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Abstract. This paper is devoted to the numerical approximation of a degenerate
anisotropic elliptic problem. The numerical method is designed for arbitrary space-
dependent anisotropy directions and does not require any specially adapted coordi-
nate system. It is also designed to be equally accurate in the strongly and the mildly
anisotropic cases. The method is applied to the Euler-Lorentz system, in the drift-fluid
limit. This system provides a model for magnetized plasmas.
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1 Introduction

This paper discusses the numerical resolution of degenerate anisotropic elliptic problems
of the form:

−(b·∇)
(
∇·(bφε)

)
+εφε = f ε, in Ω, (1.1a)

(b·ν)∇·
(

bφε
)
=0, on ∂Ω, (1.1b)
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where Ω ⊂R
2 or R

3, f ε is a given function, b is a normalized vector field defining the
anisotropy direction and ε measures the strength of this anisotropy. In this expression ∇
and ∇· are respectively the gradient and divergence operators. The unit outward normal
at x∈ ∂Ω is denoted by ν. In the context of plasmas, ε is related to the gyro period (i.e.,
the period of the gyration motion of the particles about the magnetic field lines) and
the anisotropy direction b satisfies b=B/|B| with the magnetic field B verifying ∇·B=0.
Eq. (1.1a) may also arise in other contexts, such as rapidly rotating flows, shell theory and
may also be found when special types of semi-implicit time discretization of diffusion
equations are used.

The elliptic equation is not in the usual divergence form due to an exchange between
the gradient and divergence operators. However, the methodology would apply equally
well to the operator ∇·((b⊗b)·∇φ)), up to some simple changes. The expression consid-
ered here is motivated by the application to the Euler-Lorentz system of plasmas. This
application has already been considered in a previous study [13] but we introduce two
important developments. First the present numerical method does not request the devel-
opment of a special coordinate system adapted to b. In [13], b was assumed aligned with
one coordinate direction. Second, the present paper considers Neumann boundary con-
ditions instead of Dirichlet ones as in [13]. Although seemingly innocuous, this change
brings in a considerable difficulty, linked with the degeneracy of the limit problem, as
explained below.

A classical discretization of problem (1.1a), (1.1b) leads to an ill-conditioned linear
system as ε→0. Indeed setting formally ε=0 in (1.1a), (1.1b), we get:

−(b·∇)∇·(bψ)= f (0) , in Ω, (1.2a)

(b·ν)∇·(bψ)=0, on ∂Ω, (1.2b)

with f (0) = limε→0 f ε. The homogeneous system associated to (1.2a), (1.2b) admits an infi-
nite number of solutions, namely all functions ψ satisfying ∇·(bψ)=0. This degeneracy
results from the Neumann boundary conditions (1.2b) and would also occur if periodic
boundary conditions were used. On the other hand, (1.2a) is not degenerate if supple-
mented with Dirichlet or Robin conditions, which was the case considered in [13]. A
standard numerical approximation of (1.2a), (1.2b) generates a matrix whose condition
number blows up as ε→0, leading to very time consuming and/or poorly accurate solu-
tion algorithms.

To bypass these limitations, we follow the idea introduced in [12] and use a decom-
position of the solution in its average along the b-field lines and a fluctuation about this
average. This decomposition ensures an accurate computation of the solution for all val-
ues of ε. In [12], this decomposition approach was developed for a uniform b and a
coordinate system with one coordinate direction aligned with b. To extend this approach
to arbitrary anisotropy fields b, a possible way is to use an adapted curvilinear coordinate
system with one coordinate curve tangent to b. This is the route followed by [4], which
proposes an extension of [12] in the context of ionospheric plasma physics, where the
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anisotropy direction is known analytically (given by the earth dipolar magnetic field).
The approach developed here is different and aims at a method which does not request
the generation of special curvilinear coordinates. Indeed, in the general case, comput-
ing such coordinates can be complex and costly, especially for time-dependent problems
where b evolves in time.

For this purpose, we solve a variational problem for each of the terms of the decom-
position. The main difficulty lies in the discretization of the functional spaces in which
each component of the solution is searched. In the present paper, this difficulty is solved
by introducing two kinds of variational systems, one corresponding to a second-order
elliptic problem (for the average) and one, to a fourth order system (for the fluctuation).
An alternative to this method is proposed in [10]. It avoids the resolution of a fourth-
order problem at the price of the introduction of Lagrange multipliers which lead to a
larger system. In the present paper, we design a method which breaks the complexity of
the problem in smaller pieces and requires less computer resources.

As an application of the method and a motivation for studying problem (1.2a), (1.2b),
the drift-fluid limit of the isothermal Euler-Lorentz system is considered. These equa-
tions model the evolution of a magnetized plasma. In this case, the anisotropy direction
is that of the magnetic field and the parameter ε is the reciprocal of the non dimensional
cyclotron frequency. The drift-fluid limit ε→0 of the Euler-Lorentz system is singular be-
cause the momentum equation becomes degenerate. In this paper, we propose a scheme
able to handle both the ε∼1 and ε≪1 regimes, giving rise to consistent approximations of
both the Euler-Lorentz model and its drift-fluid limit, without any constraint on the space
and time steps related to the possible small value of ε. Schemes having such properties
are referred to as Asymptotic-Preserving (AP) schemes. These schemes are particularly ef-
ficient in situations in which part of the simulation domain is in the asymptotic regime
and part of it is not. Indeed, in most practical cases, the parameter ε assumes a local value
which may change from one location to the next or which may evolve with time.

The usual approach for dealing with such occurrences is through domain decomposi-
tion: the full Euler-Lorentz model is used in the region where ε=O(1) and the drift-fluid
limit model is used where ε ≪ 1. There are several drawbacks in using this approach.
The first one is the choice of the position of the interface (or cross-talk region), which can
influence the outcome of the simulation. If the interface evolves in time, an algorithm for
interface motion has to be devised and some remeshing must be used to ensure compati-
bility between the mesh and the interface, which requires heavy code developments and
can be quite CPU time consuming. Determining the right coupling strategy between the
two models can also be quite challenging and the outcome of the numerical simulations
may also depend on this choice. Because these questions do not have straightforward
answers, domain decomposition strategies often lack robustness and reliability. Here,
using the original model with an AP discretization method everywhere prevents from
these artefacts and permits to use the same code everywhere for both regimes.

We conclude this introductory section by some bibliographical remarks. In magne-
tized plasma simulations, many works are based on the use of curvilinear coordinate
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systems where one of the coordinate curves is tangent to the magnetic field (see e.g., [34],
the gyro-kinetic and gyro-fluid developments [2, 19, 22, 24] and the many attempts for
generating specialized coordinate systems [1, 5, 17, 18, 23, 26, 36]). The present work, to-
gether with [10] is one of the very few attempts to design numerical methods free of the
use of special coordinate systems (see also [35]). The key idea behind this method is the
concept of Asymptotic Preserving (AP) schemes as described above. AP-schemes have
first been introduced by S. Jin [25] in the context of diffusive limits of transport models.
They have recently found numerous applications to plasma physics in relation e.g., to
quasineutrality [3, 9, 11, 14, 15] and strong magnetic fields [10, 12, 13] as well as to fluid-
mechanical problems such as the small Mach-number limit of compressible fluids [16].
Other applications of AP-schemes can be found in [6–8,20,28,29,32]. Numerical methods
for anisotropic problems have been extensively studied in the literature using numer-
ous techniques such as domain decomposition techniques [21, 27], Multigrid methods,
smoothers [31], the hp-finite element method [33]. However, these methods are based on
a discretization of the anisotropic PDE as it is written. The method presented relies on a
totally different concept, namely viewing the anisotropy as a singular perturbation and
using Asymptotic-Preserving techniques.

For the readers convenience, we summarize the relations and differences with earlier
work. In the present work as well as in [13], a fully degenerate elliptic equation of the
form (1.1a) where the diffusion operator only acts in one direction is considered. How-
ever, [13] was concerned with a uniform anisotropy direction while the present work
deals with the general case of a space-dependent anisotropy direction. Also, in [13], the
boundary conditions were Dirichlet ones and the limit problem formally obtained by let-
ting ε→0 in (1.1a) had still a unique solution. In the present case, the Neumann boundary
conditions (1.1b) make the limit problem ill-posed and the O(ε) terms need to be consid-
ered to show that it is actually well-posed. This makes the numerics of the problem far
more difficult. The works [4,10,12] deal with elliptic operators which are not degenerate
until ε =0 and finding the limit solution involves solving operators which are elliptic in
the transverse direction. So, the setting is fairly different even if some methodologies can
be and were borrowed. [12] introduces the decomposition of the solution that is also used
in the present paper but is restricted to a uniform anisotropy direction. [4] is an extension
to a space-dependent anisotropy direction which relies on the introduction of a special co-
ordinate adapted to the anisotropy direction. Here, we want to avoid constructing such
a coordinate system, which can be quite difficult and time-consuming in practice. [10]
considers arbitrary coordinate systems but the constraints which apply to each compo-
nent of the decomposition are dualized by means of Lagrange multipliers, which greatly
increases the number of unknowns and the computer time. In the present work, these
constraints are expressed through some functional properties, that take advantage of the
fully degenerate form of the elliptic problem to be solved. For the sake of the efficiency of
the numerical exploration, the numerical experiments have been restricted to two space
dimensions. Fully three-dimensional simulations are in progress and will be reported in
future work.
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This paper is organized as follows. In Section 2 the solution methodology for the de-
generate anisotropic elliptic problem (1.1a), (1.1b) is detailed and the variational method
avoiding the use of adapted coordinates is presented. Section 3 is devoted to the dis-
cretization strategy. The numerical method for the anisotropic elliptic problem is vali-
dated in Section 4. In Section 5 the drift-fluid limit of the isothermal Euler-Lorentz system
is introduced. The AP-scheme is derived, giving rise to the anisotropic elliptic problem
(1.1a), (1.1b). Finally, numerical comparisons of the classical and AP schemes for the
Euler-Lorentz system are given in Section 6. A conclusion is drawn in Section 7.

2 A decomposition method for degenerate anisotropic

elliptic problems

We first present the methodology in the simpler case of a uniform b-field. The method
will then be extended to an arbitrary b-field.

2.1 Overview of the method in the uniform b-field case

A two dimensional configuration is considered in this section, with the position variable
(x,y) belonging to a square domain (x,y)∈Ω =[0,1]×[0,1]⊂R

2 . The b field is assumed
uniform, equal to the unit vector pointing in the y direction. In this case, the singular
perturbation problem (1.1a), (1.1b) reads:

εφε(x,y)− ∂2

∂y2
φε(x,y)= f ε(x,y), in [0,1]×[0,1], (2.1a)

∂

∂y
φε(x,y)=0, for y=0 or y=1. (2.1b)

We assume that:

lim
ε→0

(1

ε

∫ 1

0
f ε(x,y)dy

)
exists and is finite, ∀x∈ [0,1]. (2.2)

This framework is similar to [12]. Here, we recall the bases of the methodology. The
problem is well posed for all ε>0 but a standard discretization may lead to ill-conditioned
matrices when ε≪1. Indeed if ε is formally set to zero, we get the following degenerate
problem

− ∂2

∂y2
ψ(x,y)= f (0)(x,y), in [0,1]×[0,1], (2.3a)

∂

∂y
ψ(x,y)=0, for y=0 or y=1, (2.3b)

assuming that f ε has the following expansion f ε = f (0)+ε f (1)+o(ε). This system admits

a solution under the compatibility condition
∫ 1

0 f (0)(x,y)dy = 0 for all x∈ [0,1], which is
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satisfied thanks to hypothesis (2.2). However the solution is not unique. Indeed, if ψ
verifies (2.3) then ψ+ζ is also a solution for all functions ζ = ζ(x) which depend on the
x-coordinate only.

On the other hand, the limit φ(0) = limε→0φε is unique. Indeed, it is easy to see that

the solution ψ̃ of (2.3) such that
∫ 1

0 ψ̃(x,y)dy = 0 for all x∈ [0,1] is unique. Since φ(0) is a
particular solution of (2.3), it can be written

φ(0) = ψ̃+ζ(x). (2.4)

In order to determine ζ, we integrate (2.1a) with respect to y and get

∫ 1

0
φε(x,y)dy=

1

ε

∫ 1

0
f ε(x,y)dy. (2.5)

Taking the limit ε→ 0 in this equation and inserting (2.4), we get ζ(x) =
∫ 1

0 f (1)(x,y)dy,

which determines φ(0) uniquely.

Now, if a standard numerical method is applied to (2.1a), (2.1b), the resulting matrix
will be close, when ε≪1, to the singular matrix obtained from the discretization of (2.3).
Therefore, its condition number will blow up as ε→0, resulting in either low accuracy, or
high computational cost. To overcome this problem, we decompose φε according to

φε = pε+qε, pε(x)=
∫ 1

0
φε(x,y)dy, (2.6)

i.e., pε is the average of φε along straight lines parallel to b and qε is the fluctuation of the
solution with respect to this average. pε and qε satisfy:

∂pε

∂y
(x,y)=0, ∀(x,y)∈Ω, (2.7a)

∫ 1

0
qε(x,y)dy=0, ∀x∈ [0,1]. (2.7b)

They are orthogonal for the scalar product of L2, i.e.,
∫

Ω
pεqεdxdy=0.

Inserting this decomposition into (2.5) yields

pε(x)=
1

ε

∫ 1

0
f ε(x,y)dy, ∀x∈ [0,1]. (2.8)

Moreover, pε satisfies

lim
ε→0

pε(x)= lim
ε→0

1

ε

∫ 1

0
f ε(x,y)dy=

∫ 1

0
f (1)(x,y)dy= ζ(x),
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where ζ is defined by (2.4). Now, qε is the solution of the following problem:

− ∂2

∂y2
qε(x,y)+εqε(x,y)= ξε(x,y), ∀(x,y)∈ [0,1]×[0,1], (2.9a)

∫ 1

0
qε(x,y)dy=0, for x∈ [0,1], (2.9b)

∂

∂y
qε(x,y)=0, for y=0 or y=1, (2.9c)

where

ξε = f ε−
∫ 1

0
f εdy= f ε−εpε

is the projection of f ε on the space of functions satisfying (2.7b). Compared to (2.1a),
(2.1b), system (2.9a)-(2.9c) involves the additional condition (2.9b). This condition is im-
portant: it makes the system uniformly well-posed when ε→ 0. Additionally, the limit
system is

− ∂2

∂y2
q(0)(x,y)= f (0), ∀(x,y)∈ [0,1]×[0,1], (2.10a)

∫ 1

0
q(0)(x,y)dy=0, for x∈ [0,1], (2.10b)

∂

∂y
q(0)(x,y)=0, for y=0 or y=1, (2.10c)

and has a unique solution equal to ψ̃. Consequently, as ε→0

φε = pε+qε → ζ+ψ̃ =φ(0).

Therefore, the proposed decomposition leads to two uniformly well-posed problems
when ε→0, which allows to reconstruct the limit solution φ(0) of the original problem.

The numerical approximations of conditions (2.8) or (2.9b) is delicate if the mesh is
not aligned with the y coordinate axis. In order to overcome this problem, a weak formu-
lation is introduced. Define V = H1(0,1), K = {v∈V|∂yv=0}. Then, φε is the solution of
the variational formulation: find φε ∈V such that

∫

Ω

∂φε

∂y

∂ψ

∂y
dxdy+ε

∫

Ω
φεψdxdy=

∫

Ω
f εψdxdy, ∀ψ∈V. (2.11)

Let K⊥ be the orthogonal space to K in L2(0,1). Now, the decomposition (2.6), corre-
sponds to the decomposition of φε on K and K⊥. Indeed, it is easily checked that pε ∈K
and qε ∈K⊥ and they are orthogonal, as already noticed. Now, inserting ψ∈K in (2.11),
we get that pε is the solution of: find pε ∈K such that

∫

Ω

(
pε− 1

ε
f ε

)
ψdxdy=0, ∀ψ∈K, (2.12)
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which means that pε is the orthogonal projection of ε−1 f ε onto K. Now, inserting ψ∈K⊥

in (2.11) leads to: find qε ∈K⊥ such that

∫

Ω

∂qε

∂y

∂ψ

∂y
dxdy+ε

∫

Ω
qεψdxdy=

∫

Ω
( f ε−εpε)ψdxdy, ∀ψ∈K⊥, (2.13)

which is the variational formulation of (2.9a)-(2.9c).
The use of these variational formulations allows for the discretization of (2.1a), (2.1b)

on arbitrary meshes compared to the anisotropy direction. This is an important advan-
tage over the strong formulations (2.8) or (2.9a)-(2.9c). These formulations are now gen-
eralized to arbitrary anisotropy fields b in the next section.

2.2 Presentation of the method for a general anisotropy field

In this section, we introduce the functional setting for the variational formulation of the
anisotropic elliptic problem in the variable b case. This variational method is the corner-
stone of the strategy presented in this paper and avoids the use of curvilinear coordinates
adapted to b.

2.2.1 Preliminaries

This subsection is devoted to the resolution of degenerate elliptic problems (1.1a), (1.1b)
for general anisotropy fields b. we first introduce the space

V =
{

φ∈L2(Ω)/∇·(bφ)∈L2(Ω)
}

, K =
{

φ∈V/∇·(bφ)=0 on Ω
}

,

W =
{

h∈L2(Ω)/(b·∇)h∈L2(Ω)
}

, W0 =
{

h∈W/(b·ν)h=0 on ∂Ω
}

.

The projection of a function on K is the generalization of the average operation (2.8),
while the projection on K⊥ corresponds to computing its fluctuation. The space W0 is
used to characterize K⊥. The projections on K and K⊥ are well-defined thanks to the:

Theorem 2.1. We have the following properties

1) K is closed in L2(Ω).

2) W0 equipped with the norm ‖h‖W0
=‖(b·∇)h‖L2(Ω) is a Hilbert space and (b·∇)W0 is a

closed space of L2(Ω).

3) K⊥=(b·∇)W0.

Proof. 1) Let φn ∈V such that φn → φ in L2(Ω). Then, φn → φ in the distributional sense
and the operation φ→∇·(bφ) is continuous for the topology of distributions. Therefore,
∇·(bφ)=0, which shows that φ∈V .

2) W0 is a Hilbert space for the norm ‖h‖= ‖h‖L2 (Ω)+‖(b·∇)h‖L2 (Ω). According to
the Poincaré inequality, the norms ‖ ‖ and ‖ ‖W0

are equivalent. The closedness of W0

for the L2 topology follows from 3).
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3) The inclusion (b·∇)W0 ⊆K⊥ is obvious. We sketch the proof of the converse in-
clusion and leave the details to the reader. We make the hypothesis that all b-field lines
are either tangent to a non-zero measure set of ∂Ω or intersect ∂Ω at two points x− and
x+ such that ±(b·ν)(x±) > 0. The points x− and x+ are called the conjugate points of
the b-field line and are respectively the incoming and outgoing points of this field line
to the domain. These assumptions can certainly be weakened at the expense of technical
difficulties which are outside the scope of this paper. Let ψ∈K⊥. By taking the primitive
of ψ along the b-field lines, there exists φ∈W such that ψ=(b·∇)φ. We can additionally
impose that φ=0 on ∂Ω−, where ∂Ω±={x∈∂Ω|±(b·ν)(x)>0}. Let θ∈K. We have

0=
∫

Ω
ψθdx=

∫

Ω
(b·∇)φθdx=

∫

∂Ω
(b·ν)φθdS(x), (2.14)

where dS(x) is the superficial measure on ∂Ω. Since, θ∈K its values at conjugate points
are related by a linear relation. In particular, they can be taken simultaneously non-zero.
Then, since the values of φ on ∂Ω− vanish, (2.14) implies that the values of φ on ∂Ω+

vanish as well. Consequently, (b·ν)φ = 0 on ∂Ω, which shows that φ∈W0. This proves
the result.

Therefore, we can decompose φε uniquely as

φε = pε+qε, pε ∈K, qε ∈K⊥, (2.15)

and state problem (1.1a), (1.1b) as

−
(
b·∇

)(
∇·(bqε)

)
+ε(pε+qε)= f ε, in Ω, (2.16a)

(
b·ν

)
∇·

(
bqε

)
=0, in ∂Ω, (2.16b)

pε ∈K and qε ∈K⊥. (2.16c)

Next, we introduce the variational approach. We multiply (2.16a) by a test function ψ∈V
and integrate it on Ω. Using a Green formula together with the boundary condition
(2.16b), we find that

∫

Ω
∇·

(
bqε

)
∇·

(
bψ

)
dx+ε

∫

Ω

(
pε+qε

)
ψdx=

∫

Ω
f εψdx. (2.17)

Now, the aim is to decompose problem (2.17) into a problem for pε and a problem for qε.
For this purpose, in the following section, the test function ψ is chosen successively in K
and in K⊥.

2.2.2 Equation for pε ∈K and qε ∈K⊥

The following proposition is devoted to the determination of for pε ∈K and qε ∈K⊥.
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Proposition 2.1. Let pε and qε be given by (2.15) where φε is the solution of problem (1.1a),
(1.1b). Then:

(i) pε is given by

pε =
1

ε

(
f ε+b·∇gε

)
, in Ω, (2.18)

where gε satisfies the problem

−∇·
(
(b⊗b)∇gε

)
=∇·

(
f εb

)
, in Ω, (2.19a)

(b·ν)gε =0, on ∂Ω, (2.19b)

or, in variational form, find gε ∈W0 such that

∫

Ω
(b·∇gε)(b·∇θ)=

∫

Ω
f εb·∇θdx, ∀θ∈W0. (2.20)

(ii) qε is given by

qε =b·∇hε , (2.21)

where hε satisfies the following fourth-order problem:

−∇·
[
(b⊗b)∇(∇·(b⊗b)∇hε)

]
+ε∇·

(
(b⊗b)∇hε

)
=∇·(b f ε), in Ω, (2.22a)

(b·ν)∇·
(
(b⊗b)∇hε

)
=0, on ∂Ω, (2.22b)

(b·ν)hε =0, on ∂Ω, (2.22c)

or, in variational form, find hε ∈W0 such that

∫

Ω
∇·

(
(b⊗b)∇hε

)
∇·

(
(b⊗b)∇θ

)
dx+ε

∫

Ω
(b·∇hε)(b·∇θ)dx=

∫

Ω
f ε(b·∇θ)dx. (2.23)

Proof. Choosing ψ= r∈K in (2.17), we obtain the problem, find pε ∈K such that

∫

Ω

(
εpε− f ε

)
rdx=0, ∀r∈K. (2.24)

This problem admits a solution in K which is uniformly bounded in L2(Ω) as ε→0 under
the compatibility condition

lim
ε→0

(1

ε

∫

Ω
f εrdx

)
exists and is finite, ∀r∈K. (2.25)

Assuming that f ε has the following decomposition

f ε = f (0)+ε f (1)+o(ε)
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in L2(Ω), this condition implies that f (0) ∈ K⊥. Next, since εpε− f ε ∈ K⊥, according to
Theorem 2.1, there exists gε ∈W0 such that

εpε− f ε =(b·∇)gε . (2.26)

Taking the product with b and the divergence of the result, we obtain (2.19a) and (2.19b).
Taking ψ= s∈K⊥ in (2.17) gives:

∫

Ω
∇·(bqε)∇·(bs)dx+ε

∫

Ω
qεsdx=

∫

Ω
f εsdx. (2.27)

But since qε and s ∈ K⊥, Theorem 2.1 implies that there exists hε and θ ∈W0 such that
qε =b·∇hε and s=b·∇θ.

Remark 2.1. In [10], the characterization of K⊥ as (b·∇)W0 is not used. Instead, the
constraint that q∈K⊥ is taken into account through a mixed formulation. The number
of unknowns and the size of the problem are therefore larger in [10] than in the present
work. In practice, the resolution of the fourth order problem (2.22a), (2.22b), (2.22c) can
be reduced by solving two second-order problem, as shown below. Therefore, the intro-
duction of a fourth order problem does not bring specific difficulties.

2.2.3 Extension to non-homogeneous Neumann boundary conditions

The application targeted in this paper and detailed in Section 5, requires the handling of
non-homogeneous Neumann boundary conditions. In this subsection φε is solution to
the following inhomogeneous Neumann problem:

εφε−(b·∇)
(
∇·(bφε)

)
=b·∇κ+ f ε

2 , on Ω, (2.28a)

(b·ν)∇·(bφε)=−(b·ν)κ, on ∂Ω, (2.28b)

where κ is a given function in W . We denote by f1 =b·∇κ and by f ε = f1+ f ε
2 .

Using the same decomposition (2.15) as before, we find that pε satisfies (2.18) and gε

is the solution of (2.19a), (2.19b) or (2.20) with f ε replaced by f ε
2 (and satisfying (2.25)).

Similarly, qε satisfies (2.21) and hε is the solution of (2.22a), (2.22b), (2.22c), or of (2.23) with
”0” at the right-hand side of (2.22b) replaced by (b·ν)κ, the other terms being unchanged.
The details are left to the reader.

3 Space discretization

In this section, we investigate the finite-volume discretization of the two elliptic problems
arising in Proposition 2.1. The plan is to use the resulting degenerate elliptic solver as a
building block for the AP-discretization of the Euler-Lorentz model (see Section 5). For
systems of conservation laws like the Euler-Lorentz model, finite-volume methods are a
natural choice given the immense available scientific literature (see [30] and references
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therein). We also restrict ourselves to structured meshes, because our primary objective
is to test the AP methodology in a simple setting. Additionally, the applications we are
targeting (such as tokamaks), as well as many other applications can be developed using
a logically structured mesh. In future work, the extension of the method to unstructured
meshes will be investigated, particularly in view of adaptive mesh refinement. We note
that the finite-volume setting on structured meshes can be equivalently formulated into
a finite-difference setting. However, we prefer the finite-volume setting in relation to the
final discretization of the Euler-Lorentz model as stated before.

The domain is decomposed into a family R of rectangles Mi−1/2,j−1/2 = [xi−1,xi]×
[yj−1,yj] with xi = i∆x and yj = j∆y. We look for a piecewise constant approximation pε

R
of pε on each Mi−1/2,j−1/2 and denote by pi−1/2,j−1/2 its constant value on this rectangle.
The function gε is approximated by a constant function on a dual mesh D, consisting of
rectangles Di,j = [xi−1/2,xi+1/2]×[yj−1/2,yj+1/2], where xi−1/2 = (i−1/2)∆x, yi−1/2 = (i−
1/2)∆y. Then gε is approximated by a piecewise constant function gε

D with its constant
values denoted by gε

i,j. We approximate (2.18) by

pi− 1
2 ,j− 1

2
=

1

ε

(
f ε

(
xi− 1

2
,yj− 1

2

)
+b

(
xi− 1

2
,yj− 1

2

)
·
(
∇gε

)
i− 1

2 ,j− 1
2

)
,

where b(xi−1/2,yj−1/2)·(∇gε)i−1/2,j−1/2 is given in (3.1). We now define approximations
(b·∇)app and ∇·(· b)app of operators Ψ 7→ (b·∇Ψ) and Φ 7→∇·(bΦ) such that they are
discrete dual operators to each other. For this purpose, we define LR and LD the space of
piecewise constant functions on meshes of types R and D respectively.

Definition 3.1. The operator (b·∇)app: LD→ LR is defined by

(
(b·∇Ψ

)
app

)i− 1
2 ,j− 1

2
=b

(
xi− 1

2
,yj− 1

2

)
·
((Ψi,j−Ψi−1,j

2∆x
+

Ψi,j−1−Ψi−1,j−1

2∆x

)
,

(Ψi,j−Ψi,j−1

2∆y
+

Ψi−1,j−Ψi−1,j−1

2∆y

))
. (3.1)
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The operator ∇·(· b)app: LR→ LD is defined by

(∇·(bΦ)app)i,j =
( 1

2∆x
bx

(
xi+ 1

2
,yj− 1

2

)
− 1

2∆y
by

(
xi+ 1

2
,yj− 1

2

))
Φi+ 1

2 ,j− 1
2

+
( 1

2∆x
bx

(
xi+ 1

2
,yj+ 1

2

)
+

1

2∆y
by

(
xi+ 1

2
,yj+ 1

2

))
Φi+ 1

2 ,j+ 1
2

−
( 1

2∆x
bx

(
xi− 1

2
,yj− 1

2

)
+

1

2∆y
by

(
xi− 1

2
,yj− 1

2

))
Φi− 1

2 ,j− 1
2

−
( 1

2∆x
bx

(
xi− 1

2
,yj+ 1

2

)
− 1

2∆y
by

(
xi− 1

2
,yj+ 1

2

))
Φi− 1

2 ,j+ 1
2
. (3.2)

Proposition 3.1.
(
b·∇

)
app

and ∇·
(
b·

)
app

are adjoint operators to each other.

Proof. Easy and left to the reader, thanks to a discrete Green formula.

Next, we define
(
∇·((b⊗b)·∇)

)
app

by the composition of the two operators
(
b·∇

)
app

and ∇·
(
b·

)
app

:

Definition 3.2. We define:
(
∇·(b⊗b·∇)

)

app
=

(
∇·(· b)

)
app

◦
(
b·∇

)
app

, (3.3)

where ◦ is the composition operation.

Finally, the approximation of problem (2.19a), (2.19b) is by solving the discrete prob-
lem for the piecewise constant function g on D:

(
∇·(b(⊗)b·∇)

)

app
g=

(
∇·(b f )

)
app

, (3.4)

together with Dirichlet boundary conditions on g, where f is a piecewise constant func-
tion on R.

Now, problem (2.22a), (2.22b), (2.22c) for qε can be decomposed in two decoupled
second-order elliptic problems of the type (2.19a), (2.19b) and can be solved by a similar
method. Indeed by setting u =−∇·

(
(b⊗b)∇h

)
, we get that (2.22a), (2.22b), (2.22c) is

equivalent to the following two elliptic problems:

∇·
(
(b⊗b)∇u

)
−εu=∇·(b f ), in Ω, (3.5a)

(b·ν)u=0, on ∂Ω (3.5b)

and

−∇·
(
(b⊗b)∇h

)
=u, in Ω, (3.5c)

(b·ν)h=0, on ∂Ω. (3.5d)

To summarize, the resolution of problem (1.1a), (1.1b) reduces to three independent
resolutions of problems similar to (3.4).
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4 Numerical results for the elliptic problem

4.1 Introduction

In this section the efficiency of the numerical method introduced in Sections 2 and 3
for the singular perturbation problem (1.1a), (1.1b) is investigated through numerical
experiments. These experiments are carried out on a two dimensional uniform Cartesian
mesh. Two sets of test cases are presented. In the first one, the anisotropy, or magnetic
field, is oblique, which means that it is assumed uniform in space, but not necessarily
aligned with any coordinate axis. In the second set, the field direction is non uniform. In
both cases, the strength of the anisotropy is assumed uniform and is given by the value
of ε. An analytical solution φa is constructed for the singular perturbation problem (1.1a),
(1.1b) and is compared with its approximation φh computed on the mesh. For the test
cases, the following L1, L2 and L∞ norms are used to estimate the errors between the
numerical approximation φh and the analytical solution φ̃a:

e1 =
‖φ̃a−φh‖L1

‖φ̃a‖L1

=
∑i,j |φa(xi,yj)−φh(i, j)|

∑i,j |φa(xi,yj)|
, (4.1a)

e2 =
‖φ̃a−φh‖L2

‖φ̃a‖L2

=

(
∑i,j |φa(xi,yj)−φh

i,j|2
) 1

2

(
∑i,j |φa(xi,yj)|2

) 1
2

, (4.1b)

e∞ =
‖φ̃a−φh‖L∞

‖φ̃a‖L∞

=
maxi,j |φa(xi,yj)−φh

i,j|
maxi,j |φa(xi,yj)|

. (4.1c)

4.2 Numerical results for an oblique magnetic field

4.2.1 Introduction and test case settings

For these numerical experiments the simulation domain is the square Ω = [0,1]×[0,1].
The magnetic field is defined by B = (sinα,cosα,0), with α the angle of the b-field with
the x-axis ranging from 0 to π/2. In order to validate the numerical method an analytical
solution denoted φa for problem (1.1a), (1.1b) is constructed. It is written

φa(x,y)=sin
(

xsin(α)−ycos(α)
)
+b·∇H(x,y), (4.2a)

f ε
a(x,y)=−b·∇

(
∇·((b⊗b)∇H(x,y))

)
+ε

(
sin

(
xsin(α)−ycos(α)

)
+b·∇H(x,y)

)
, (4.2b)

H(x,y)=
(
(x−1)(y−1)xy

)3
. (4.2c)

The function φa is the solution of problem (1.1a), (1.1b) with the right-hand side f ε
a . φa

presents itself as decomposed into pε (first terms) and qε (second term). Note also that f ε
a

can be decomposed as f ε
a = f

(0)
a +ε f

(1)
a with f

(0)
a =−b·∇h and h=∇·((b⊗b)∇H(x,y)). The

function h verifies homogeneous Dirichlet boundary conditions on the domain bound-

aries, which implies, according to Theorem 2.1, that f
(0)
a ∈K⊥ and the compatibility con-
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dition (2.25) is satisfied. However, for the simulations carried out below, the construc-
tion of the right-hand side f ε

a is performed using the discrete operators (b·∇)app and
∇·(· b)app in order to ensure that the compatibility condition (2.25) is satisfied by the

discrete operators, namely f
(0)
a ∈K⊥

app, where

Kapp =
{

φ/∇·(bφ)app =0
}

, K⊥
app =(b·∇)app(W0).

4.2.2 Homogeneous Neumann boundary conditions

This simulation is run with α = π/3. On Fig. 1, we represent the relative errors as func-
tions of the mesh sizes for different values of ε ranging from 10−3 to 10−9. The curves of
Fig. 1 are plotted using logarithmic decimal scales. We observe a linear decrease of the
errors with vanishing mesh sizes, with a slope equal to 2, which proves that the global
scheme is second order accurate. More importantly, we observe from Figs. 1(a) and 1(b),
that the precision remains the same while ε is decreased by three orders of magnitude.
However, for the more refined grids using the smallest value of ε of this simulation set
(10−9, see Fig. 1(c)), a slight degradation of the convergence is observed for small mesh
sizes.

This slight degradation can be explained. Indeed, pε is given by a stiff problem, since
εpε is obtained as the difference of two quantities scaling as ε0 =O(1) (see (2.18), (2.19a)).
To investigate the influence of ε on the accuracy of the approximation of pε, the L∞ norm
of the relative error made on pε and on ∇·(bpε) as functions of ε are plotted on Fig. 2.

Fig. 2(a) shows a linear behavior of ∇·(bpε) with vanishing ε (in log scale). To explain
this feature, we note that the discretization of the second order operator in (2.19a) pro-
vides a computation of ε(∇·(· b))app(pε) with the precision of the linear system solver
used for the computation of gε, which is limited by round-off errors. This error is ampli-
fied after multiplication by the factor 1/ε. This analysis still holds for the accuracy of pε

as a function of ε represented on Fig. 2(b) with slight differences. For the largest values
of ε, we observe a plateau (red dashed line) explained by the discretization error of the
discrete operators. The space discretization introduced here is second order accurate, i.e.,
is O(h2) where h = max(∆x,∆y). Since the right-hand side is well prepared this error
only applies to the ε f (1) part of f ε and is then proportional to εO(h2) in b·∇gε , giving
rise to a O(h2) consistency error for pε. The value of the plateau is thus only dependent
of the mesh sizes and does not depend on the values of ε. With vanishing values of ε
the round-off errors due to the linear system solver grow linearly (in log scale) until they
reach the consistency error (O(h2)). This occurs for a value of ε which, for this test case,
can be estimated as approximately ε=10−9. For smaller ε, the discretization error is neg-
ligible compared to the round-off errors amplified by the factor 1/ε and the accuracy of
pε deteriorates linearly with vanishing ε.

The accuracy of the approximation of pε can be made totally independent of ε under
the assumption that f (0) = 0. In this case, both b·∇gε and f ε scale as ε, providing then
an approximation of pε independent of ε. The numerical methods introduced in [10, 12]
have been developed under this assumption that f (0)=0. The present paper is developed
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(c) ε=10−9

Figure 1: Oblique magnetic field test case
with α= π/3: error norms, defined by (4.1),
for the solution φε as a function of the mesh
size, in decimal logarithmic scales and for dif-
ferent values of ε.
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(a) Infinity norm for ∇·(bpε) as a func-
tion of ε in decimal log scales
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Figure 2: Oblique magnetic field test case for α = π/3 and ∆x = ∆y = 1/60. Approximation of the pε part of
the solution.

under a weaker hypothesis, required by the application to the Euler-Lorentz model in
the drift-limit. This explains why a comparable accuracy cannot be reached. Therefore,
strictly speaking, our scheme is AP for the computation of pε only when f (0)=0, or, when
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Figure 3: Oblique magnetic field test case for ε= 10−9 and ∆x = ∆y = 1/40. Norms of the relative error (4.1)
as a function of the angle of the magnetic field with the x-axis α.

f (0) 6=0, only if the round-off errors brought by the linear system solver are smaller than
the discretization error. Still, it is AP without any restriction for the computation of qε

(i.e., even when f (0) 6=0).

The next simulation is aimed at investigating whether the accuracy depends on the
angle between b and the coordinate axes. For this purpose, simulations are carried out
on a mesh composed of 40×40 cells and for α ranging form 0 to π/2. When α = 0 the
b field is aligned with the x-axis and when α = π/2, it is aligned with the y-axis. The
relative errors are displayed as functions of α on Fig. 3. We observe that the variations of
the errors are small on the whole range of angles. This confirms that the method provides
accurate results, even when the mesh is far from consistent with the b-field direction.

4.2.3 Inhomogeneous Neumann boundary conditions

We remark that φε(x,y) = 2x2+y2 is an analytical solution of system (2.28a), (2.28b) for
f2(x,y)= ε(2x2+y2) and κ =−∇·(b f ). For this analytical solution and ε=10−9, we have
checked that the relative error does not exceed 10−13.

4.3 Numerical results for a non uniform magnetic field

4.3.1 Introduction and test case settings

In this subsection Ω=[1,2]×[1,2] and the magnetic field is given by:

B= |B|b, b=
(

sin(θ),−cos(θ)
)
, tan(θ)=

y

x
. (4.3)
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For this case, an analytical solution of (1.1a), (1.1b) can be found. We consider Hvar de-
fined on [1,2]×[1,2] by Hvar(x,y)=(1−x)3(1−y)3(2−x)3(2−y)3. According to Theorem
2.1, b·∇Hvar ∈K⊥. So φ=1+b·∇Hvar is the solution of (1.1a), (1.1b) when the right-hand
f ε of (1.1a) has the expression

f ε =−b·∇
(
∇·(b⊗b)∇Hvar

)
+ε

(
1+b·∇Hvar

)
.

4.3.2 Homogeneous Neumann boundary conditions

On Fig. 4(a), Fig. 4(b) and Fig. 4(c), we have represented the relative errors as functions
of the mesh size when ε goes from 10−3 to 10−9. We observe that all the three norms
decrease when the mesh sizes decrease, in a similar fashion as in the oblique uniform
b-field.
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Figure 4: Non uniform magnetic field test
case: error norms, defined by (4.1), for the
solution φε as a function of the mesh size, in
decimal logarithmic scales and for different
values of ε.

4.3.3 Inhomogeneous Neumann boundary conditions

We take the test case of Subsubsection 4.2.3 again and we find a similar conclusion: with
ε=10−9, the relative error in L∞ norm does not exceed 10−11.
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5 Application to the Euler-Lorentz system in the drift limit

5.1 Introduction

In this section the drift-fluid limit of the isothermal Euler-Lorentz is investigated. This
regime is representative of strongly magnetized plasma, for which the pressure term
equilibrates the Lorentz force. It is obtained by letting a dimensionless parameter ε, rep-
resenting the non-dimensional gyro-period as well as the square Mach number, go to
zero. This limit is singular because the momentum equation in the direction of the mag-
netic field degenerates. Since the field may not be uniformly large, we wish to derive an
Asymptotic-Preserving (AP) scheme which guarantees accurate discretizations of both
the limit regime for strongly magnetized plasma (ε≪1) and the standard Euler-Lorentz
system when the field strength is mild (ε∼1). With this aim, the Euler-Lorentz system is
discretized in time by a semi-implicit scheme.

This scheme has already been studied in [13] for a uniform and constant magnetic
field aligned with one coordinate and for physically less meaningful Dirichlet boundary
conditions. The present methodology allows us to investigate the case of non-uniform
magnetic fields and Neumann boundary conditions. Indeed, the anisotropic elliptic
equation (1.1a), (1.1b) appears as the central building block of the scheme, which allows
for the computation of the field-aligned momentum component. In this presentation, we
will mainly focus on this aspect, the other ones being unchanged compared to [13].

5.2 The Euler-Lorentz model and its drift-fluid limit

5.2.1 The Euler-Lorentz model

The scaled isothermal Euler-Lorentz model takes the form:

∂tnε+∇·
(
nεuε

)
=0, (5.1a)

ε
[
∂t

(
nεuε

)
+∇·

(
nεuε⊗uε

)]
+T∇nε =nε

(
E+uε×B

)
, (5.1b)

where nε, uε and T are the density, the velocity and the temperature of the ions, respec-
tively. Here, the electric field E and the magnetic field B are assumed to be given func-
tions. The parameter ε is related to the gyro-period of the particles about the magnetic
field lines and simultaneously to the squared Mach number. We refer to [13] for more
details on the model, the scaling and the drift-fluid limit ε→0 but for the sake of clarity
we recall some elements up to the end of this subsection.

5.2.2 The drift-fluid limit

The formal limit ε→ 0 in the isothermal Euler-Lorentz model (5.1a), (5.1b), leads to the
so-called isothermal drift-fluid model:

∂tn+∇·(nu)=0, (5.2a)

T∇n=n(E+u×B). (5.2b)
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The constraint (5.2b) completely determines the velocity u. Indeed, taking the parallel
and perpendicular components of (5.2b) leads to

nu⊥=
1

B
b×(T∇n−nE), (5.3a)

T∇‖n−nE‖=0. (5.3b)

After dividing by n, we find that the first term at the right-hand side of (5.3a) is the
diamagnetic drift velocity while the second one is the E×B drift velocity. Note that, by
arguing as in [13] Eq. (5.3b) can be written in the form of an elliptic equation for nu‖ as
follows:

−∇‖
(
∇‖ ·(nu‖)

)
=∂t

(nE‖
T

)
−∂tb·∇n+∇‖∇⊥ ·(nu⊥). (5.4)

The drift-fluid model consists of Eqs. (5.2a), (5.3a) and (5.4).

5.2.3 A reformulation of the isothermal Euler-Lorentz model

As recalled in the introduction of this section, to find an AP scheme, it is essential to
”regularize” the perturbation, i.e., to reformulate the Euler-Lorentz model in such a way
that the limit equations for the velocity appear explicitly in the system of equations. By
reasoning as in [13] we get that nu⊥ and nu‖ satisfy

B(nu)⊥−ε∂t

(
b×(nu)⊥

)

=−b×
[
−T∇n+nE

]
+ε

[
−(∂tb)×(nu)+b×(∇·(nu⊗u))

]
(5.5a)

and

ε∂2
t

(
(nuε)‖

)
−T∇‖

(
∇‖ ·(nuε)‖

)

=ε∂t

(
(∂tb)·((nu)‖)

)
−ε∂t

(
b·(∇·((nuε⊗uε)))

)
+∂t(nεE‖)

−T∂tb·∇nε+T∇‖
(
∇⊥ ·(nεuε)⊥

)
. (5.5b)

Therefore, the reformulation of the Euler-Lorentz model consists of Eqs. (5.1a), (5.5a) and
(5.5b).

5.3 The AP scheme

Now we introduce the time discretization of the model. Let Bm be the magnetic field at
time tm, |B|m its magnitude and bm = Bm/|B|m its direction. For a given vector field v,
denote by (v)m

‖ and (v)m
⊥ its parallel and perpendicular components with respect to bm

i.e.,

v=(v)m
‖ bm+(v)m

⊥, (v)m
‖ =v·bm, (v)m

⊥ =bm×(v×bm).

Similarly, we denote by ∇m
‖ and ∇m

‖ · the parallel gradient and divergence operators re-

spective to this field. The time semi-discrete scheme proposed in [13] is as follows:
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Definition 5.1. The AP scheme is the scheme defined by:

nm+1−nm

∆t
+∇·(nu)m+1 =0, (5.6a)

ε
[ (nu)m+1−(nu)m

∆t
+∇·(nu⊗u)m

]
+T(∇n#)m+1 =nmEm+1+(nu)m+1×Bm+1, (5.6b)

where (∇n#)m+1 is given by

(∇n#)m+1 =(∇nm)m+1
⊥ +(∇nm+1)m+1

‖ bm+1. (5.7)

The cross-product of (5.6b) with bm+1 leads to

(nu)m+1
⊥ − ε

∆t

1

Bm+1
bm+1×(nu)m+1

⊥

=− 1

Bm+1
bm+1×

[ ε

∆t
(nu)m−ε∇·(nu⊗u)m−T∇nm+nmEm+1

]
, (5.8)

which is a discretization of Eq. (5.5a), where

(∂tb)×(nu)≈
( (bm+1−bm)

∆t

)
×(nu)m.

By considering the scalar product of (5.6b) with bm+1, we get

ε
( (nu)m+1−(nu)m

∆t
+∇·(nεuε⊗uε)

m
)
·bm+1 =−T∇m+1nm ·bm+1+nmEm+1 ·bm+1

and after easy computations [13], we find that (nu)m+1
‖ satisfies the following anisotropic

elliptic problem:

ε

∆t
(nu)m+1

‖ −T∆t∇m+1
‖

(
∇m+1

‖ ·
(
(nu)m+1

)m+1

‖

)

=T∆t∇m+1
‖

(
∇·

(
(nu)m+1

)m+1

⊥

)
−T∇m+1

‖ nm

+
[ ε

∆t
(nu)m−ε

(
∇·(nu⊗u)m

)
+nmEm+1

]m+1

‖
. (5.9)

By setting (nu)m+1
‖ =φε and by taking f = f1+ f2 with

f1 =
1

∆t
b·∇

(
∇·(num+1

⊥ )
)
, (5.10a)

f2 =−
[ ε

T(∆t)2
(nu)m− ε

T∆t
∇·(nu⊗u)m+nmEm+1

]m+1

‖
− 1

∆t
(b·∇nm), (5.10b)

this problem can be put in the framework of (1.1a). In [13], because b was chosen parallel
to one of the coordinate axes, a direct discretization of (5.9) using finite differences could
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be performed. Here, for an arbitrary anisotropy direction b, we use the method devel-
oped in the previous sections. We do not detail the description of the discretization of the
other equations, since it follows [13].

The right-hand side (5.10b) can be decomposed as f ε
2 = f

(0)
2 +ε f

(1)
2 with f

(0)
2 corre-

sponding to the first two terms and f
(1)
2 , to the last two one. Moreover if we suppose

that
[
nmEm+1

]m+1

‖ − 1

∆t
(b·∇nm)∈K⊥, (5.11)

the compatibility condition (2.25) is satisfied. This property amounts to saying that the
integrated force along a magnetic field line is zero. If the property is not satisfied, par-
allel velocities of order O(ε−1) are generated, which is physically unrealistic (because
collisions will ultimately slow down the plasma ions). Therefore, assuming (5.11) is phys-
ically justified.

Next for the sake of clarity we rewrite the Eqs. (5.8), (5.9) in the situation where b =
(bx,by,0). In that case

∇m+1
‖

(
∇·(nuε)

m+1
⊥

)m+1
=bx∂x

(
∂x(b2

ynux−bybxnuy)
)
+by∂y

(
∂y(b2

xnuy−bybxnux)
)

and

∇·(nuε⊗uε)·b=bx

(
∂x(nu2

x)+∂y(nuxuy)
)
+by

(
∂x(nuxuy)+∂y(nu2

y)
)
.

Therefore the parallel velocity satisfies

ε

∆t
(nu)m+1

‖ −T∆t∇m+1
‖

(
∇m+1

‖ ·
(
(nu)m+1

)m+1

‖
)

=T(bx∂x+by∂y)nm+bx

(
∂x(nu2

x)
m+∂y(nuxuy)

m
)

+by

(
∂x((nuxuy)

m)+∂y((nu2
y)

m)
)
+εbx∂x

(
∂x(b2

y(nux)
m+1−bybx(nuy)

m+1)
)

+εby∂y

(
∂y(b2

x(nuy)
m+1−bybx(nux)

m+1)
)
+nmEm+1

‖ +
ε

∆t
(nu)m

‖ . (5.12)

Recall that the orthogonal part of the velocity is obtained from (5.8). So in the present
case it is determined by inverting the system

(nu)m+1
⊥ − ε

∆t

1

Bm+1
bm+1×(nu)m+1

⊥ =(V1,V2,V3),

where

V1 =by

( ε

∆t
(nuz)

m−nmEm+1
z

)
, V2 =bx

( ε

∆t
(nuy)

m+nmEm+1
z

)
,

V3 =bx

( ε

∆t
(nuy)

m+nmEm+1
y +ε

(
∂x(nuxuy)+∂y(nu2

y)
)
−T∂yn

)

−by

( ε

∆t
(nux)

m+nmEm+1
x +ε

(
∂y(nuxuy)+∂x(nu2

x)
)
−T∂xn

)
.

As in [13], we will compare the AP scheme with the classical semi-discrete scheme for
the Euler-Lorentz model, given by:
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Definition 5.2. The ”classical” semi-discrete scheme is defined by:

nm+1−nm

∆t
+∇·(nu)m =0, (5.13a)

ε
[ (nu)m+1−(nu)m

∆t
+∇·(nu⊗u)m

]
+T(∇n)m =nmEm+1+(nu)m+1×Bm+1. (5.13b)

In [13], it is shown that this scheme is not uniformly stable with respect to ε and so
that it cannot be AP.

Except from the parallel momentum equation, which has just been discussed, the
other equations of the model are discretized following [13]. For the sake of brevity, we
will not reproduce their presentation here.

5.4 Boundary conditions

The AP-scheme involves the resolution an elliptic equation for u‖ which requires bound-
ary conditions. These boundary conditions should in principle derive from the original
formulation of the Euler-Lorentz model. However, there is no obvious way to derive
them explicitly in the general case and in practice, they must be set up on a case by case
basis, from the knowledge of the underlying physical situation. In this paper, our goal
is to show that the AP-scheme is stable with under-resolved time steps, i.e., time steps
which are large compared to the times scales linked to ε. For this purpose, we propose
boundary conditions which stricly speaking are valid only in the ε→ 0 limit. These ap-
proximate boundary conditions are the reason for some small discrepancies with the true
solution near the domain boundaries as we will see on the numerical results. Still, we
will observe that the AP-scheme shows the desired stability property.

We impose Dirichlet boundary conditions on the density nm+1 =nB with nB indepen-
dent of time. For the perpendicular momentum, we impose the relation obtained after
taking the limit when ε→0 in (5.1b),

num+1
⊥ =− 1

|B|m+1
b×

(
T∇nm+nmEm+1

)
.

By considering the mass conservation equation at the domain boundary, we have

nm+1−nm

∆t
+∇·

(
bnm+1um+1

‖
)
+∇·(nu)m+1

⊥ =0, on ∂Ω.

Therefore, as the density satisfies Dirichlet boundary conditions with time-independent
Dirichlet values, we get

(b·ν)∇·
(

bnum+1
‖

)
=−(b·ν)∇·

(
num+1

⊥
)
, on ∂Ω.

Therefore, num+1
‖ is a solution to the anisotropic elliptic problem with inhomogeneous

Neumann boundary conditions (2.28a), (2.28b), with κ=−(b·ν)∇·(num+1
⊥ ). Then, we can
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apply the framework of Section 2.2.3. When nu‖ has been calculated, an approximation
is employed in order to provide values of nu‖ in a layer of fictitious cells surrounding
the boundary, by using homogeneous Neumann boundary conditions. The values in
the fictitious cells are then useful to compute gradient terms which occur in the other
equations of the Euler-Lorentz model.

6 Numerical results for the Euler-Lorentz system in the drift

limit

6.1 Introduction and test case settings

This part is devoted to the validation of the AP-scheme (5.6a), (5.6b), (5.7) for the Euler-
Lorentz system. Due to the lack of analytical solutions, the validation procedure consists
in comparisons of the AP-scheme with the classical discretization (5.13b). The classical
discretization is subject to a CFL stability condition that imposes the time step to resolve
(i.e., to be smaller than) the fastest time scales involved in the system. These time-resolved
simulations require a time step which scales like

√
ε (because the CFL condition involves

the acoustic wave speed which scales like 1/
√

ε). The AP-scheme is designed to be stable
independently of ε when ε → 0. In these situations, the time step cannot resolve the
fastest time scales involved in the system, which leads to under-resolved simulations. The
stability of the AP-scheme in under-resolved situations has be demonstrated in [13]. In
this case, the requested CFL condition only involves the fluid velocity, which is an O(1)
quantity and not the acoustic speed [13] and explains the possibility of using large time
steps, independent of ε. We want to check this feature again when the scheme is equipped
with our new elliptic solver.

Two test cases are presented, one for an oblique uniform magnetic field, another one
for a non uniform magnetic field with the same expressions as in Section 4. In both cases,
the electric field is chosen as E = (0,0,Bx+By), where Bx and By are the components of
the magnetic field. The initial condition is defined by the following uniform data: n =1,
(nu)x = 1, (nu)y = −1 and (nu)z = 0 which defines a stationary solution of the Euler-
Lorentz system. A local perturbation of order ε in then applied to this stationary state
and the evolution of the system is observed for both the AP and the classical schemes.

6.2 Numerical results for an oblique uniform magnetic field

The results for the AP and the classical schemes are compared on Fig. 5 in a resolved
case. Both schemes provide comparable results. However we observe the formation of a
thin boundary layer on the domain frontiers for the AP-scheme but it is not responsible
for the development of an instability. The occurrence of this boundary layer is due to the
additional boundary condition, as explained in Section 5.4.

Next we consider the same test case with an under-resolved time step ∆t which is 10
times larger than the time step provided by the CFL condition of the classical scheme.
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Figure 5: Euler-Lorentz test case for an oblique magnetic field in the resolved case at time t=3.9510−6s: density
(n) and momentum (nux, nuy) computed by the AP-scheme (left) and the classical scheme (right) for ε=10−9

and ∆x=∆y=1/40. The angle of the magnetic field with the x-axis is α=π/3.

These simulation results are collected on Fig. 6. The results are displayed at the time
3.9510−5 s, which is 10 times bigger than the time displayed in Figs. 5(a)-5(f). This larger
simulation time is used to show the capability of the AP scheme to sustain long simula-
tion times. In this case, the conventional scheme leads to unstable results contrary to the
AP scheme and proves the capability of the AP-scheme to provide stable computations
for time steps that resolve neither the acoustic wave-speed nor the gyration period. We
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Figure 6: Euler-Lorentz test case for an oblique magnetic field in the under-resolved case at time 3.9510−5s:
density (n) and momentum (nux, nuy) computed by the AP-scheme (left) and the classical scheme (right) for

ε=10−9 and ∆x=∆y=1/40. The angle of the magnetic field with the x-axis is α=π/3.

also note that, over these simulation times, the AP-scheme produces the same results in
the resolved and under-resolved cases (not displayed). In the numerical test, the per-
turbation is localized in the center of the domain at the beginning of the simulation and
spreads out until it reaches the boundaries of the domain. In Figs. 6(a)-6(f), we observe
the solution after the perturbation has reached the boundary of the domain, while in
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Figs. 5(a)-5(f), we observe it at a shorter time when it is still well inside the domain. That
is why the solutions obtained by the AP scheme on the two figures look different.

6.3 Numerical results for a non uniform magnetic field

For the non uniform case, n = 1, (nu)x = 1, (nu)y =−1 and (nu)z = 0 are not stationary
solutions to the Euler-Lorentz system. In particular, with the chosen initial condition,
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Figure 7: Euler-Lorentz test case for a non uniform magnetic field in the resolved case at time t = 3.9510−6s:
density (n) and momentum (nux, nuy) computed by the AP-scheme (left) and the classical scheme (right) for

ε=10−9 and ∆x=∆y=1/40.
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Figure 8: Euler-Lorentz test case for a non uniform magnetic field in the under-resolved case at time t=3.9510−5s:
density (n) and momentum(nux, nuy) computed by the AP-scheme (left) and the classical scheme (right) for

ε=10−9 and ∆x=∆y=1/40.

sharp boundary layers are generated. But the AP scheme can still be compared with the
classical scheme in the resolved case for a validation procedure. Then we take the same
initial conditions as for the oblique magnetic field case. Fig. 7 shows that the two schemes
provide similar results.

Next we consider the under-resolved time step 10∆t. In this situation Figs. 8(b), 8(d),
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Figure 9: Difference between the solutions
obtained with an initial perturbation of or-
der ε=10−9 and the solution without any
perturbation for the variable magnetic field
after 1.58s of simulation in the non re-
solved case.

8(f) show that the classical scheme is unstable. By contrast, Figs. 8(a), 8(c), 8(e) demon-
strate that the AP-scheme provides stable results. The increased numerical diffusion gen-
erated by the large time step gives rise to a widening of the boundary layer. Keeping
the boundary layer accurate would require some mesh refinement in the vicinity of the
boundary. This point is deferred to future work.

Moreover as the initial conditions of the present test case are not stationary solutions
of the Euler-Lorentz model, it is important to check if the results obtained in the non
resolved case by the AP scheme correspond to the proper limit regime. So we compare
the results obtained with and without the local perturbation on the initial conditions.
The difference between the results obtained with the two simulations remain of the same
order as the perturbation of the initial condition. Figs. 9(a), 9(b) and 9(c) present the
difference between the solutions obtained with the perturbed and non-perturbed initial
condition, for n, (nu)x, (nu)y after a very long simulation time of 1.58s, about 105 longer
than in Figs. 8(a)-8(f). The figures show that this difference is actually of 10−10 for the
density and 10−6 for the momenta. The difference with the value of ε = 10−9, can be
explained by the accumulation of the truncation error over the very large simulation
time.
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7 Conclusions and perspectives

A numerical method for degenerate anisotropic elliptic problems has been investigated.
This method is based on a variational formulation together with a decomposition of the
solution. This problem has been applied to the resolution of an Asymptotic-Preserving
scheme for the isothermal Euler-Lorentz system. Numerical simulations demonstrate the
ability of the scheme to handle under-resolved situations where the time-step exceeds the
CFL stability condition of the classical scheme.

Forthcoming works will be devoted to the generalization of this approach for the full
Euler system with a non linear pressure law. In this case non linear anisotropic elliptic
problem have to be handled. Moreover we can also deal with the more physical situation
of a plasma constituted by a mixture of ions and electrons. In this situation the model
can be described by the two-fluid Euler-Lorentz system coupled with quasi-neutrality
equation.
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