∼5 iterations while the
non-preconditioned one usually needs 50+ iterations to converge.

A remarkable advantage of currently proposed free-surface capture scheme is that
we are now able to make the choice to solve either the complete two-phase or only liquid
phase. And the shift between the two types of computation can be done in a seamless
manner by changing the deactivating interface position between 0 and 0.5 [10]. Setting
this interface to a position where VOF value is less than 0.3 is not possible in our previ-
ous implementation in order to maintain numerical stability if the density ratio is high.
The two-phase governing equations are now properly preconditioned and hence well-
conditioned; so we can solve the complete two phases by setting the deactivating inter-
face to F =0, and now the extension of velocity and pressure [10] from within the liquid
phase is not needed. Two snapshots of the simulation at different instants are shown in
Fig. 5. We can spot several vortices within the gas domain and this is due to the strong in-
teraction between the two phases. Now it would be interesting if we compare the results
of ”single-phase” simulation and ”two-phase” simulation to see how big the difference is
and in this way we could verify the accuracy of our proposed ”air deactivating” method.
To serve this purpose, we pick up a point P in the domain as shown in Fig. 6 and monitor
the time histories of (p,u,v,w) for both case and compare. The selection rule for this point
is quite simple: it should be always emerged in water so that the monitored flow vari-
ables are valid all the time. The comparisons are shown in Fig. 6 and three data sets are
included. As expected, the results obtained by setting the position of deactivation interface
F = 0.01 is more accurate than by setting it equal to 0.5 if we consider the ”two-phase”
simulation results as the ”benchmark”.

As mentioned earlier in this paper, the new preconditioning scheme will make the
two-phase governing equations better conditioned and the preconditioned eigensystem
is independent of density ratio. In Fig. 7, the predictions of the non-dimensional positions
of the leading edge of breaking dam for three different density ratios are shown. This
confirms our assertion that the proposed method is capable of solving large density ratio
two-phase problems.
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Figure 5: The velocity and VOF fields at two instants of simulation, the lower-right corner of the domain is
shown. VOF contours are drawn at 15 levels equally spaced intervals between 0 and 1.
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4.2 Dam breaking wave interacting with an obstacle

The next selected problem is the interaction of dam breaking wave with an obstacle.
The measurement data for this case is available due to the experimental work done at
MAritime Research Institute Netherlands (MARIN) [24, 25]. In this experiment, a large
tank of dimensions 3.22×1.0×1.0m is used with an open roof. The right part of the tank
is first closed by a door. Behind the door 0.55m of water is waiting to flow into the tank
when the door is opened. In the left part of the tank an obstacle has been placed that
represents a scale model of a container on the deck of a ship. Fig. 8 shows the schematic
of computational domain. During the experiment measurements have been performed
of water heights, pressures and forces. In Fig. 8 the positions of the measured quantities
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Figure 8: General description of the system for the simulation of interaction between dam breaking wave and
an obstacle.

are shown as well. Four vertical height probes have been used (H1 ∼ H4); one in the
reservoir and the other three in the tank. The obstacle was covered by eight pressure
sensors (p1∼ p8), four on the front of the box and four on the top. As initial configuration
of the current simulation, the water column is at rest. When the simulation is started,
due to gravity the water starts to flow into the empty part of the tank. A fine grid of
1,008,857 grid points and 5,882,357 tetrahedral elements has been used with some local
refinements near the obstacle and the walls of the tank. The simulation is continued for
6s with an automatically adapted time step using maximum CFL-numbers 1.0 resulting
in the time step size of the order of 0.005s. In Fig. 9 several snapshots of the early stages
of the simulation are shown. Good agreements can be seen between the snapshots of
simulation and experiment (snapshots of the experiment can be found in [24] and [25]).

In Fig. 10 time histories of the predicted water depth at two locations are shown (we
choose the same locations as [24] for ease of comparison): in the reservoir (H4) and in
the tank just in front of the box (H2). Good agreement at location H4 can be identified
from the left picture of Fig. 10. After the wave front has been reflected from the left
wall, the fluid height at probe H2 is the largest (about 1.8s). This fact is confirmed by the
experiment data as well as the numerical results presented in [24]. As can be seen from
the right picture of Fig. 10, the agreement at location H2 before 1.8s is extremely good
until the water has returned from the back wall. After that some differences occur, but
the global flow behaviour is reasonably good. The wave front flows back to the reservoir,
where it hits the right wall and turns over again after about 4s. A detectable difference at
probe H2 between simulation and experiment at this point (4s) is that in the experiment
there is a notable increase of water depth followed by a quick drop, while this change
is missing in the simulation. However, the moment that this second wave meets the
height probe at H2 again (after about 5s) is almost exactly the same in simulation and
experiment.

The instant when the wave hits the obstacle is extremely well captured by the sim-
ulation as can be seen from Fig. 11, where the pressures at point P1, P3, P5 and P7 (see
Fig. 8), are shown. The magnitude of the impact pressure is very close for simulation
and experiment at pressure point P1, but is slightly under predicted by the simulation
at point P3. This disagreement can be diminished further by refining the mesh near the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9: Snapshots of predicted dam breaking wave interacting with obstacle in early stages. ISO surface by
F=0.5. Implicit scheme, GMRES+ILU on mesh with 1,008,857 grid points and 5,882,357 tetrahedral elements.

block. In the bottom graphs of Fig. 11, where the time histories of pressure at the top of
the box (P5 and P7) are shown, and a clear difference between simulation and experiment
occurs after about 1.3s. There is a wiggle in the simulation with approximate duration of
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Figure 11: Predicted and measured pressure time histories at P1 (upper left), P3 (upper right), P5 (bottom
left) and P7 (bottom right). Results by GFM (see [26]) are also presented for comparison. The pressure was
nondimensionalized by dividing ρre f U

2
max, where ρre f is the density of water and Umax the maximum velocity

in the field.
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Figure 12: Mass loss time histories for the test case of Dam Breaking Wave Interacting with an Obstacle, the
proposed method can keep the mass loss as low as 0.7%.

0.55s, which is not present in the experiment (or of much smaller magnitude). Attempts
to improve the result by locally refining the grid or adjusting the time step size were not
successful. This difficulty has also been reported in [24]. The moment the return wave
hits the obstacle again (at about 4.72s) is again visible in the graphs and agrees well with
the experiment data. The numerical results by GFM [26] are also provided in Fig. 11 for
comparison purpose. As can be seen from the figures, both methods produce similar re-
sults and can predict the pressure to a reasonably accurate level, while the result from
our current method exhibits a smoother impact and we would claim a more physically
realistic representation.

Finally, the mass loss history during the whole simulation is shown in Fig. 12. As
is evident the proposed method preserves the water mass very accurately (mass loss<
0.7%).

4.3 Single bubble rising in a vertical column

This section considers isothermal, incompressible flows of immiscible fluids where the
conservation of momentum and mass is described by the Navier-Stokes equations (2.1).
Unlike the previous dam breaking problem, surface tension effects are important and
may not be neglected. The initial configuration, shown in Fig. 13, consists of a circular
bubble of radius r0 = 0.25 centered at [1.25,0.5] in a [2.5×3.5] rectangular domain [39].
The density of the bubble is smaller than that of the surrounding fluid (ρ2 < ρ1) so that
it will rise upwards. The setup of boundary conditions is also described in the figure.
The benchmarks are restricted to two dimensions since both computational complexity
and time is greatly reduced. This test case serves as a good example exhibiting the im-
provements made by current model against the single phase model described in [10]
when solving small scale free surface problems where the effects of the fluid with smaller
density are important.
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Figure 13: Schematic view of initial configuration and boundary conditions.

Table 2 lists the fluid and physical parameters. The evolution of the bubble is tracked
for multiple times on 4 different meshes. And the time step size is fixed to ∆t=h/10, and
h is the mean grid size.

Table 2: Physical parameters and dimensionless numbers defining the benchmark test case.

ρ1(kg/m3) ρ1(kg/m3) µ1 (kg/m·s) µ2 (kg/m·s) G(m/s2) σ(kg/s2) Re Eo ρ1/ρ2 µ1/µ2

1000 1 10 0.1 0.981 1.96 35 125 1000 100

This test case models a rising bubble with Re = 35, Eo = 125, and with large density
and viscosity ratios (1000 and 100). This bubble lies somewhere between the skirted
and dimpled ellipsoidal-cap regimes indicating that break up can possibly occur [35],
which will present additional challenges to the different interface tracking algorithms.
The dimensionless Reynolds and Eötvös numbers are here specifically defined to relate
to bubbles as

Re=
ρ1

√
G(2r0)

3
2

µ1
, E0 =

4ρ1Gr2
0

σ
,

where the subscript 1 refers to the heavier fluid and 2 to the lighter fluid in the bubble.
Moreover, r0 is the initial radius of the bubble, σ the surface tension coefficient and G the
gravitational constant.

Visual comparison of the bubble shape is one common way to compare simulation
results. And besides, the following two quantities, which will be used to assist in de-
scribing the temporal evolution of the bubbles quantitatively, are introduced.

Point Quantities. Positions of various points can be used to track the translation of



238 X. Lv, Q.-P. Zou, D. E. Reeve and Y. Zhao / Commun. Comput. Phys., 11 (2012), pp. 215-248

bubbles. It is common to use the center of mass [36], defined by

Xc =(xc,yc)=

∫

Ω
xdx

∫

Ω
1dx

, (4.2)

where Ω denotes the region that the bubble occupies. Other points could be the absolute
top or bottom of a bubble [36].

Rise Velocity. The mean velocity with which a bubble is rising within the column is
a particularly interesting quantity since it not only measures how the interface tracking
algorithm behaves but also the quality of the overall solution. It is defined as

Uc =

∫

Ω
udx

∫

Ω
1dx

. (4.3)

The temporal evolution of the computed benchmark quantities can be measured against
suitable reference solutions to establish the following relative error norms

l1 error : ‖e‖1 =
∑

T
t=0 |qt,re f −qt|
∑

T
t=0 |qt,re f |

, (4.4a)

l2 error : ‖e‖2 =
(∑

T
t=0 |qt,re f −qt|2

∑
T
t=0 |qt,re f |2

) 1
2
, (4.4b)

l∞ error : ‖e‖∞ =
maxt |qt,re f −qt|

maxt |qt,re f |
, (4.4c)

where qt is the temporal evolution of quantity q. The solution computed on the finest
grid is usually taken as a reference solution qt,re f . Interpolation should be appropriately
applied if there are more time steps for the reference solution than the solutions qt for
which the error norms should be computed. With the relative errors established and
CPU times measured it is then easy to see how much effort is required to acquire a certain
accuracy level. Additionally, convergence rates for the quantities can also be computed
as

ROCl = log10

(‖el−1‖
‖el‖

)/

log10

(hl−1

hl

)

, (4.5)

where l is the grid level. In this study, totally 4 level of grids with different resolutions
were used to perform the detailed grid convergence studies. The average grid sizes for
the grids are 1/50, 1/100, 1/200 and 1/400 respectively.

Benchmarking and validation efforts have been conducted with the aim of producing
grid independent reference solutions. The reason why this test case was proposed is
because extensive initial studies have already been carried out by the many other research
groups, FreeLIFE from EPFL for example [37, 38]. As shall be seen in the following, the
current study found very good agreement for the proposed test case.
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(c) t=1.8 s (b) t=1.2 s(a) t=0.6 s 

(f) t=3.6 s (d) t=2.4 s (e) t=3.0 s

41
(i) t=5.4 s (g) t=4.2 s (h) t=4.8 s

Figure 14: Time evolution of the single rising bubble. The bubble shape is contoured by VOF number F=0.5.

Fig. 14 shows the snapshots of the time evolution of the bubble (computed on h =
1/160 grid). As can be seen, the surface tension causes the initial round bubble to assume
a convex shape and develop thin filaments which eventually break off, as is evident from
Fig. 14. After the break up small satellite droplets trail the bulk of the main bubble, which
eventually assumes the shape of a dimpled cap.

The bubble shapes at the final simulation time (t=5.4), computed by both the current
proposed model and the explicit model reported in [10], are shown in Fig. 15. First of all
one can see that the simulation by the single phase explicit model produced a rather un-
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(a) (b)

Figure 15: Comparison of the computed bubble shapes at t = 5.4s, contoured by pressure. (a) final bubble
shape computed by current proposed model; (b) final bubble shape computed by the single phase explicit model
reported in [10].

Figure 16: Instant shape of the single rising bubble at t = 5.4s, contoured by VOF number F = 0.5. Figure is
colored by velocity magnitude. Velocity vectors are also plotted.

physical break up behaviour, producing sharp edged trailing filaments (Fig. 15(b)). The
shape computed by the current model did not have these filaments and seemed to con-
verge for the main bulk bubble. The two models gave quite different results in predicting
the bubble evolution, and as can be seen from what follows, the result by the current
proposed model is more accurate. The reason is actually obvious viewing the fact that,
in the single phase model, the jump condition is applied by employing the extrapolated
flow field since flow field in fluid 2 is not solved but estimated. However in the current
model, the flow fields of both fluids are calculated and thus the jump condition is treated
in a natural and accurate manner.

Fig. 16 shows the distribution of velocity magnitude at t = 5.4s. The vectors by the
velocity components are also plotted so one may have a clear picture of the flow field,
including the inside domain of the bubble.
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Table 3 shows the simulation statistics and timings for this test case. The Using the
proposed implicit model, the CPU times have reduced significantly, as shown in Table
3. This is mostly due to the elimination of the need of the time consuming Runge-Kutta
sub-iterations in each time step.

Table 3: Simulation statistics for single rising bubble. All test runs stopped at t=5.4s.

Grid Num of Num of CPU time (unit in second) CPU time reduced
size elements nodes Current model CPUs used Single phase CPUs used in percentage

model [10]
1/50 150,106 50,188 535 8 661 8 19.06%

1/100 755,855 225,973 2,762 16 3,489 16 20.84%
1/200 6,357,378 1,460,412 9,128 32 14,511 32 37.10%
1/400 51,216,648 12,194,440 24,538 128 33,996 128 27.82%

A quantitative convergence analysis has been performed computing the relative error
norms for the center of mass and rise velocity, together with the estimated rates of con-
vergence (ROC, defined in Eq. (4.5)). Both the analysis results of current model and single
phase model reported in [10] are listed in Table 4. Here, the reference solution is taken
as the solution from the computation on the finest grid (h=1/400). It is evident that all
quantities converge with a faster convergence order in current model than in the single
phase model. This is easy to understand as the flow field extrapolation (a key component
in single phase model) can introduce in considerable amount of numerical oscillations
which in turn cause the fluctuations in the computed flow variables, as can be seen from
the next two figures.

Table 4: Computed relative error norms and convergence orders for single bubble rising by both models. Current
model designated as (a) and the single phase model reported in [10] designated as (b).

h ‖e‖1 ROC1 ‖e‖2 ROC2 ‖e‖∞ ROC∞

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
Center of mass

1/50 3.22e-03 3.67e-03 3.62e-03 4.28e-03 4.48e-03 5.56e-03
1/100 7.61e-04 1.02e-03 2.08 1.84 8.32e-04 1.52e-03 2.12 1.49 1.17e-03 2.24e-03 1.94 1.31
1/200 1.75e-04 2.62e-04 2.12 1.96 2.21e-04 5.14e-04 1.91 1.56 2.97e-04 7.76e-04 1.98 1.53

Rise velocity

1/50 1.11e-02 1.39e-02 1.43e-02 3.13e-02 1.79e-02 4.49e-02
1/100 2.35e-03 4.25e-03 2.24 1.71 3.47e-03 9.27e-03 2.04 1.76 5.18e-03 1.75e-02 1.79 1.35
1/200 5.73e-04 1.13e-03 2.04 1.91 8.75e-04 3.32e-03 1.99 1.48 1.41e-03 8.14e-03 1.88 1.10

The time evolutions of the center of mass and mean rise velocity can be seen in Figs. 17
and 18, respectively. Both these quantities computed by current model seem to agree well
with that of the benchmark code although the curve from the simulation using single
phase model deviates somewhat from the other two. According to the current model,
the center of mass reaches a height of 1.1243 at the time of t = 3.0s on the finest grid.
Two velocity maximum can be easily identified in Fig. 18. A very good agreement can
be seen for the curves describing the rise velocity up until the first maximum, occurring
at t = 0.7383s with a magnitude of 0.2511 on the finest grid. And this is due to the fact
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Figure 17: Time history of the mass centre. Results by FreeLIFE [37, 38] and previously reported explicit
model [10] are also presented for comparisons.
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Figure 18: Rise velocity against time. Results by FreeLIFE [37, 38] and previously reported explicit model [10]
are also presented for comparisons.
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that by now the changes in the shape of the bubble is small. But from then on the curve
corresponding to the simulations on the coarse grids, as well as using the single phase
model, starts to show a somewhat irregular and oscillatory behaviour, most likely due to
some oscillations in the velocity field close to the interface. On coarse grids, these oscil-
lations are expected because of the low grid resolution. But for the single phase model,
the oscillations still present even on the finest grid, probably because of the extrapolation
procedure, as explained earlier.

It should be noted that in this case almost all the model parameters (∆t,∆τ,Re,σ) are
given as standards to both provide the research community with reference data and also
elicit more participation from additional groups [39].

The sensitivity of the ACM coefficient β has been evaluated and confirmed to be neg-
ligible. Please have a look of the Fig. 19, where the effects of changing the values of β to
the simulation results are presented.

5 Conclusions

The majority of two-phase flow approaches in the literature are either based on an ex-
plicit formulation, or semi-implicit (projection method) formulation, but rarely fully im-
plicit (see [32–34]). In this paper we have presented the development of a 3D precondi-
tioned implicit two-phase free-surface capture solver which improves upon our recently
reported method in [10]. The core of present method is the coupled Level Set and VOF
method which combines the strengths of both the level set and volume of fluid meth-
ods. To enhance robustness and improve efficiency, the time integration scheme has been
changed from an explicit multi-stage Runge-Kutta integration to a fully implicit Euler
scheme. In addition the VOF equation is now evolved by a second order Crank-Nicolson
implicit scheme to reduce numerical diffusion. The preconditioned restarted GMRES is
then employed to solve the resulting linear system. The numerical simulation of the dam
breaking (and its interaction with an obstacle) is presented to show that both the model
accuracy and efficiency is improved. Being able to set the values of the deactivation inter-
face position to a smaller value, the result of ”single phase” simulation by deactivating the
air phase is now closer to that of two-phase simulation, which is more accurate because
in this situation the air deactivation does not occur and thus the accuracy is not affected
by the extrapolation scheme introduced in the free-surface boundary treatment. Thus, in
our new method, the air deactivation technique is employed solely to reduce CPU time.
As shown in Section 4, the proposed method can predict the free surface evolution more
accurately while consuming much less CPU time. The benefit of preconditioning is evi-
dent as the solver is now virtually independent of the density ratio. Validation of a dam
break wave interacting with an obstacle showed that our proposed method is capable of
simulating a free surface flow with complex interface changes and high curvatures accu-
rately and efficiently. The benchmark study of the proposed model on a single bubble
rising in a column further confirms its overall improvements over the explicit counter-
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part reported in [10], both in terms of accuracy and efficiency for two phase problems
with big density ratio.

The method will be developed further in the coming years by extending it towards
handling floating bodies and violent overtopping of sea walls. An adaptive re-mesh algo-
rithm is also under development which we believe can greatly reduce the computational
workload.

Appendix

Of interest, in the construction and analysis of a scheme to discretize and solve Eqs. (2.1)-
(2.6), is its inviscid eigensystem. In particular, the eigenvalues and eigenvectors of matrix
Âc are required, where

Âc =Γ−1Ac =Γ−1 ∂~Fc

∂W
=Γ−1









0 nx ny nz 0
ρ−1nx nxu+U nyu nzu 0
ρ−1ny nxv nyv+U nzv 0
ρ−1nz nxw nyw nzw+U 0

0 nxφ nyφ nzφ U









. (A.1)

Note that

Γ=













1

ρβ
0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
φ

ρβ
0 0 0 1













, Γ−1 =









ρβ 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−φ 0 0 0 1









. (A.2)

Thus we have

Âc =Γ−1Ac =









0 ρβnx ρβny ρβnz 0
ρ−1nx unx+U uny unz 0
ρ−1ny vnx vny+U vnzv 0
ρ−1nz wnx wny wnz+U 0

0 0 0 0 U









. (A.3)

Its eigensystem reads:

Âc = T̂ ·Λ̂ ·T̂−1, (A.4)
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where

T̂ =

















1 1 0 0 0

(u+cnx)β+λ1uU

c2ρβ

(u−cnx)β+λ2uU

c2ρβ
− nz

nx
0 − ny

nx

(v+cny)β+λ1vU

c2ρβ

(v−cny)β+λ2vU

c2ρβ
0 0 1

(w+cnz)β+λ1wU

c2ρβ

(w−cnz)β+λ2wU

c2ρβ
1 0 0

0 0 0 1 0

















, (A.5)

T̂−1 =
1

c


















−λ2

2

ρβnx

2

ρβny

2

ρβnz

2
0

λ1

2
− ρβnx

2
− ρβny

2
− ρβnz

2
0

(Unz−w)

ρc
− (wU+βnz)nx

c
− (wU+βnz)ny

c

(c2−(wU+βnz)nz)

c
0

0 0 0 0 c

(Uny−v)

ρc
− (vU+βny)nx

c

(c2−(vU+βny)ny)

c
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c
0




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






, (A.6)

Λ̂=









λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5









=









U+c 0 0 0 0
0 U−c 0 0 0
0 0 U 0 0
0 0 0 U 0
0 0 0 0 U









, (A.7)

U =unx+vny+wnz, c=
√

U2+β. (A.8)

The viscous Jacobian presented in Eqs. (2.25)-(2.27) is derived by taking into account the
method we employed in discretizing the derivatives of solution variables. Alternatively,
they can be expressed as

∂F3
v

∂W
=












0 0 0 0 0

0 2 ∂
∂x 0 0 0

0 ∂
∂y

∂
∂x 0 0

0 ∂
∂z 0 ∂

∂x 0

0 0 0 0 0












∂F3
v

∂W
=













0 0 0 0 0

0 ∂
∂y

∂
∂x 0 0

0 0 2 ∂
∂y 0 0

0 0 ∂
∂z

∂
∂y 0

0 0 0 0 0













∂F3
v

∂W
=












0 0 0 0 0

0 ∂
∂z 0 ∂

∂x 0

0 0 ∂
∂z

∂
∂y 0

0 0 0 2 ∂
∂z 0

0 0 0 0 0












, (A.9)

Av =
∂F3

v

∂W
·nx+

∂F3
v

∂W
·ny+

∂F3
v

∂W
·nz

=













0 0 0 0 0

0 2 ∂
∂x nx+ ∂

∂y ny+ ∂
∂z nz

∂
∂x ny

∂
∂x nz 0

0 ∂
∂y nx

∂
∂x nx+2 ∂

∂y ny+ ∂
∂z nz

∂
∂y nz 0

0 ∂
∂z nx

∂
∂z ny

∂
∂x nx+ ∂

∂y ny+2 ∂
∂z nz 0

0 0 0 0 0













, (A.10)
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Fm+1
v = Fm

v +
∂Fm

v

∂W
∆W

= Fm
v +













0 0 0 0 0

0 2 ∂
∂x nx+ ∂

∂y ny+ ∂
∂z nz

∂
∂x ny

∂
∂x nz 0

0 ∂
∂y nx

∂
∂x nx+2 ∂

∂y ny+ ∂
∂z nz

∂
∂y nz 0

0 ∂
∂z nx

∂
∂z ny

∂
∂x nx+ ∂

∂y ny+2 ∂
∂z nz 0

0 0 0 0 0





















∆p
∆u
∆v
∆w
∆φ









= Fm
v +













0

2 ∂∆u
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∂z nz+

∂∆v
∂x ny+ ∂∆w

∂x nz

∂∆u
∂y nx+ ∂∆v

∂x nx+2 ∂∆v
∂y ny+ ∂∆v

∂z nz+
∂∆w
∂y nz

∂∆u
∂z nx+ ∂∆v
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∂z nz

0













︸ ︷︷ ︸

This part will be moved to the LHS of the discretized equation

. (A.11)
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