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Abstract. Three high order shock-capturing schemes are compared for large eddy
simulations (LES) of temporally evolving mixing layers for different convective Mach
numbers ranging from the quasi-incompressible regime to highly compressible super-
sonic regime. The considered high order schemes are fifth-order WENO (WENO5),
seventh-order WENO (WENO7) and the associated eighth-order central spatial base
scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter
step (WENO7fi). This high order nonlinear filter method of Yee & Sjogreen is de-
signed for accurate and efficient simulations of shock-free compressible turbulence,
turbulence with shocklets and turbulence with strong shocks with minimum tuning
of scheme parameters. The LES results by WENO7fi using the same scheme param-
eter agree well with experimental results compiled by Barone et al., and published
direct numerical simulations (DNS) work of Rogers & Moser and Pantano & Sarkar,
whereas results by WENO5 and WENO7 compare poorly with experimental data and
DNS computations.

AMS subject classifications: 65Z05, 65M06, 65M50, 65M55, 65M60, 65M99, 65Y99

Key words: High order numerical methods, numerical methods for turbulence with shocks, DNS,
LES, mixing layer.

1 Introduction

Part of the inaccuracy in direct numerical simulations (DNS) and large eddy simulations
(LES) of turbulent flow using standard high order shock-capturing schemes is due to
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Sjögreen), hadjadj@coria.fr (A. Hadjadj)

http://www.global-sci.com/ 1603 c©2012 Global-Science Press



1604 H. C. Yee et al. / Commun. Comput. Phys., 12 (2012), pp. 1603-1622

the fact that this type of computation involves long time integrations. Standard stability
and accuracy theories in numerical analysis are not applicable to long time wave propa-
gations and/or long time integrations [29]. The original construction of modern shock-
capturing schemes was developed for rapidly developing unsteady shock interactions
and short time integrations. Any numerical dissipation inherent in the scheme, even
for high resolution shock-capturing schemes that maintain their high order accuracy in
smooth regions (e.g., fifth- or seventh-order WENO schemes (WENO5 and WENO7)),
will be compounded over long time integration leading to smearing of turbulence fluc-
tuations to un-recognizable forms.

In compressible turbulent combustion/nonequilibrium flows, the constructions of
numerical schemes for (a) stable and accurate simulation of turbulence with strong shocks,
and (b) obtaining correct propagation speed of discontinuities for stiff reacting terms on
“coarse grids” share one important ingredient - minimization of numerical dissipation
while maintaining numerical stability. Here “coarse grids” means standard mesh density
requirement for accurate simulation of typical non-reacting flows. This dual requirement
to achieve both numerical stability and accuracy with zero or minimal use of numerical
dissipation is most often conflicting for existing schemes that were designed for non-
reacting flows. In addition to the minimization of numerical dissipation while maintain-
ing numerical stability in compressible turbulence with strong shock, Yee & Sjögreen,
Yee and Yee & Sweby [32,33,36,37] discussed a general framework for the design of such
schemes. Yee & Sjögreen [41], Sjögreen & Yee [27, 28, 44] and Wang et al. [30, 31], and ref-
erences cited therein present their recent progress on the subject. In [43], a short overview
of this recent progress is given. The discussion addresses three separate yet interwoven
types of numerical challenges for high speed turbulent reacting flows containing discon-
tinuities. This paper is confined to the study of turbulent mixing for non-reacting flows.
The study for turbulent mixing for reacting flows is planned.

2 Recent progress in numerical methods for turbulence with

strong shocks

The current trends in the containment of numerical dissipation in DNS and LES of tur-
bulence with shocks are summarized in Yee & Sjögreen and Yee et al. [?, 40–42]. See the
cited references for details on these current trends. Before presenting the improved filter
schemes and their application to the temporally evolving mixing layers (TML) in the next
two sections, the key ingredients and the performance of the high order nonlinear filter
schemes with pre-processing and post-processing steps in conjunction with the use of a
high order non-dissipative spatial base scheme [41, 42] are briefly illustrated for two test
cases.

2.1 High order nonlinear filter schemes [25, 39, 41, 42]

Before the application of a high order non-dissipative spatial base scheme, the pre-
processing step to improve stability had split inviscid flux derivatives of the governing
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equation(s) in the following three ways, depending on the flow types and the desire for
rigorous mathematical analysis or physical argument.

• Entropy splitting of Olsson & Oliger [16] and Yee et al. [35, 36]: The resulting form is non-
conservative and the derivation is based on entropy norm stability with numerical boundary
closure for the initial value boundary problem.

• The system form of the Ducros et al. splitting [5]: This is a conservative splitting and the
derivation is based on physical arguments.

• Tadmor entropy conservation formulation for systems (Sjögreen & Yee [26]): The derivation is
based on mathematical analysis. It is a generalization of Tadmor’s entropy conservative formu-
lation to systems and has not been fully tested on complex flows.

After the application of a non-dissipative high order spatial base scheme on the
split form of the governing equation(s), to further improve nonlinear stability from the
non-dissipative spatial base scheme, the post-processing step of Yee & Sjögreen [39, 41],
Sjögreen & Yee [25] nonlinearly filtered the solution by a dissipative portion of a high
order shock-capturing scheme with a local flow sensor. These flow sensors provide lo-
cations and amounts of built-in shock-capturing dissipation that can be further reduced
or eliminated. For all the computations shown, the Ducros et al. splitting is employed
since a conservative splitting is more appropriate if one does not know if the subject flow
is shock-free or contains turbulence with shocks. Some attributes of the high order filter
approach are:

• Spatial Base Scheme: High order and conservative with high order freestream preservation metric
evaluation for curvilinear grids (no flux limiter or Riemann solver).

• Physical Viscosity: Automatically taken into consideration by the base scheme. The same order
of central differencing for the viscous derivative as the convective flux derivatives are used.

• Efficiency: One Riemann solve per dimension per time step, independent of time discretizations
(less CPU time and fewer grid points than their standard shock-capturing scheme counterparts).

• Accuracy: Containment of numerical dissipation via local wavelet flow sensor.

• Well-balanced scheme: These nonlinear filter schemes are well-balanced schemes for certain
chemical reacting flows and problem containing geometric source terms [30].

• Parallel Algorithm: Suitable for most current supercomputer architectures.

2.2 Sample test cases illustrating the efficiency and accuracy of high order
filter schemes

These filter schemes are efficient, and the total computational cost for a given error tol-
erance is lower than for standard shock-capturing schemes of the same order. This is
of importance, for example, in DNS and in flow control optimization to improve aero-
dynamic properties, where the flow simulation must be carried out many times during
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the optimization loop. The efficiency and accuracy of the schemes for a wide variety of
flow problems can be found in aforementioned cited references. Here two test cases are
illustrated.

2.2.1 2D shock/vorticity interaction

Fig. 1 shows a comparison of a second-order TVD, seventh-order WENO (WENO7), hy-
brid scheme (switch between eighth-order spatial central scheme and WENO7 using
wavelet flow sensor as the switch indicator) and the filter scheme WENO7fi (an eighth-
order spatial central base scheme and the dissipative portion of WENO7 and the same
wavelet flow sensor to guide where the WENO7 dissipation should be applied at the
post-possessing nonlinear filter step). A second-order Runge-Kutta method was used for
the TVD scheme and the classical fourth-order Runge-Kutta method was used for the
rest of the spatial schemes. For this particular simple 2D shock-vorticity interaction test
case with a simple weak planar shock without structure, WENO7, hybrid, and WENO7fi
give the same accuracy. However, there is large gain in CPU time by the filter scheme
for this turbulence-free test case. For turbulence with shocks, there is a more beneficial
gain both in accuracy and CPU time of the filter schemes over the their standard WENO
counterparts.

CPU Comparison (2-D Shock/Vorticity Interaction)  

    Adpative Filter Approach vs. Hybrid Approach!
(RK4, Same 8th-Order Central (D08), WENO7 Dissipation & Switch)!

CPU time (integrate to dimensionless time 25) for different methods 

2nd-order TVD:             57 s!

WENO7:                       338 s!

D08 + hybrid WENO7: 103 s!

D08 + filter WENO7:     47 s!

Single processor!

Schemes of same order,  no gain in accuracy, high gain in CPU!

Figure 1: CPU comparison of four shock-capturing schemes.

2.2.2 1D shock/turbulence interaction problem

This 1-D compressible inviscid ideal gas problem is one of the most computed test
cases in the literature to assess the capability of a shock-capturing scheme in the
presence of shock/turbulence interactions. The flow consists of a shock at Mach 3
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Figure 2: The comparison among WENO3, WENO5 and WENO7, and their corresponding filter schemes
WENO3fi, WENO5fi and WENO7fi using a very coarse uniform grid of 200 points with the reference solution.

propagating into a sinusoidal density field with initial data given by (ρL, uL, pL) =
(3.857143, 2.629369, 10.33333) to the left of a shock located at x=−4, and (ρR, uR, pR)=
(1+0.2sin(5x), 0, 1) to the right of the shock, where ρ is the density, u is the velocity
and p is the pressure. The computational domain is [−5,5] and the computation stops at
time equal to 1.8. Fig. 2 shows the comparison among WENO3, WENO5 and WENO7,
and their corresponding filter schemes WENO3fi, WENO5fi and WENO7fi using a very
coarse uniform grid of 200 points with the reference solution. The reference solution is
obtained with WENO5 using 16000 grid points. WENO5fi required at the most 50% of
the CPU time of WENO5 if third or fourth-order Runge-Kutta time discretizations were
used. In order for WENO5 to obtain a similar accuracy as WENO5fi, at least two times
the number of grid points is needed. Moreover, the accuracy of WENO5fi is similar to
WENO9 (computation not shown).

2.3 Objective and outline

The objective of this paper is to use the same TML problem setup and convective Mach
cases as in [11] to compare the performance of WENO7fi with standard WENO5 and
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WENO7 for convective Mach numbers Mc =0.1,0.3,0.8,1.0,1.5. For WENO7fi, no tuning
of scheme parameters is needed for all theMc cases. For detailed physics, see [11].

The outline of this paper is as follows: The high order nonlinear filter methods are
summarized in Section 3. Recent improvement of the scheme will also be briefly dis-
cussed. The problem setup for the temporally resolving mixing layer (TML) is given in
Section 4. Numerical results comparing the performance among WENO5, WENO7 and
the associated WENO7fi are then presented in Section 5.

3 Numerical methods

This section summarizes the numerical methods to be used for the turbulent TML study.
The numerical methods solve the split form of the inviscid flux derivatives according to
the pre-processing step. The discussion is broken up into two subsections.

3.1 Original high order filter method

For turbulence with shocks, instead of solely relying on very high order high-resolution
shock-capturing methods for accuracy, the filter schemes [25, 34, 35, 38, 39] take advan-
tage of the effectiveness of the nonlinear dissipation contained in good shock-capturing
schemes as stabilizing mechanisms at locations where needed. Such a filter method
consists of two steps: a full time step using a spatially high-order non-dissipative base
scheme, followed by a post-processing filter step. The post-processing filter step consists
of the products of wavelet-based flow sensors and nonlinear numerical dissipations. The
flow sensor is used in an adaptive procedure to analyze the computed flow data and in-
dicate the location and type of built-in numerical dissipation that can be eliminated or
further reduced. The nonlinear dissipative portion of a high-resolution shock-capturing
scheme can be any TVD, MUSCL, ENO, or WENO scheme. By design, the flow sensors,
spatial base schemes and nonlinear dissipation models are standalone modules. There-
fore, a whole class of low dissipative high order schemes can be derived with ease. Unlike
standard shock-capturing and/or hybrid shock-capturing methods, the nonlinear filter
method requires one Riemann solve per dimension, independent of time discretizations.
The nonlinear filter method is more efficient than its shock-capturing method counter-
parts employing the same order of the respective methods.

An advantage of the wavelet flow sensor of the filter method is that for problems
with physical dissipation the more scales that are resolved, the less the filter is utilized,
thereby gaining accuracy and computation time. In the limit when all scales are resolved,
we are left with a “pure” centered high order spatial scheme without added numerical
dissipation.

Recently, these filter schemes were proven to be well-balanced schemes [30] in the
sense that these schemes preserve exactly certain steady state solutions of the chemi-
cal nonequilibrium governing equation. With this added property these filter schemes
can better minimize spurious numerics in reacting flows containing mixed steady shocks
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and unsteady turbulence with shocklet components than standard non-well-balanced
shock-capturing schemes. In addition, studies in [44] indicated that these high order
filter schemes can cope with moderately stiff source terms to give accurate shock location
for coarse grid combustion simulations.

For simplicity of the presentation the discussion for the base scheme and post-
processing step of the filter scheme is restricted to the inviscid part of the Navier-Stokes
equations. For viscous gas dynamics the same order of spatial centered base scheme for
the convection terms and the viscous terms are employed. For all of the LES computa-
tions the classical fourth-order Runge-Kutta time discretization is employed.

Consider the 3-D compressible Euler equations in Cartesian geometry,

Ut+∇·F=0; U=





ρ
m

e



; F=





ρu

ρuuT+p
u(e+p)



. (3.1)

Here the velocity vector u = (u,v,w)T, the momentum vector m = (ρu,ρv,ρw), ρ is the
density, e is the total energy, and p is the pressure.

In a Cartesian grid denote the grid indices for the three spatial directions as (j,k,l).
The spatial base scheme to approximate the x inviscid flux derivatives F(U)x (with the
grid indices k and l for the y- and z-directions suppressed) is written as, e.g.,

∂F

∂x
≈D08Fj, (3.2)

where D08 is the standard eighth-order accurate centered difference operator. See [26] for
the split form of (3.2).

After the completion of a full Runge-Kutta time step of the base scheme step, the
second step is to adaptively apply a post-processing nonlinear filter. The nonlinear filter
can be obtained e.g., in the x-direction by taking the full seventh-order WENO scheme
(WENO7) [12] for the inviscid flux derivative in the x-direction and subtracting D08Fj.
The final update of the solution is (with the numerical fluxes in the y- and z-directions
suppressed as well as their corresponding y- and z-directions indices on the x inviscid
flux suppressed)

Un+1
j,k,l =U∗

j,k,l−
∆t

∆x
[H∗

j+1/2−H∗
j−1/2]. (3.3)

The nonlinear filter numerical fluxes usually involve the use of field-by-field approx-
imate Riemann solvers. If the Roe type of approximate Riemann solver [21] is employed,
for example, the x-filter numerical flux vector Hj+1/2 evaluated at the U∗ solution from
the base scheme step is

Hj+1/2=Rj+1/2H j+1/2,

where Rj+1/2 is the matrix of right eigenvectors of the Jacobian of the inviscid flux vector

in terms of the Roe’s average states. Denote the elements of the vector H j+1/2 by h
l
j+1/2,l=
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1,2,··· ,5. The nonlinear portion of the filter h
l
j+1/2 has the form

h
l
j+1/2=

κ

2
ωl

j+1/2φl
j+1/2. (3.4)

Here ωl
j+1/2 is the wavelet flow sensor to activate the nonlinear numerical dissipation

1
2 φl

j+1/2 and the original formulation for κ is a positive parameter that is less than or

equal to one. Some tuning of the parameter κ is needed for different flow types. A local
κ to be discussed next, depending on the local Mach number for low speed flows and
depending on local shock strength for high speed flows, would minimize the tuning of
parameters. A local flow sensor was discussed by Lo et al. [15] by taking advantage of
the Ducros et al. shock flow sensor [6] to obtain a local artificial compression method
(ACM) sensor for the original Yee et al. filter scheme [34].

The dissipative portion of the nonlinear filter 1
2 φl

j+1/2=gl
j+1/2−bl

j+1/2 is the dissipative

portion of, e.g., WENO7 for the local lth-characteristic wave. Here gl
j+1/2 and bl

j+1/2 are

numerical fluxes of WENO7 and the eighth-order central scheme for the lth characteristic,
respectively. Hereafter, we denote this filter scheme as WENO7fi.

A summary of the three basic steps to obtain ωl
j+1/2 can be found in [25, 39]. For

example, the flow sensor ωl
j+1/2 to activate the shock-capturing dissipation using the cut

off procedure is a vector (if applied dimension-by-dimension) consisting of “1’s” and
“0’s”. For all of the computations, a three-level second-order Harten multiresolution
wavelet decomposition of the computed density and pressure is used as the flow sensor
[25].

3.2 Improved high order filter method

Previous numerical experiments on a wide range of flow conditions [25, 34, 35, 38, 39]
indicated that the original filter scheme improves the overall accuracy of the computation
compared with standard shock-capturing schemes of the same order. Studies found that
the improved accuracy is more pronounced if the parameter κ in (3.4) is tuned according
to the flow type locally. For hypersonic flows with strong shocks, κ is set to 1. For high
speed subsonic and supersonic flows with strong shocks, κ is in the range of (0.3,0.9).
For low speed turbulent flows without shocks or long time integration of smooth flows,
κ can be one to two orders of magnitude smaller than 1. In other words, κ should be flow
location, shock strength and local flow type dependent. The improved κ proposed in [41]
consists of a simple global κ for smooth flows and a local κ for problems with shocks and
turbulence.

3.2.1 An efficient global κ for low Mach number and smooth flows

The flow speed indicator formula of Li & Gu to overcome the shortcomings of “low speed
Roe scheme” [14] was modified to obtain an improved global κ denoted by κ for (3.4) to
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minimize the tuning of the original κ for low Mach number flows. κ has the form:

κ= f1(M)κ, (3.5)

with

f1(M)=min

(

M2

2

√

4+(1−M2)2

1+M2
,1

)

. (3.6)

Here M is the maximum Mach number of the entire computational domain at each stage
of the time evolution. f1(M) has the same form as [14] except there is an extra factor
“ M

2 ” added to the first argument on the right-hand-side of the original form f (M) in
Eq. (18) of [14]. The added factor provides a similar value of the tuning κ observed from
numerical experimentation reported in aforementioned cited references. With the flow
speed indicator f1(M) in front of κ, the same κ used for the supersonic shock problem
can be used without any tuning for the very low speed turbulent flow cases. Another
minor modification of the above is,

f1(M)=max

(

min

(

M2

2

√

4+(1−M2)2

1+M2
,1

)

,ǫ

)

,

where ǫ is a small threshold value to avoid completely switching off the dissipation. A
function which retains the majority of f1(M) but includes larger Mach number for not
very strong shocks is

f2(M)=(Q(M,2)+Q(M,3.5))/2

or

f2(M)=max((Q(M,2)+Q(M,3.5))/2,ǫ),

where

Q(M,a)=

{

P(M/a), M< a,

1, otherwise.

The polynomial

P(x)= x4(35−84x+70x2−20x3)

is monotonically increasing from P(0)=0 to P(1)=1 and has the property that P′(x) has
three continuous derivatives at x=0 and at x=1.

Below supersonic speeds, a simple and efficient global κ can be obtained according to
the maximum Mach number of the entire flow field and the value is determined by f1(M)
or f2(M) for non-zero ωl

j+1/2. It is noted that if the original f (M) were used instead of

f1(M) or f2(M) in Eq. (3.5), the amount of nonlinear filter dissipation could be too large
for very low speed turbulent flows (for the same fixed κ). See Fig. 3 for details.



1612 H. C. Yee et al. / Commun. Comput. Phys., 12 (2012), pp. 1603-1622

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

M

M
a
c
h
 S

e
n
s
o
rs

Mach sensors, !=0

 

 

f(M)
f
1
(M)

f
2
(M)

Figure 3: Mach number sensors. f (M) (blue) function by Li and Gu, f1(M) (red) modified f (M), and f2(M)
(black) (includes low supersonic Mach numbers).

3.2.2 Local flow sensor for a wide spectrum of flow speed and shock strength

At each time step and grid point, the aforementioned global κ is not sufficient to reduce
the amount of numerical dissipation where needed for flows that contains a variety of
flow features. A more appropriate approach is to obtain a “local κ” that is determined
according to the above at each grid point. If known, a dominating shock jump variable
should be used for shock detections. In other words, the filter numerical flux indicated
in Eq. (3.4) is replaced by:

h
l
j+1/2=

1

2
[κl

j+1/2ωl
j+1/2φl

j+1/2]. (3.7)

In the case of unknown physics and without experimental data or theory for com-
parison, κl

j+1/2 has to depend on the local Mach number in low speed or smooth flow

regions, depend on local shock strength in shock regions and depend on turbulent fluc-
tuations in vortical regions in order to minimize the tuning of parameters. According to
the flow type locally, for each non-zero wavelet indicator ωl

j+1/2, κl
j+1/2 should provide

the aforementioned amount (between (0,1)) to be filtered by the shock-capturing dissi-
pation φl

j+1/2. For problems containing turbulence and strong shocks, the shock strength

should come into play. One measure of the shock strength can be based on the numerical
Schlieren formula [10] for the chosen variables that exhibit the strongest shock strength.
In the vicinity of turbulent fluctuation locations, κl

j+1/2 will be kept to the same order as

in the nearly incompressible case, except in the vicinity of high shear and shocklets.

Due to the fact that κ works well for local Mach number below 0.4, κ only needs to
be modified in regions that are above 0.4. In other words, the final value of κl

j+1/2 is

determined by the previous local κ, if the local Mach number is below 0.4. If the local
Mach number is above 0.4, at discontinuities detected by the non-zero wavelet indicator
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ωl
j+1/2, κl

j+1/2 is determined by the shock strength (normalized between (0,1)) based on

the Schlieren formula near discontinuities. Again, if known, dominating shock jump
variables should be used for shock detections. At locations with turbulence, determined
by the turbulent sensor (e.g., ωl

j+1/2 obtained from employing wavelets with higher order

vanishing moments), κl
j+1/2 is kept to the same order as in the nearly incompressible case,

except in the vicinity of high shear and shocklet locations, where a slightly larger κl
j+1/2

would be used. Methods in detecting turbulent flow can be (a) Wavelets with higher
order vanishing moments, and (b) Wavelet based Coherent Vortex Extraction (CVE) of
Farge et al. [7] (Split the flow into two parts: Active coherent vortices and incoherent
background flow).

Results by the local κl
j+1/2 that take the local flow speed and shock strength into con-

sideration will be reported in [42], an expanded version of [41]. Preliminary study with
more complex shock turbulence problems and the applicability of even wider flow types
indicates the necessity of the local κl

j+1/2.

In this paper, all the computations use the global κ, the Ducros et al. splitting of the
inviscid flux derivatives and WENO7fi using the global κ in conjunction with the classical
fourth-order Runge-Kutta temporal discretization. κ=0.7 for all test cases.

4 Description of the physical problem and computational setup

LES using the subgrid model of [18] of a TML between two streams with equal and oppo-
site velocities was considered in [11]. In [11] the three main characteristics of compress-
ible TML (the self similarity property, compressibility effects and the presence of large-
scale structure with shocklets for high Mc) were considered for the LES study. The role
of compressibility in turbulent mixing layers remains an important issue in aeronautics.
For example, in the design of high-speed (supersonic or hypersonic) propulsion devices,
the stabilizing effect of compressibility may reduce the efficiency of engines in mixing the
fuel and the oxidizer. One of the objectives of the study in [11] is to use WENO7fi to in-
vestigate the compressibility effects in highly sheared turbulent flows subjected to strong
shocks. Here WENO7fi refers to the pre-processing step (Ducros et al. splitting of the
inviscid flux derivative) in conjunction with the eighth-order central spatial base scheme
with the dissipative portion of WENO7 and the global flow sensor discussed in Section
2 as the post-processing nonlinear filter step. The objective of the current investigation
is to compare the performance among WENO7fi, WENO5 and WENO7 using the same
problem setup, computational domain and grid size as in [11].

4.1 TML problem setup in [11]

The configuration of the TML is shown in Fig. 4. All the computations assume perfect
gas with γ = 1.4. Five test cases are carried out with different convective Mach num-
bers (Mc = 0.1,0.3,0.8,1.0 and 1.5) ranging from the incompressible case Mc=0.1 up to
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Figure 4: Schematic configuration of temporal mixing layer.

the supersonic case Mc = 1.5. The Mc = 1.5 case corresponds to a highly compressible
mixing layer, whereas the first two cases Mc=0.1 and Mc=0.3 can be considered as
quasi-incompressible and are used to compare with the experimental results of an incom-
pressible shear layer. All of the simulations described below are performed at an initial
Reynolds number, Reω0 , based on the mean velocity difference ∆U = 2U1 =−2U2, the
average viscosity of the free streams and the vorticity thickness δω0 of 800 with δw0 =4δθ0

,
where δω =∆U/〈∂u/∂y〉max is the vorticity thickness of the shear layer, and δθ is the mo-
mentum thickness (see [11] for details). The values of Reω can be as large as 3×105 at
the end of the simulation, which is one order of magnitude higher than similar DNS and
LES computations reported in the literature [8,17,19]. The mean flow is initialized with a
tangent hyperbolic profile for the streamwise velocity, u(y)= 1

2 ∆U tanh[y/(2δθ0
)], while

the two other velocity components are set to zero. In addition to these mean values,
three-dimensional turbulent fluctuations (u′,v′,w′) are imposed, while initial pressure
and density are set constant. Since the simulation is temporal, the initial velocity per-
turbations are computed using a digital filter technique [13]. This procedure utilizes the
prescribed Reynolds stress tensor and length scales of the problem concerned to generate
the corresponding fluctuating velocity field, taking into account the nature of the auto-
correlation function for the prevailing turbulence. See [11] for details.The digital filter
algorithm is given in Appendix B of [11]. The length scales are chosen as δw0 in each di-
rection. The Reynolds stresses have a Gaussian shape in y with amplitudes chosen to be
similar to the experimental peak intensities observed in incompressible mixing layer [2].

Periodic boundary conditions are enforced in the streamwise (x) and spanwise (z)
directions, while non-reflecting conditions are applied at both top and bottom boundaries
(y direction). The use of a periodic boundary condition in the x direction corresponds to
the temporal formulation of mixing layer evolution, which evolves only in time as it
spreads in y.



H. C. Yee et al. / Commun. Comput. Phys., 12 (2012), pp. 1603-1622 1615

4.2 Mesh requirements

Similar to [8], a computational domain of lengths Lx×Ly×Lz=1200δθ0
×370δθ0

×270δθ0
is

used with the corresponding mesh points Nx×Ny×Nz =512×211×131. The same grid
system uniformly spaced in the x and z directions and stretched in the y direction is
employed for all considered cases. The stretching function for the y-direction is based on
Ly

2

sinh(byη)
sinhby

, where Ly is the box size in the y-direction and the stretching factor by = 3.4.

The mapped coordinate η is equally spaced and runs from −1 to 1. The grid used in this
study contains an order of magnitude fewer cells than that of the DNS of Pantano and
Sarkar [19] compared to the domain length. To ensure that the computational domain
in the x- and z-directions is sufficiently wide, the two-point correlation functions were
analyzed in [11].

5 Numerical results

LES using the subgrid model of [18] and WENO7fi was performed in [11] on the TML
problems at different convective Mach numbers Mc (0.1,0.3,0.8,1.0,1.5). Studies in [11]
show the level of good agreement obtained between LES and DNS for convective Mach
number 0.3. In higher convective Mach numbers (up to 1.5), LES results are in good
agreement with the experiments. Also, the principal compressibility effects such as the
reduction of the spreading rate and the turbulence intensities are well predicted.

The flow features of this TML are determined by Mc. LES computations are carried
out up to dimensionless time τ= t∆U/δθ0

≃3000 for the higher convective Mach number
cases and τ≃1200 for the quasi-incompressible cases. Shocklets developed for Mc ≥0.8.
The shocklets are stronger and more complicated as Mc increases. Fig. 5 shows the 2-
D cut at midplane of instantaneous dilatation flow field at τ = 1000 for three different
convective Mach numbers (Mc = 1.5, 1.0, and 0.8). Fig. 5 indicates the different flow
patterns as a function of Mc. Fig. 6 shows the 2-D cut at mid plane and a 3-D plot of
instantaneous numerical Schlieren of vorticity at τ = 2000 and Mc = 1.5 by WENO7fi.
Fig. 7 shows 3-D iso-surfaces of the instantaneous vorticity field from different viewing
angles for Mc=1.5.

For each Mc, after a transient phase, the momentum thickness approaches a separate
linear growth regime. LES results by WENO7fi for different convective Mach numbers
agree well with the analytically predicted slopes whereas WENO5 and WENO7 do not
agree well with the predicted slope for most of the Mc cases.

Fig. 8 shows the momentum thickness comparison among the three schemes for each
of the Mc cases. It is interesting to note that the global κ used by WENO7fi only shows
a slight improvement over WENO5 and WENO7 for Mc=0.8 and 1.0. For the compress-
ibility factor computations shown in Fig. 9, WENO7fi compares well with experimental
data for all studied Mc, whereas this is not the case for WENO5 and WENO7.

Fig. 9 displays the compressibility factor as a function of Mc by three high order
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Figure 5: 2-D cut at midplane of instantaneous dilatation flow-field at τ= 1000 for three different convective
Mach numbers (Mc=1.5 (top), 1.0 (middle), and 0.8 (bottom)).

Figure 6: Instantaneous numerical Schlieren pictures at τ=2000 and Mc=1.5 by WENO7fi indicating shocklets
formation.
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Figure 7: Temporal mixing: instantaneous iso-surfaces of vorticity by WENO7fi at τ=2000, Mc=1.5, top and
side views.

schemes comparing with published work and experiments. This figure shows the su-
perior performance of WENO7fi compared with WENO5 and WENO7. The LES results
using WENO7fi agree well with experimental results of Barone et al. (2006) [1], and pub-
lished direct numerical simulations (DNS) work of Rogers & Moser (1994) [22] and Pan-
tano & Sarkar (2002) [19]. In all Mc cases, no tuning of WENO7fi scheme parameters was
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Figure 8: Temporal mixing: momentum thickness comparison for Mc=0.1, Mc=0.3, Mc=0.8,Mc=1.0, Mc=1.5

.

needed. For all the Mc cases considered, solutions by WENO5 and WENO7 compared
poorly with experimental data and DNS computations.

The unsteady time evolution of turbulence with shocklets for Mc = 0.8,1.0 and 1.5
among WENO5, WENO7 and WENO7fi are very different in terms of the location and
strength of the shocklets and turbulent fluctuation pattern. Fig. 10 shows the 2-D cut at
midplane of the numerical Schlieren of vorticity at τ = 2000 and Mc = 1.5 computed by
WENO7fi and WENO5. Fig. 11 shows the 2-D cut at midplane of instantaneous dilatation
flow-field at τ=2000 and Mc=1.5 computed by WENO7fi and WENO5.
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Figure 9: Temporal mixing: compressibility factor as function of the convective Mach number from differ-
ent experimental mixing-layer studies selected by Barone et al. [1]: (a) Bogdanoff [3]; Papamoschou and
Roshko [20]; (b) Chinzei at al. [4]; (c) Samimy and Elliott [23, 24]; — nonlinear regression curve from [1]
with Φ(Mc)=1−a1

[

1−1/(1+a2 Ma3
c )

]

, a1 = 0.5537, a2 = 31.79, a3 = 8.426; (d) Gruber et al. [9]. Compar-
ison among LES computations by WENO7fi (red solid circles); WENO5 (magenta) and WENO7 (blue) for
Mc=0.1,0.3,0.8,1.0,1.5.

Figure 10: Temporal mixing: 2-D cut at mid plane of instantaneous numerical Schlieren of vorticity at τ=2000,
Mc=1.5. Top (WENO7fi), bottom (WENO5).

Figure 11: Temporal mixing: 2-D cut at mid plane of instantaneous dilatation flow-field at τ=2000, Mc=1.5.
Top (WENO7fi), bottom (WENO5).
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6 Concluding remarks

The present work serves as a validation and performance study of the improved filter
schemes of [41] on a representative complex compressible turbulent flow consisting of a
wide range of flow speeds. All the computations use the global κ, the Ducros et al. [7]
splitting of the inviscid flux derivatives and WENO7fi with κ= 0.7 described in Section
2.2.1. In all Mc cases, no tuning of WENO7fi scheme parameters were needed. Studies in-
dicated that WENO7fi compared well with experimental data and published DNS work.
For all the Mc cases considered, solutions by WENO5 and WENO7 compared poorly with
experimental data and DNS computations.

The same high order filter scheme is being used for the simulation of two much higher
Mc cases of Mc =2,3. The computational box size, especially in the y-direction has to be
doubled or more. A finer grid is also needed in order to obtain an accurate and stable
solution. These computations are many times more CPU-intensive than the lower Mc

cases. Results will be reported in a forthcoming paper.
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[27] B. Sjögreen, H.C.Yee, M.J.Djomehri, A.Lazanoff, and W.D.Henshaw, Parallel Performance of
ADPDIS3D - A High Order Multiblock Overlapping Grid Solver for Hypersonic Turbulence,
Proceedings of the 21st International Conference on Parallel CFD, Moffett Field, CA, May
18-22, 2009.
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[43] H.C. Yee, B. Sjögreen, C.W. Shu, W. Wang, T. Magin and A. Hadjadj, On Numerical Methods
for Hypersonic Turbulent Flows, Proceedings of ESA 7th Aerothermodynamics Symposium,
9 - 12 May 2011 Site Oud Sint-Jan, Brugge, BelgiumASTRONUM-2010, June 13-18, 2010.

[44] H.C. Yee, D. Kotov and B. Sjogreen, Numerical Dissipation and Wrong Propagation Speed
of Discontinuities For Stiff Source Terms, Proceedings of the ASTRONUM-2011, June 13-17,
2011, Valencia, Spain.


