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Abstract. The parallel implementation of MUPHY, a concurrent multiscale code for
large-scale hemodynamic simulations in anatomically realistic geometries, for multi-
GPU platforms is presented. Performance tests show excellent results, with a nearly
linear parallel speed-up on up to 32GPUs and a more than tenfold GPU/CPU accel-
eration, all across the range of GPUs. The basic MUPHY scheme combines a hydroki-
netic (Lattice Boltzmann) representation of the blood plasma, with a Particle Dynam-
ics treatment of suspended biological bodies, such as red blood cells. To the best of
our knowledge, this represents the first effort in the direction of laying down gen-
eral design principles for multiscale/physics parallel Particle Dynamics applications
in non-ideal geometries. This configures the present multi-GPU version of MUPHY as
one of the first examples of a high-performance parallel code for multiscale/physics
biofluidic applications in realistically complex geometries.

PACS: 02.70.Ns
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1 Introduction

The behavior of blood in both capillaries and large coronary arteries has deep implica-
tions on the genesis of cardiovascular diseases such as atherosclerosis. Computational
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hemodynamics aims at studying flows in complex geometries, like those of blood ves-
sels under stationary and pulsatile flow conditions. In the last few years, the study of
hemodynamics has experienced an upsurge of activity due to the rapid advancement of
methodological approaches and the availability of a steadily growing computing power,
as also provided by high-performance commodity hardware, such as Graphics Process-
ing Units (GPU). Blood is a complex fluid, composed of more than 99% in volume by two
components, plasma and Red Blood Cells (RBC). Plasma is the solvent carrying simple
Newtonian rheology, whereas RBCs play the role of basic building blocks, which are held
responsible for shear-thinning and viscoelastic behavior. To the purpose of capturing the
essence of blood dynamics, in particular close to the vessel walls and to morphological
irregularities of the vessels, like the atherosclerotic plaques, it is imperative to look at
the composite RBC-plasma system in its entirety, that is, by including the corpuscular
nature of blood and evolve it concurrently with the continuum plasma component. For
this reason, we adopt a multi-scale simulation approach that follows the two components
on equal footing and in a concurrent fashion [2]. In our work, we leverage two distinct
methods to handle plasma and RBCs and combine them in such a way to achieve a sim-
ple, yet effective, Janus-like representation of blood. Lattice Boltzmann (LB) is an efficient
computational method to describe plasma as a fluid in the continuum within an Eulerian
framework [3]. LB is a grid-based method, that uses a cartesian mesh and exchanges
information related to the fluid among first and second mesh neighbors through the mo-
tion of fictitious molecules hopping and interacting on the sites of a regular lattice. LB
shows an excellent scalability on high-end parallel computers that makes it very suitable
for the simulation of large-scale systems, such as the complete coronary arterial system.
Particle Dynamics (PD) is the method that handles the motion of suspended bodies in
the Lagrangian (grid-free) framework. RBCs are represented as anisotropic particles that
move, tumble and collide among themselves. RBCs are active scalars for the plasma,
that is, they are responsible for a two-way exchange momentum with the solvent. The
coupling is spatially local, rendering the concurrent evolution of plasma and RBCs an
optimal choice for a bottom-up approach to the study of hemodynamics.

Coronary arteries constitute a system of interconnected vessels, presenting a non-
trivial morphology (see Fig. 1), that surround the heart and carry oxygen to the heart
muscle. The vessels are irregularly distributed in space and their layout calls for a highly
sparse mesh to manage the active nodes only [4].

To reduce the time required for the simulation of the whole set of coronary arter-
ies, it is mandatory to resort to parallel processing. To this purpose, we use a domain-
decomposition scheme such that fluid and RBCs are handled on each subdomain by an
individual processor. This aspect entails the first, coarse-grained level of parallelism,
handled by conventional message-passing libraries, such as MPI [5]. The highly irregular
shapes of the partitioned domains are obtained by specialized software packages, such
as METIS [8] or SCOTCH [9], that produce quasi-optimal, from both the load-balancing
and communication view points, partitionings. The migration and force calculation of
RBC across multiple irregular domains requires the definition of ad hoc algorithms for
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Figure 1: Geometry of a coronary artery system. The close-in shows a detail of the vessels with red blood cells
visible.

the PD modules of the hemodynamic solver. In a previous paper [6], we described the
issues emerging from parallel PD within irregular domains and proposed a general ap-
proach entailing a set of solutions. Hereafter, we present the related implementation
issues, along with their solutions and the results obtained in selected test cases of specific
hemodynamic relevance.

The second, fine-grained, level of parallelism is attained by employing Graphics Pro-
cessing Units (GPUs) and distribution of tasks in threads. GPUs are advantageous and
flexible hardware architectures for a wide class of computational problems and can be
programmed in different optimized ways. With respect to high-end multicore architec-
tures, GPUs may attain speed-ups that range between one and two orders of magni-
tude [7]. Currently, only CPUs are able to manage the MPI-level of communication, and
the hybrid CPU/GPU computational paradigm may represent an optimal solution in
terms of simplicity, flexibility and efficiency.

In the present paper, we describe our approach to multiscale hemodynamics and illus-
trate the several implementation issues related to the management of suspended RBCs
within irregular domains. To address those issues, we have devised specialized data
structures and the ensuing techniques for their management. The end result is a gen-
eral data layout that provides excellent performances on CPU/GPU clusters, achieving
quasi-ideal scalability on up to 32GPUs.

2 Multi-scale hemodynamics

Our approach combines two different levels of the description of matter: continuum flu-
ids for the dynamics of blood plasma and individual particles for the representation of
red blood cells and other minority suspended species. Fluid and particles are advanced
concurrently in time and the exchange of information is computed on-the-fly [2].

Lattice Boltzmann (LB) is the method employed to reproduce the blood plasma dy-
namics. LB is based on the collective motion of fictitious particles defined on a regular
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cartesian lattice [10] that reproduce hydrodynamics at the macroscale. The LB method
presents several major advantages for the simulation in complex geometries, since the
walls of the computational domain (in our case the blood vessels), are shaped via a stair-
case representation and not as body-fitted meshes, as employed in most Navier-Stokes
simulations. Given the limited cost of handling the LB mesh, this representation of the
vessels can be systematically improved by increasing the mesh resolution until the re-
quired accuracy (quality) is attained.

In LB, the probability of finding a plasma particle at location x and time t, and trav-
eling with discrete speed cp, is encoded by the population fp(x,t). The index p indicates
the direction of the traveling fluid particles. We employ the three-dimensional 19-speed
cubic lattice (D3Q19) with mesh spacing ∆x, with the discrete velocities cp connecting
mesh points to first and second mesh neighbors.

The fluid populations are advanced over a timestep ∆t through the evolution equa-
tion

fp(x+cp∆t,t+∆t)= fp(x,t)−ω∆t( fp− f
eq
p )(x,t)+∆ fp(x,t). (2.1)

The right hand side of Eq. (2.1) represents the effect of fluid-fluid molecular collisions,
through a relaxation towards a local equilibrium,

f
eq
p =wpρ
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]
, (2.2)

a second-order Maxwellian with density ρ≡∑p fp and plasma speed u≡∑p cp fp/ρ, where

cs = 1/
√

3 is the speed of sound, wp is a set of weights normalized to unity, and I is the
unit tensor in Cartesian space. The last term in the r.h.s. of Eq. (2.1) encodes the coupling
between fluid and suspended red blood cells, represented here as oblate ellipsoids in an
hydrodynamic environment, and given by

∆ fp(x,t)=−wp∆t

c2
s

[G·cp

c2
+

(G·cp)(u·cp)−c2G·u
2c4

]
. (2.3)

Here, G is the forcing term containing the translational and rotational exchange of mo-
mentum induced by N moving red blood cells at position {Rα}. The forcing term is
smeared over a mesh region extending over 32 mesh points around each RBC (this method
will be the subject of a forthcoming publication). The drag force acting on each RBC is

FD
α (Rα)=−γ

T
[
Vα−ũ(Rα)

]
(2.4)

and the torque is
TD

α (Rα)=−γ
R
[
Ωα−Ω̃(Rα)

]
, (2.5)

with {Vα} and {Ωα} being the RBC velocities and angular velocities, and with ũ and Ω̃

being the fluid velocity and vorticity fields, smeared over the same 32 mesh points region.
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γT and γR are translational and rotational coefficients for the RBC-fluid coupling. For the
sake of simplicity, in the present implementation, we neglect additional torques arising
from the coupling with the elongational component of the fluid, as employed in a slightly
different version of the model (that will be the subject of a forthcoming publication). The
forcing G contains translational and rotational components, related to the drag terms
{FD

α } and {TD
α } that locally preserve linear and angular momentum of the RBC-fluid

composite system.
Pairwise repulsive forces prevent contacts between RBCs. The RBC-RBC interactions

are handled via the Gay-Berne potential for oblate ellipsoids [11], according to the pair-
wise potential

uGB
ij (qij)=4ǫ(qij)×

[(
σ0

Rij−σ(qij)+σ0

)12
−

(
σ0

Rij−σ(qij)+σ0

)6]
, (2.6)

where qij ≡ (Rij,ûi,ûj) and with Rij being the relative distance, ûi and ûj the principal
directions of the i-th and j-th ellipsoids. The functions ǫ(qij) and σ(qij) have lengthy

expressions described in [11]. The potential uGB
ij is purely repulsive and is set equal to

zero beyond a orientation-dependent cut-off given by the condition

(
σ0

Rij−σ(qij)+σ0

)6
>2. (2.7)

The state of the suspended RBCs is advanced in time concurrently with the LB solver,
that is, the same timestep ∆t is used for the LB fluid and the RBC dynamics. The rigid
body dynamics is propagated via a second-order accurate time-stepping algorithm [12],
properly modified to handle fluid-particle forces and torques.

3 Implementation

The numerical framework is implemented within the MUPHY software [13], a code re-
cently developed to run multi-scale fluid simulations of different kinds. The original
MUPHY (MUlti PHYsics/multiscale) code is written in Fortran 90 and uses MPI for the
parallelization. MUPHY makes use of an indirect addressing scheme that has been de-
scribed along the other main features of the code in [13].

In the parallel processing, the lattice representing the arteries is decomposed into sub-
domains. As the simulation starts, all mesh points and particles are distributed among
processors so that each processor receives the subset corresponding to a subdomain. To
maintain a high degree of data locality within each processor, it is necessary to use the
same decomposition for both the LB and PD components. This strategy ensures that each
processor handles the particles interacting with the fluid associated to the LB mesh as-
signed to it. An optimal load-balancing for the LB component cannot be achieved by us-
ing simple cartesian decompositions in such complex domain. However, a very satisfac-
tory load-balancing is obtained by employing graph-partitioning tools like SCOTCH [9]
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or METIS [8] on a graph representing the connectivity of the irregular lattice. These
graph-decomposition tools work on a geometry-free representation of the lattice, i.e.,
a representation lacking any geometrical information and provide a (highly) irregular
decomposition. An important aspect introduced in [6] is that of cell tiling. In order to
efficiently manage RBC-RBC interactions and particles migration across subdomains, the
irregular shapes are tiled by space-filling parallelepipeds. The tiling allows to carry out
two basic functions: first to track and select particles that fall in proximity of the subdo-
main surface and, second, to minimize the handling and transfer of information across
processors.

MUPHY has been originally developed for the IBM BlueGene systems [14]. More
recently, its LB computational core has been ported to clusters of Graphics Processing
Units (GPU), using the CUDA software environment, showing excellent results [15]. The
porting of the PD core to CUDA allows to run hemodynamics simulations entirely on
GPU clusters by avoiding a large amount of data traffic between CPUs and GPUs. In
this case, the CPUs are only used to perform the domain decomposition and assist data
transfer among GPUs.

At the early stage of development, we decided to design a new GPU version of the
PD module instead of porting the existing CPU implementation. In fact, an existing
code would have simply posed too many restrictions on the underlying data structures,
whereas the new PD code is designed to exploit at its best the GPU capabilities. We thus
developed a modular software architecture in such a way that new features are easily
incorporated into the existing code.

Traditionally, one of the main issues related to the achievement of good performances
on GPUs has been the requirement of having properly aligned accesses to the global
memory (coalesced accesses in the CUDA jargon). However, devices with capability 1.3
and 2.0 (the capability defines the specific architecture of the GPU) can combine memory
accesses by threads in a half-warp (that is a group of 16 threads) into a single memory
transaction. This weaker notion of coalescence is such that memory access remains ef-
ficient as long as data lay in the same segment (that is a block, properly aligned, of 128
bytes), regardless of the memory access pattern. This feature highly mitigates the per-
formance drop due to uncoalesced accesses with respect to older devices, where such
accesses were always serialized on a per-thread basis. Since, at the time of this writing,
the new devices are widely available whereas devices with capability <1.3 are disappear-
ing, we limited our attention to fulfill the memory alignment requirements of the newer
devices.

3.1 Domain structures

Some features of the LB implementation influence distinct aspects of the PD implemen-
tation, the most important one being related to the layout of the underling mesh. Given
the irregular shape of the spatial domains, the mesh can not be stored in full matrix mode
since this would imply a huge waste of memory (the bounding box of the domain can
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be as large as 104×104×104 with only 3-5% of the nodes actually used). Instead, the LB
module relies on an indirect addressing scheme [15], by storing only active nodes (fluid,
wall, inlet and outlet). Mesh nodes are stored in one-dimensional arrays, one for each LB
discrete velocity. Nodes of the same type (fluid, wall, etc) are contiguous in the arrays. The
arrays are complemented by a matrix that represents the connectivity of the lattice. For
each node, the connectivity matrix contains the array indices of the neighboring nodes.
The number of entries in the connectivity matrix depends on the LB model in use. Since
we use the D3Q19 scheme, there are 18 populations connecting neighboring nodes, and,
for each node, 18 neighbors are indexed (one population relates to fluid at rest and does
not require any connectivity information).

The LB indirect addressing scheme does not allow to carry out efficiently one of the
most important operations required by PD, that is finding the array index of the grid
points (each one indicated as a triplet of integers (i, j,k)) covered by a particle at posi-
tion (x,y,z). This operation is fundamental to implement the membership test that decides
whether a particle is located inside a subdomain or not. To overcome this limitation, a
new set of data structures has been devised. These data structures are of general use, in
that they help in performing all PD operations that take into account spatial relations:
particle-particle interactions, frontier and migration management. These structures are de-
fined at the beginning of the simulation on the CPU, on the basis of the partitioning
assigned to each processor and are subsequently transferred to the GPU memory, where
they remain unmodified until the completion of the simulation.

The first data structure, that we name COO2CELL, is the cell matrix that we use to map
points in space to cell indices. In order to avoid the full matrix representation, the cell
matrix is stored by using the same indirect addressing scheme used to store the mesh. It
is represented as two vectors: COO2CELL[0][ ], containing the 1D-coordinate of internal,
frontier and external cells, in ascending order, and COO2CELL[1][ ], that contains the
tiling indices of the cells. Given a point (x,y,z), the index cid of the containing cell is
found by first computing the 1D-coordinate of the cell

1Dcoo←
⌊ z

cz

⌋
∗mx∗my+

⌊ y

cy

⌋
∗mx+

⌊ x

cx

⌋
,

where (cx,cy,cz) and (mx,my,mz) represent the size of the cells and their number along x,
y and z directions, respectively. The 1D coordinate is then searched in the first array by
using a binary search

j←binsearch
(

COO2CELL[0][ ],1Dcoo
)
,

and finally, the tiling id of the cell is obtained by accessing the j-th location of the second
vector

cid←COO2CELL[1][j].

The second data structure is the neighbor matrix, called CNEIGH. This is a two-
dimensional matrix that contains for every internal and frontier cell the ids of the 26 neigh-
boring cells (that can be internal, frontier and external cells). This matrix is not strictly
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Figure 2: Entries in the IJKMAP matrix for the cell cid; idxi is the index of the i-th mesh element in the array
of nodes.

necessary, since it is a mere ”repackaging” of information already present in COO2CELL.
However, it simplifies the neighborhood scan when performing particle-particle interac-
tions by avoiding the binary searches (see Section 3.4).

The third and last structure is the map matrix, called I JKMAP, that defines the asso-
ciation between particles and mesh data. It is a two-dimensional matrix containing, for
every internal and frontier cell, the indices, in the array of LB nodes, of the mesh points
inside that cell. Points inside the cells that are not part of the intradomain mesh are stored
as −1. Indices are stored in lexicographic order, so that, given a mesh node (i, j,k), it is
possible to easily compute the corresponding column index (see Fig. 2 for a 2D example).
The index, in the LB array, of a mesh node at position (i, j,k) is:

nid← I JKMAP[cid][lid],

where cid is the index of the cell containing the node and lid is defined by the linearized
coordinates of the node in the cell frame of reference

icell←
⌊

i−
⌊ i

cx

⌋
·cx

⌋
, jcell←

⌊
j−

⌊ j

cy

⌋
·cy

⌋
, kcell←

⌊
k−

⌊ k

cz

⌋
·cz

⌋
,

lid←⌈cx⌉·⌈cy⌉·kcell +⌈cx⌉· jcell +icell.

By using these data structures, the membership test is implemented as follows. Given
a particle p = (x,y,z), its coordinates are first rounded to the nearest integer, to find the
nearest grid point g. Then, it is checked whether an index in the mesh vector for point g
exists. If this is the case, the particle p is located inside the domain.

3.2 Particles structures

Each particle is characterized by a set of properties, such as position, velocity, angular
velocity, etc. Particles are thus stored as a set of arrays, one for each of these properties,
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Figure 3: Layout of the grid matrix. Internal particles are represented with circles and external ones with squares.
Internal, frontier and external cells are colored, respectively, in green, yellow and red.

according to the structure-of-arrays layout. This approach allows consecutive threads
to access particles at consecutive memory addresses and it is part of GPU programming
best-practices. The arrays contain both particles internal to the domain and the external
ones at distance less than or equal to the cutoff distance from the domain boundary.
Internal and external particles are separated: internal particles are located in the first part
of the arrays, followed by external ones. This layout allows threads in charge of internal
particles to access contiguous memory addresses. Particles position inside cells is stored
in a grid matrix, called GRIDMAT. It is a 2D matrix that contains, for each cell, the indices
of the particles located in the cell. The number of particles varies from cell to cell, so an
auxiliary array NGRID stores the number of particles in each cell. Fig. 3 shows a simple
example with 8 particles in a 2D grid.

3.3 Frontier management

We now present the GPU implementation of frontier and migration management, as out-
lined in our previous paper [6].

At the beginning of each iteration, the set of particles located within frontier cells is
moved from GPU to CPU memory in order to be exchanged among processors by using
MPI primitives. Since particle arrays are unsorted, frontier particles are first gathered in
a GPU buffer and then transferred to CPU memory via the cudaMemcpy function. The
gathering is done by using a map array Vidx that contains at position i the index of the
frontier particle that is copied to the i-th location of the buffer.

The map is built by invoking a sequence of kernels (i.e., functions running on the
GPU) starting from the data stored in the array of cell ids, Vcell. The first kernel fills up a
binary array Vmask, such that Vmask[i]= 1 if Vcell[i] is a frontier cell, or 0 otherwise. Then,
a parallel reduction kernel scans Vmask to compute the number n of frontier particles. If
n is non-zero, the parallel prefix sum of Vmask is computed into a temporary array Vps.
Subsequently, the map array is created by setting Vidx[Vps[i]]= i for the entries i such that
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Figure 4: Steps performed to compute the map array required for gathering efficiently the set of frontier particles
(subsequent steps are top to bottom and affect the arrays described in the text). Frontier cells are marked in
grey.

Vmask[i]=1. Finally, a kernel with n threads is launched to gather data about the particles
indexed by the first n locations of Vidx into the buffer. Fig. 4 illustrates an example of this
process.

Once particles are copied to the CPU memory, they are exchanged among processors
by using MPI point-to-point primitives. On the receiving end, particles are copied from
CPU memory to a GPU buffer, their cell id is computed and only those particles located
within external or frontier cells are moved into the corresponding data structures. This
task is carried out by a kernel that runs one thread per received particle. Each thread
calculates the cell id of its particle and, in case of either a frontier or an external cell
c, uses the atomicInc function to compute the index where the particle is stored in the
destination arrays. The grid matrix is also updated by using the CUDA atomicInc function
to atomically increment the cell counter and store the index j at the corresponding column
in the row c of GRIDMAT.

3.4 Particle-particle interactions

Every processor updates the particles data structures by using a kernel that implements
the force calculation. A sequence of additional kernels propagates other variables of
the particles related to linear velocities, angular velocities, torques, derivatives, rotation
matrices, cell ids, etc.

Particle-particle interactions are computed by using a GPU implementation of the
link-cell algorithm. For each internal particle i, cells CNEIGH[cidi][0,··· ,26] are searched
to identify interacting pairs of particles. Particles located in the neighboring cells are
accessed by looking up the corresponding rows of the GRIDMAT matrix. There are at
least two ways to map data onto GPU threads for this task. A first possibility is to process
pair interactions on a per-cell basis, by using the grid matrix. In this case, each thread
block is assigned to a cell and each thread of the block computes the force acting on a
particle inside the cell. This approach allows threads of the same block to cooperate while
scanning the neighborhood of the cell. More in detail, since threads of the same block are
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in charge of particles in the same cell, the shared memory of the GPU is used to cache
memory accesses to neighboring particles. This is done by copying in shared memory the
current neighboring cell and by having threads to scan synchronously the shared copy
for interacting pairs. However, this approach may result in a huge waste of resources,
since cells typically contain a number of particles much lower than the GPU warp size (32
threads, corresponding to the basic scheduling unit). As a consequence, many threads
in a warp would be idle, as there would be an insufficient number of particles for all of
them.

We thus followed a different approach, whereby interactions are processed on a per-
particle basis. In this case, the grid of threads is directly mapped onto the arrays of
particles. Threads are assigned to particles according to their global id and the search for
interacting pairs proceeds in an independent fashion. Each thread scans the cell neigh-
bors and, for each interacting pair, it computes the contribution to the total force. Co-
operation is not easily achieved because the indices of the particles inside the arrays are
not related to their positions in space, so that consecutive threads may have to handle
particles located in different cells.

Algorithm 1 shows the pseudocode for this implementation. Lines 1 and 2 compute
the size of the grid of threads in execution and define the indexing scheme for particles.
Each thread handles the particle corresponding to its linear global index inside the grid.
Then, each thread loops over the internal particles. Lines 4, 5 and 6 initialize the force act-
ing on particle tid, read its position and the index cid of the cell containing it, respectively.
Line 7 starts the loop through the 27 cells in the neighborhood of cell cid. The index of
the current cell is read from CNEIGH (line 8) and the number of particles located inside
this cell is read from the NGRID array (line 9).

The innermost loop (line 10) runs over the particles located in the current neighboring
cell. The index of the j-th particle is first read from the GRIDMAT matrix (line 11) and its
data fetched from the array of particle positions (line 12). In this version, we only consider
particle positions, but in real practice, much more data need to be fetched from memory
(orientation matrices, universal ids, etc). The test at line 13 prevents the evaluation of
the force between a particle and itself. Lines 16 and 17 compute the force between the
current pair and add it to the total. Here we do not exploit the action-reaction principle
fij =− f ji to avoid accumulating forces belonging to different threads. Doing so would
require atomic operations for floating-point numbers that are not available on the Tesla
line of GPUs†.

Finally, after all neighboring cells have been scanned, the force computed for particle
tid is saved into the corresponding array and the thread slides to the next internal particle
to be processed.

Particles data are read from global memory by using texture fetches via the tex1Dfetch
function to take advantage of the caching capability of the texture. This results in a per-
formance increase of 5-10% with respect to direct memory fetches. We also tried to sort

†The latest generation CUDA architecture, named Fermi, implements atomic operations for floating point
numbers.
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Algorithm 1. Search for interacting particle pairs and computation of pairwise
forces.

Require: CNEIGH, NGRID, GRIDMAT
Require: Vr is the array of particles positions.
Require: Vcell is the array of cell indices.
Require: Vf orce is the array of forces.
Require: Nint is the number of internal particles.

1: n← gridDim.x ·blockDim.x
2: tid←blockIdx.x ·blockDim.x+threadIdx.x
3: while (tid< Nint) do

4:
−→
f tot←

−→
0

5:
−→r tid← tex1D f etch(Vr[tid])

6: cid← tex1D f etch(Vcell[tid])
7: for c=0 to 26 do
8: ncell←CNEIGH[cid][c]
9: Nncell←NGRID[ncell]

10: for j=0 to Nncell−1 do
11: idxj←GRIDMAT[ncell][j]

12:
−→r j← tex1D f etch(Vr[idxj])

13: if (−→r j ==−→r tid) then
14: continue
15: end if
16: k←|−→r tid−−→r j|≤rmax ? 1 : 0

17:
−→
f tot←

−→
f tot+k· f orce(−→r tid,−→r j)

18: end for
19: end for
20: Vf orce[tid]←−→f tot

21: tid← tid+n
22: end while

the arrays of particles by the cell id in order to limit the cache miss rate and improve the
coherence of memory accesses. However, numerical tests showed that the cost of keep-
ing particles in sorted order (periodic sorting via the radix sort implementation, provided
by the cudpp library [16]) is greater than the performance gain provided by the slightly
higher cache hit rate, so we resorted to using texture lookups on unsorted arrays. Threads
executing this kernel may diverge in the innermost loop, in case of cells containing a dif-
ferent number of particles. Kernel profiling, however, shows that divergent warps have
a negligible impact in this kernel.

3.5 Particle migration

Once the update is completed, particle arrays and the grid matrix need to be synchro-
nized, the reason being that the particles inside the arrays may have moved outside the
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Figure 5: Steps performed to compute the map array used to separate internal and external particles inside the
second buffer of arrays. Outgoing particles are marked in grey (subsequent steps are top to bottom and affect
the arrays described in the text).

subdomain or to different cells. Consequently, the indices stored in the grid matrix are no
longer valid due to the reallocation among cells.

The arrays and the grid matrix are set back in a coherent state in the migration man-
agement phase. In this phase, particles that moved outside the domain are identified and
exchanged with neighboring processors and newcomers are inserted in the data struc-
tures. The search for departing particles is done in a similar way to frontier management.
A new map vector Vidx is built, in order to permute updated particles data in a second
buffer of vectors. In such way, internal particles are placed at the beginning of the arrays,
followed by those that moved outside.

The map is computed by invoking a sequence of kernels starting from the data stored
in the array of particle positions Vr. A first kernel computes a mask vector Vmask. Each
thread applies the membership test to a particle and sets the corresponding location of
Vmask to 1, if the particle remained inside the domain, otherwise sets it equal to 0. Then, a
parallel reduction kernel scans the mask vector to compute the number n of the particles
that remained in the domain. As for the frontier management, a prefix sum vector Vps1 is
computed to assign destination indices to internal particles. However, in this case, a sec-
ond prefix sum vector Vps0 is built on a copy of Vmask by swapping ones and zeroes. This
vector is necessary to compute destination addresses for external particles that follow the
internal ones in the second buffer of arrays. The permutation vector Vidx is finally built
by setting:

Vidx[Vps1[i]]= i, if Vmask[i]=1,

Vidx[Vps0[i]+n]= i, if Vmask[i]=0.

Fig. 5 illustrates an example of this process.
The permutation vector is used to separate particles inside the second buffer, by copy-

ing at position i the particle at position Vidx[i] in the first buffer. External particles are then
moved to CPU memory and the grid matrix is rebuilt with the data of the new n particles.
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External particles are exchanged among processors via MPI calls and the received parti-
cles are moved to GPU memory to identify newcomers. The procedure is basically the
same as for the frontier management. The membership test is applied to each particle
and only those particles that, actually, moved inside the domain are inserted into the
corresponding arrays and into the grid matrix.

4 Performance tests

To evaluate the performances of our implementation, we ran a set of tests on a cluster
equipped with 32 NVIDIA GPUs. The cluster has 16 computing nodes connected by
Infiniband. Each node has an Intel Xeon Quad-Core E5520, equipped with 24GB of RAM
and connected to a pair of NVIDIA Tesla C1060 GPUs (capability 1.3), each one having
4GB of global memory.

The testcase is the system representing an artery bifurcation derived from real-life
tomographic data for which we simulate fluid and particle dynamics and it is shown in
Fig. 1. The ensemble of RBC consists of 5×105 particles, immersed in the LB solvent and
with a mesh made of ∼6 million active fluid nodes.

At first, we compared the GPU and CPU implementations of the code and measured
the strong scaling of the system, by running the same testcase on an increasing number
of GPUs, ranging from 1 to 32.

The speedup, measured on the total running time of the simulation (LB, PD and LB-
PD coupling), obtained by the GPUs with respect to the CPUs, is shown in Fig. 6. With
any number of processors the GPU implementation is more than 14 times faster than the
CPU reference code. The resulting curve is not smooth, due to the domain decomposi-
tion. Given the irregularity of the domain, the SCOTCH graph-partitioning tool produces
partitionings with a balancing whose quality slightly varies with the number of subdo-
mains.

Fig. 7 shows a plot of the parallel efficiency of the complete simulation (including LB,
PD and LB-PD coupling) for both GPU and CPU implementations. Both versions achieve
an efficiency above 84% with any number of processors. However, while the CPU version
almost immediately reaches the minimal efficiency, the GPU code runs with an efficiency
greater than 96% up to 14GPUs from where it begins to decrease down to 84%, with
32GPUs. This effect is due to the relative small size of the test case. On the other hand
significantly larger test cases would not fit in memory with few GPUs.

Fig. 8 reports the timings of the simulation components including the coupling be-
tween LB and PD, and the breakdown in terms of computation of pairwise forces, frontier
and migration management. To measure the kernels execution times without the over-
head of MPI transfers, frontier and migration management timings have been split into
i) the time required to gather and move data from GPU to CPU memory and ii) the time
required to exchange data among processors. It is apparent that the coupling between the
LB and PD methods incurs the largest cost, regardless of the number of processors, while
the computation of pairwise forces takes at most one third of the total time. The cost of
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Figure 6: CPU run time/GPU run time for the complete simulation (PD, LB and coupling) plotted vs number
of processors.
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Figure 7: Parallel efficiency of both GPU and CPU implementations of the complete simulation (including the
modules for PD, LB and PD-LB coupling).

frontier and migration management (both data gathering and MPI transfer) is negligible
up to 8GPUs.

The high cost of the LB-PD coupling is due to the large number of GPU global mem-
ory writes that cannot be combined together. As a matter of fact, each particle exerts a
feedback on eighteen LB populations belonging to 32 nodes covered by the particle. Since
the subdomains assigned to each GPU are rather irregular and the number of particles is
much smaller than the number of mesh points, it is highly unlikely that the populations
updated by consecutive particles lay within the same memory segment. For such reason
almost every memory write is translated into a single memory transaction.

The timings breakdown of the CPU implementation is similar to that of the GPU code.
It is worth noticing that in spite of the above mentioned issue for the LB-PD coupling, the
GPU is almost one order of magnitude faster than the CPU in executing the coupling part
of the code.

Regarding the performance of the PD component alone (without the LB-PD coupling),
most of the execution time is taken by the computation of forces. With one processor,
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Figure 8: Time required to perform the main operations of PD and the coupling with the LB method vs number
of GPUs. The inset contains a detail of the timings for 16, 24 and 32GPUs.
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Figure 9: Speed-up of the PD implementation including the PD-LB coupling.

the GPU implementation is more than 20 times faster than the CPU one. The speed-up
increases with the number of processors up to a factor of 34, achieved with 32 processors.

The time required by the gathering and transfer of data in frontier and migration
management is negligible up to 16 processors. Starting with 24GPUs, the time required
by frontier and migration management becomes comparable with that of forces compu-
tation and coupling, given the reduced workload of each GPU.

Fig. 9 shows a plot of the speed-up of the complete PD computational component
with the LB-PD coupling activated. The speed-up is super linear with any number of
GPUs.

5 Conclusions

To the best of our knowledge, the work presented in this paper represents the first effort
to design and implement a general method to concurrently perform parallel Lattice Boltz-
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mann and Particle Dynamics inside irregular domains. The two simulation modules are
coupled in a concurrent and efficient way by executing most of the computational load on
a cluster of GPUs. For the single core vs. single GPU comparison, the measured speed-
up is in excess of one order of magnitude in favor of GPU computing. This speed-up
is highly satisfactory, especially in view of the complex data layout and computational
method. When going to multi-GPU parallel computing, handled by a MPI/CUDA pro-
gramming paradigm over the hybrid CPU/GPU architecture, the parallel efficiency stays
close to the ideal slope up to 32GPUs. The computational method is fully integrated in
MUPHY, one of the first examples of high performance parallel code for the simulation
of multi-physics/scale bio-fluidic phenomena in realistically complex geometries.
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