
Commun. Comput. Phys.
doi: 10.4208/cicp.190311.270112a

Vol. 12, No. 5, pp. 1520-1540
November 2012

System Reduction Using an LQR-Inspired Version

of Optimal Replacement Variables

Alex Solomonoff1,2,∗

1 Camberville Research Institute, Somerville, MA, USA.
2 Department of Mathematics, Hong Kong Baptist University, Kowloon Tong,
Hong Kong.

Received 19 March 2011; Accepted (in revised version) 27 January 2012

Communicated by Wei Cai

Available online 4 June 2012

Abstract. Optimal Replacement Variables (ORV) is a method for approximating a large
system of ODEs by one with fewer equations, while attempting to preserve the essen-
tial dynamics of a reduced set of variables of interest. An earlier version of ORV [1]
had some issues, including limited accuracy and in some rare cases, instability. Here
we present a new version of ORV, inspired by the linear quadratic regulator problem of
control theory, which provides better accuracy, a guarantee of stability and is in some
ways easier to use.

AMS subject classifications: 65M06, 65M30, 65M70

Key words: System reduction, optimal replacement variables, resolved variables, optimal predic-
tion.

1 Introduction

The problem studied in this paper is that of approximating a large system of ordinary
differential equations (ODEs) by one with a smaller number of equations.

This is desirable in many situations. For example, many partial differential equations,
when discretized into a system of ODEs, require millions of degrees of freedom (DOF)
to adequately approximate the dynamics. However, most of these DOF are usually of no
interest. Examples of such PDEs include weather simulations and many simulations of
fluid or aerodynamic flows. In the flow-around-an-aircraft example, an engineer would
be mainly interested in bulk features such as the total lift and drag, or average vorticity
as a function of time. A flow field detailed enough to actually resolve all of the dynamics
would not be needed in many situations. Examples of linear systems of interest include

∗Corresponding author. Email address: alex.solomonoff@yahoo.com (A. Solomonoff)

http://www.global-sci.com/ 1520 c©2012 Global-Science Press



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1521

the discretized versions of any linear PDE with complex geometry, such as heat flow in
electronic devices or structural dynamics of skyscrapers or aircraft. Calculating solutions
to these equations can require quite large amounts of computing resources, and a system
reduction method such as the one studied here has the potential to reduce the resources
required, or allow the fast solution of more complex problems.

The version of the problem studied here is a system of ODEs

zt=Fz=

(

F0 F1

F2 F3

)[

x

y

]

, t≥0, z=

[

x

y

]

. (1.1)

Only the case of linear systems of ODEs is considered here. Nonlinear ODEs are a topic
for future work.

The state vector z∈Rm+n is divided into a set of resolved variables x∈Rm that one
wants to observe or calculate, and a set of unresolved variables y∈Rn that one doesn’t
need to observe, but which the dynamics of the resolved variables x depend on. Further-
more, it may be that m≪n or even n infinite, in which case it will not be computationally
feasible to solve the full system of equations.

An overview of different approaches to the problem can be found in Givon, Kupfer-
man, Stuart [9]. One approach for system reduction has been developed by Chorin et
al. [5–7] and Chertock, Gottlieb & Solomonoff [8], which has been called the T-System or
Optimal Prediction.

Another approach, called Optimal Replacement Variables (ORV), see Solomonoff &
Don [1] attempts to find a low-dimensional replacement for the unresolved variables
such that the influence of the unresolved variables on the resolved ones is adequately
approximated by the replacement variables. This is the approach which the present paper
builds upon.

1.1 Other types of system reduction

There are several versions of the system reduction problem. We will call the one of this
paper, the Optimal Prediction Problem (OPP). Others are similar in flavor, but differ
enough in details that techniques used for one problem are of little use in another.

1.1.1 Control theory system reduction problem

The canonical control theory system is

xt=Ax+Bu, y=Cx, (1.2)

where u is a low-dimensional control input, y is a low-dimensional output and x is a
high-dimensional internal state, and the goal is to construct a low-dimensional system
that approximates the relation between the inputs and the outputs. Long-time behav-
ior is emphasized and initial conditions tend to be ignored. This problem is quite well
studied [15, 16].



1522 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

This control theory system reduction problem has the concept of control inputs, which
the problem of this paper lacks. In OPP, the initial conditions are the only inputs to the
problem. There are intriguing similarities between the two problems — the control theory
outputs look a lot like the resolved variables of the current problem. Nevertheless, I do
not know of any way of using the control theory techniques for OPP.

1.1.2 Proper orthogonal decomposition

This approach, due to Sirovich [13] makes the assumption that the system solution al-
ways lies close to some low-dimensional linear subspace of the phase space. It finds the
subspace by examining many values of the system solution, then projects the full system
onto the subspace. It requires that the low-dimensional-subspace assumption be valid. It
has no concept of resolved variables and attempts to approximate the entire system.

1.1.3 No-replacement-variables approach of Chorin’s T-system

Chorin’s T-System attacks a very similar problem to OPP, but attempts to approximate
the system using only the resolved variables. Since the unresolved variables clearly in-
fluence the resolved ones, this must be a limited approach.

The framework of Chorin’s T-System includes a probability distribution placed on
the initial conditions, and then only assumes that their resolved part is available. In-
stead of approximating the solution, the conditional expectation of the solution, given
only the resolved initial conditions is desired. But the unresolved variables influence the
expected-resolved variables as well.

1.2 Drawbacks of ORV

The version of ORV presented in [1] had some issues needing to be addressed:

1. It required the user to provide an approximate probability distribution for the so-
lution of the ODE on its phase space, and assumed that it was valid for all time. In
most cases the true probability varies with time, of course, but a crude approxima-
tion of it might very well be able to be time-invariant. Nevertheless, providing the
approximate probability is a burden on the user, and the fact that only a strange,
crude approximation is possible is unappealing.

2. Stability. The reduced system generated by the ORV technique was not guaranteed
to be stable, and in some rare cases it was slightly unstable. It would be desirable
to be able to guarantee the stability of the system.

3. Performance. In [1], ORV was examined using two test problems. In one problem
it gave more accurate dynamics than all the competing methods used, but on the
other, it was only able to equal the accuracy of the best competing method, and
that best competitor was quite simple. A method with better accuracy would be
desirable.



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1523

4. ORV requires that an error measure be minimized, and this is done numerically.
If the error measure has multiple local minima, the minimization can be quite dif-
ficult. In one of the two test problems used in [1], the error measure had no more
than a few minima, but in the other it had a great many, requiring a time-consuming
global minimization using multiple random starts. An error measure that had only
a single local minimum would be desirable.

This paper presents an improved version of ORV that addresses these problems.

2 ORV setup and framework

Most of the framework is borrowed from [1]. The goal of the project is approximation
of the system (1.1) with the unresolved variables replaced by a smaller set u∈Rk, k≪n,
approximately preserving the dynamics. The output of the ORV process is two matrices
G and R. The replacement variables u are related to the unresolved variables through R:

u≈uz=Ry, P=

(

I 0

0 R

)

, w=

[

x∗

u

]

≈wz=

[

x

Ry

]

=Pz. (2.1)

The matrix G defines a new, approximate system of ODEs

wt=Gw, w(t=0)=Pz0 (2.2)

and G and R are chosen in such a way as to optimally reproduce the resolved part of the
dynamics of (1.1). Note that G and R do not vary in time.

Define some ”subvector-extracting” matrices:

Jxz =
(

Im 0m×n

)

, Jxw =
(

Im 0m×k

)

, (2.3)

so for any appropriately-sized vectors x, y, x∗ and u,

Jxz

[

x

y

]

= x, Jxw

[

x∗

u

]

= x∗. (2.4)

The original error criterion in [1] was

eold=Ez‖PFz−GPz‖2, (2.5)

where Ez is expectation over the user-supplied, suitable-for-all-time probability density
on z. This needs to weigh the error in the dynamics of u even though we only care about
the accuracy of x. This is necessary because the dynamics of the replacement variables
have to be accurate before their influence on the resolved variables has any hope of being
correct.



1524 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

The probability density on z was assumed to be a zero-mean multivariable Gaussian
density, with the covariance matrix supplied by the user:

z∼N (0,Sold).

We now present a new, more natural dynamic error measure, inspired by the linear
quadratic regulator problem of control theory, (see, e.g., Kwakernaak and Sivan [10]):

e= enew=Ez0

(

∫ ∞

0
e−2αt‖Jxzz(t)− Jxww(t)‖2dt

)

, (2.6)

where z and w are defined in (1.1) and (2.2).

The expectation Ez0 is taken over a probability density on the initial conditions of z.
This is taken to be zero-mean and have a covariance matrix

E(z0zT
0 )=S=

(

S0 S1

ST
1 S3

)

, (2.7)

which is provided by the user. Two examples of user-provided covariance matrices are
given in the test problems in Section 6.

The error enew is exactly a weighted time-average of the error in the resolved variables.

The e−2αt weight is a way of telling the scheme you are not interested in the solution
far in the future. α≥0 is a user-chosen parameter, reflecting how far in the future the user
is interested in. α can be zero if desired.

In computations in this paper, α was usually chosen so that the temporal weight had
the same expected value as the mean of the time interval, i.e.,

∫ ∞

0
te−2αtdt

[

∫ ∞

0
e−2αtdt

]−1
=

1

2
t f inal −→ α=

1

t f inal
. (2.8)

Note that in the case of α=0, if F is a stable† matrix, then G must also be stable or else
enew =∞. Since enew is finite for any stable G, it follows that the G that minimizes enew is
guaranteed to be stable. If α>0 then only G−αI is guaranteed to be stable.

The probability density needs to be provided by the user, but it requires no intuition
about the dynamics of the system and does not require that a single density represent a
density that changes with time. One can argue that the initial density is legitimately part
of the problem definition. Some issues surrounding the probability density are presented
in the discussion section of [1].

We don’t actually need to assume z0 is Gaussian — the calculations only ever depend
on the covariance matrix. Any distribution having the same covariance would generate
the same reduced system. (This is true for the original version of ORV as well.)

†A matrix M is called stable if its eigenvalues all lie in the left half-plane, or equivalently, if limt→∞ eMt=0.



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1525

3 Reducing the error expression to something computable

The error, in the form of (2.6) with its expectation and integral in time, would be very
difficult to evaluate computationally. The next few sections derive an expression for the
error that is suitable for numerical computations.

Define

D=
(

Jxz −Jxw

)

, (3.1a)

H=

(

F 0

0 G

)

, Hα=H−αI=

(

F−αI 0

0 G−αI

)

, (3.1b)

Kvz=

[

I

P

]

, so that v=

[

z

w

]

=Kvzz. (3.1c)

Note the double partitioning of v:

v=









x
y
x∗
u









. (3.2)

Define the instantaneous error vector

d(t)≡ Jxzz(t)− Jxww(t)=DeHtKvzz0, (3.3a)

e−αtd(t)=DeHαtKvzz0. (3.3b)

The error for a given initial condition z0 is

e(z0)=
∫ ∞

0
e−2αt‖d(t)‖2dt=

∫ ∞

0
e−2αtzT

0 KT
vzeHTtDTDeHtKvzz0dt

=
∫ ∞

0
zT

0 KT
vzeHα

TtDTDeHαtKvzz0dt= zT
0 KT

vzQKvzz0, (3.4)

where

Q=
∫ ∞

0
eHα

Tt AeHαtdt, A=DTD. (3.5)

The expected error (2.6) is

e=Ez0

(

e(z0)
)

=E
(

zT
0 KT

vzQKvzz0

)

=tr(SKT
vzQKvz

)

= tr(KvsSKT
vzQ

)

=tr(SvQ), (3.6)

where

Sv=KvzSKT
vz=

(

S SPT

PS PSPT

)

. (3.7)



1526 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

Dependencies

• Sv and Kvz depend on R and not on G;

• H and Q depend on G and not R;

• D and A do not depend on either R or G;

• None of them depend on t.

4 Necessary tools and identities

This section presents various identities and tools which are used in the presentation of
the rest of the paper.

Notation

If M is any square matrix, we implicitly partition it 2×2 into submatrices and label the
submatrices in the following way:

M=

(

M0 M1

M2 M3

)

.

This applies both to named matrices and matrix-valued expressions, so (···)3 refers to
the lower-right submatrix of (···). This gives, for example

tr
(

SvQ
)

= tr(SQ0)+2tr(PSQ1)+tr(PSPTQ3).

In addition, since

w=

[

x∗

u

]

is partitioned, the matrix Q3 is also partitioned:

Q3=

(

Q30 Q31

QT
31 Q33

)

. (4.1)

Facts about the trace

Most of these can be found in Wikipedia [12]:

tr(M)≡∑
i

Mii (definition), (4.2a)

‖A‖2
F ≡∑

ij

A2
ij= tr(AT A)= tr(AAT), (4.2b)

tr(ABT)= tr(A0BT
0 )+tr(A1BT

1 )+tr(A2BT
2 )+tr(A3BT

3 ), (4.2c)

tr(AB)= tr(BA)= tr(ATBT)= tr(BT AT). (4.2d)



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1527

This is true for vectors too:

xT Ax= tr(xT Ax)= tr(AxxT), E(xT Ax)= tr
(

E(xxT)A
)

.

Matrix inner product:

〈A,B〉≡ tr(ABT)= tr(ATB)=∑
ij

AijBij

is the matrix analog of the vector inner product 〈a,b〉= aTb.

Trace and derivative

The following is key algebraic tool for later derivations: Let g(M) be a scalar-valued
function of a matrix. Note that the gradient ∇g(M) is a matrix. Write the directional
derivative of g(M), in the direction M′, as ∇M′g(M). This can be defined in a couple of
different ways:

∇M′g(M)=
∂

∂s
g(M+sM′)

∣

∣

∣

s=0
= 〈M′,∇g(M)〉= tr

(

(M′)T∇g
)

. (4.3)

Note that for fixed M′, ∇M′g(M) is a scalar. Also note that s is a dummy variable here —
the directional derivative does not depend on s.

Now if for every M′, ∇M′g(M) should happen to take the form

∇M′g(M)= tr
(

G(M)(M′)T
)

(4.4)

for some matrix-valued function G(M), then

G(M)=∇g(M). (4.5)

Moreover, if

M=

(

M0 M1

M2 M3

)

, then
dg

d(M3)kl
=
[

G3(M)
]

kl
, (4.6)

and we write

dg

d(M3)
=G3(M) (4.7)

to refer to every k, l at once.



1528 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

4.1 Lyapunov and Sylvester equations

This subsection presents some (mostly well-known, see for example Horn & Johnson [11])
results about the Lyapunov equation necessary for derivations later.

Consider the Sylvester equation

ATX+XB+C=0. (4.8)

The important special case of A = B is called the Lyapunov equation. It has some
special properties: if C is symmetric then X is also symmetric. Also, if C is positive
definite then X is positive definite if and only if A is stable — this is an important theorem
in control theory.

Define the linear matrix operator

LA,B(X)=−(ATX+XB), (4.9)

and then (4.8) is written as

LA,B(X)=C, X= L−1
A,B(C).

If A=B, then we write LA,A(X)=LA(X). If A and B are stable matrices then it can be
shown that

L−1
A,B(C)=

∫ ∞

0
eATtCeBtdt. (4.10)

Derivative of Lyapunov

Suppose A and C depend on some scalar parameter s and let ′ refer to the derivative with
respect to s. Then

(A′)TX+ATX′+X′A+XA′+C′=0, (4.11a)

LA(X
′)+LA′(X)=C′, (4.11b)

X′= L−1
A

(

C′−LA′(X)
)

. (4.11c)

Partitioned equations

Suppose A and B are block diagonal and C can be partitioned:

A=

(

A0 0

0 A3

)

, B=

(

B0 0

0 B3

)

, C=

(

C0 C1

C2 C3

)

.

Then Eq. (4.8) can be partitioned as

X=

(

L−1
A0,B0

(C0) L−1
A0,B3

(C1)

L−1
A3,B0

(C2) L−1
A3,B3

(C3)

)

. (4.12)



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1529

Numerical solution of the Sylvester equation

It can be shown that if M, N are two invertible matrices then (4.8) can be transformed as
follows:

L−1
A,B(C)=M−TL−1

M−1AM,N−1BN
(MTHN)N−1.

In particular, if A and B are diagonalizable then (4.8) can be transformed into a diagonal
form, or it can be transformed into a triangular form using a Schur decomposition of A
and B.

The standard algorithm for solving (4.8), due to Bartels and Stewart [2], reduces A and
B to (almost-) triangular form using a Schur decomposition, and then solves the triangu-
lar Sylvester equation directly, in a process somewhat analogous to the backsubstitution
process of solving a triangular linear system of equations. This is an O(n3) algorithm,
available in a number of computing environments, such as LAPACK and Matlab. Note
that the problem has O(n2) inputs, so the O(n3) operation count is unlikely to be im-
proved upon unless the matrices are structured.

Large sparse problems

Algorithms for solving large sparse Sylvester and Lyapunov equations exist, see [14, 15],
usually iterative methods involving Krylov subspace projections or the matrix sign func-
tion. They usually assume the solution is a matrix approximately of low rank.

While these methods can probably be applied to the present computations, the Lya-
punov equations are only part of the computation of the reduced system, and so extend-
ing the current work to large sparse problems is far outside the scope of this paper.

5 The computable error function, part II

The goal is to find matrices G and R that minimize the error e. This requires a numerical
minimization process, and so e and its gradient with respect to G and R need to be easily
computable. Start with the computation of e:

The matrix Q is the solution of the Lyapunov equation

Q= L−1
Hα
(A), (5.1)

where Hα is defined by Eq. (3.1b). The error is then computed by

e= tr
(

SvQ
)

= tr(SQ0)+2tr(PSQ1)+tr(PSPTQ3). (5.2)

Computing the gradient of e is slightly more complex. Let Q′=∇Hα
′Q be the deriva-

tive of Q with respect to Hα in a (any) direction Hα
′. In a minimization procedure, F and

α are fixed, so the only part of Hα we are interested in varying is G,

Hα
′=

(

0 0

0 G′

)

(5.3)



1530 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

so essentially differentiation with respect to Hα and G are the same. Then,

∇G′e=tr
(

SvQ′
)

=−tr
(

SvL−1
Hα

(

LH′
α
(Q)

))

=tr
(

SvL−1
Hα
(Hα

′TQ+QHα
′)
)

=tr
(

Sv

∫ ∞

0
eHα

Tt(Hα
′TQ+QHα

′)eHαtdt
)

=2tr
(

Sv

∫ ∞

0
eHα

TtQHα
′eHαtdt

)

=2tr
(

Hα
′
∫ ∞

0
eHαtSveHα

TtdtQ
)

=2tr
(

Hα
′L−1

Hα
T(Sv)Q

)

. (5.4)

Define

Z= L−1
Hα

T(Sv), (5.5)

and then

∂e

∂G
=2tr

(

Hα
′(QZ)T)=2

(

QZ
)

3
=2
(

QT
1 Z1+Q3Z3). (5.6)

Note that Z and Q are symmetric matrices. If Hα is stable, then in addition Z is positive
definite and Q is at least positive semidefinite.

5.1 Computing the optimal R

Recall that

e= tr(SQ0)+tr(2PSQ1+PSPTQ3).

Since for optimization, R is the only part of P that varies, perturbations in P and R are
related:

P′=
∂P

∂R
=

(

0 0

0 R′

)

, (5.7)

and then one has

1

2

∂e

∂R
= tr(P′SQ1)+tr(P′SPTQ3)=

(

SQ1+SPTQ3

)

3
. (5.8)

Note that for any suitably-sized matrix or matrix-valued expression M, M3 is the subma-
trix of M corresponding to R in P.

Recall that S, Q1, and Q3 are all partitioned matrices, so (5.8) can be written as

1

2

∂e

∂R
=

((

S0 S1

ST
1 S3

)(

Q10 Q11

Q12 Q13

)

+

(

S0 S1

ST
1 S3

)(

I 0

0 RT

)(

Q30 Q31

QT
31 Q33

))

3

=ST
1 Q11+S3Q13+ST

1 Q31+S3RTQ33. (5.9)



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1531

Then ∂e/∂R=0 gives the optimal R for a given G,

R∗=argmin
R

e(R,G)=−Q−1
33

(

QT
13+(QT

11+QT
31)S1S−1

3

)

. (5.10)

Note that A3 is only positive semidefinite, so Q3 and Q33 are only guaranteed to be posi-
tive semidefinite and Q33 is not guaranteed to be invertible or well-conditioned.

We can easily compute R∗ for any G and then take

e(G)= e
(

G,R∗(G)
)

.

The derivative of e would seem to have to take the variation of R with G into account:

de

dG
=

∂e

∂G
+

∂e

∂R

∂R

∂G
(5.11)

but with this choice of R=R∗, ∂e/∂R=0 and the second term is zero.

Calculating e and e′

The error e and its gradient de/dG are calculated as follows:

First a preprocessing step:

1. Compute the Schur decomposition of F: F=UTUT.

2. Calculate Q0 using U, T and the Bartels-Stewart (B-S) algorithm.

3. Calculate e0= tr(SQ0).

Then for each G,

1. Compute the Schur decomposition of G: G=VWVT .

2. Calculate Q1 and Q3 using U, T, V, W, the B-S algorithm and (5.1).

3. Calculate the optimum R using Q1 and Q3 and (5.10).

4. Calculate e using e0, Q1, Q3, R, and Eq. (5.2).

5. Calculate Z1 and Z3 using R, U, T, V, W, the B-S algorithm, and (5.5).

6. Calculate ∂e/∂G using Eq. (5.6).

6 Numerical results

All computations were done using Octave [4], an open-source Matlab-like software, ex-
cept the error e(G) was minimized using the NLopt [3] numerical minimization package.

In order to get a full picture of the performance of the ORV system, we compare it to
various competing systems on two different test problems:



1532 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

6.1 Test problems

6.1.1 Random-matrix ODE

A linear system of ODEs zt=Fz, where F is a random (neutrally) stable matrix. Its entries
are IID 0-1 Gaussian random numbers. It is stabilized by computing its eigenvalues and
adding the multiple of the identity that just makes the matrix stable. Initial conditions
are an IID 0-1 Gaussian random vector, i.e., S= I.

For readers wishing to duplicate this ODE in their own computations, the details of
which random numbers were used are described in Appendix A.

Properties of the Random-matrix problem:

1. No special qualities; less likely to have anomalously good or bad results than other
single problems.

2. The different modes are strongly coupled.

3. It is neither strongly damped nor strongly stable.

4. There is no simple way (that I know of) of constructing a good set of replacement
variables.

Single random problem vs. ensemble

One can argue that good results on a single random matrix problem might just be luck,
and to be sure, we should test an ensemble of random matrix problems and compute
average error, max error, etc.

This is a valid (and demanding) position, but not unassailable. One could make the
same objection to any single system of ODEs, especially one that had a free parameter
that could be varied.

The opposite position also seems valid, that an ODE system constructed from the
output of a (pseudo-) random number generator is just as valid a single example as any
other. My intuition is that this random matrix problem is less likely to have anomalously
good or bad performance than other systems of ODEs.

6.1.2 Cosine transform of the variable-coefficient heat equation

The expressions

ut=
(

2+cos(x)
)

uxx, with u(x,t)=
∞

∑
k=0

uk(t)cos(kx).

The cosine expansion of the solution implies periodic boundary conditions, a domain of
length 2π, and a solution that is even about x=0 for all time.

The PDE can be converted into the (infinite) tridiagonal system of ODEs

d

dt
uk =−

1

2
(k−1)2uk−1−2k2uk−

1

2
(k+1)2uk+1. (6.1)



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1533

This infinite system is truncated at a fixed number m+n of equations. The truncation
is in the Galerkin manner, by forcing uk=0, ∀k≥n+m. Initial coefficients are independent
zero-mean Gaussian random numbers with variance

Sij =δijγ
j, (6.2)

with 0<γ<1 a user-settable parameter. The exponential decay of Sii corresponds to the
assumption that the initial conditions u(x,t = 0) is a smooth function, (analytic in fact)
and faster decay with respect to j corresponds to greater smoothness.

Properties of the heat-equation problem:

1. The high modes are strongly damped, and the system is somewhat stiff.

2. Different modes are somewhat weakly coupled.

3. Has a simple way of constructing good replacement variables.

4. Of special interest because of its physical origin.

6.2 Competing systems

1. Galerkin:

xt =F0x, (6.3)

where F0 is as defined in Eq. (1.1).

2. The m+k scheme: G=F(1:m+k,1:m+k), that is, G is the square principal submatrix
of F of size m+k. This amounts to a very simplistic way of picking replacement
variables.

Note that for the random matrix problem, this choice of replacement variables has
no special properties and can be thought of as randomly selected. Later we will see
that they provide little improvement in accuracy over the Galerkin method.

But in the heat equation problem, these replacement variables are the next k Fourier
coefficients in the expansion of the solution. Because the solution is a smooth func-
tion, and the matrix F is not too far away from diagonal, they are a very good choice
of replacement variable. In fact, for this problem, they equal the performance of the
original ORV method. In [1] this was presented as ”Equalling the performance of
a strong competitor is not too bad, especially for a new technique”, but improving
on this mediocre result is one reason this new version of ORV was developed.

3. The T-System of Chorin et al. [6, 7] and Gottlieb [8]:

xt=F0x+tF1F2x. (6.4)

4. The original ORV scheme from [1].



1534 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

5. First Order Optimal Prediction (FOOP). This is just

xt=E
(

F0x+F1y|x
)

=F0x+F1E(y|x) (6.5)

with the expectation taken with respect to the distribution on the initial conditions.
For both test problems x and y are independent under their initial distribution, so
this reduces to the Galerkin method.

A related technique was used as a competitor in [1], in which a probability distri-
bution for the exact solution was integrated in time and then averaged over the
integration time interval. Under this distribution x and y are not usually indepen-
dent. This distribution can be used to create a nontrivial FOOP-like competitor.
But, in [1], it was found to work only about as well as Galerkin.

Because of this poor performance, and because the plots of system performance are
already somewhat crowded, this technique is not chosen as a competitor.

Recall that (m,n,k)= the number of resolved, unresolved and replacement variables,
respectively. The curve labeled ”Resolved Norm” is the l2-norm of the resolved part of
the exact solution. The errors shown are all l2-norm of the resolved part of the error, and
are absolute errors rather than relative errors.

Performance on the random matrix problem

Fig. 1 shows the error of the new ORV scheme on the random matrix problem, along with
the competing schemes. The new ORV scheme achieves about 1 extra digit of accuracy
over the original ORV scheme. The Galerkin and m+k schemes both have O(1) error. The
T-System has O(1) error even for small times, and is unstable. Instability is a weakness
the T-System sometimes exhibits.

Performance on the heat equation

Fig. 2 shows the error of the new ORV scheme on the heat equation. In this case the
original ORV scheme and the m+k scheme both are about 1.5 digits more accurate than
Galerkin, and the new ORV scheme is about 1.5 digits more accurate than that. The
new ORV scheme is more accurate than all of the competitors presented on these two
problems.

Stability of the reduced dynamics

Recall that only Gα =G−αI is guaranteed stable, and G itself might not be stable. How-
ever given the stability of Gα, one can show fairly easily that there is a norm ‖·‖∗ such
that

‖w(t)‖∗≤ eαt‖w(t=0)‖∗ . (6.6)



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1535

0.1

1

0 0.5 1 1.5 2

 e
rr

or

 time

resolved norm
t-system

Galerkin error
m+k

old ORV error
new ORV error

Figure 1: l2 error of the resolved variables on
log scale vs time for the Random Matrix Problem.
(m,n,k)=(10,80,12), α=0.5.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0 0.5 1 1.5 2

 e
rr

or

 time

resolved norm
t-system

Galerkin error
m+k

old ORV error
new ORV error

Figure 2: L2 error of the resolved variables on log
scale vs. time on the Heat Equation (6.1), (m,n,k)=
(4,24,2), α=0.5, γ=0.8.

-0.2

-0.15

-0.1

-0.05

0

4 5 6 7 8 9 10

 s
ta

bi
lit

y 
m

ar
gi

n

 k

α=1.0
α=0.5

α=0.25

Figure 3: Stability Margin of the reduced system
matrix G for different choices of k and α. Random
matrix problem, (m,n)=(4,16).

0.1

1

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 e
rr

or

 time

resolved norm
α=0.125

α=0.25
α=0.4

α=1
α=2

Figure 4: L2 error of the resolved variables on log
scale vs. time for different values of the time decay
parameter α. Random matrix problem, (m,n,k) =
(4,20,4), α=0.5.

0.01

0.1

1

0 0.5 1 1.5 2

 e
rr

or

 time

resolved norm
t-system

Galerkin error
m+k

old ORV error
new ORV error

Figure 5: L2 error of the resolved variables on log
scale vs. the expected solution, for the random ma-
trix problem, (m,n,k)=(5,30,5), α=1/2.

10-4

10-3

10-2

10-1

100

5 10 15 20

er
ro

r

k

Solution norm
Galerkin error

old ORV
new ORV

Figure 6: Error for the random matrix problem,
as k, the number of replacement variables changes.
(m,n)=(5,30), α=1/2.



1536 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

If we take α=1/t f inal then we have for all t≤ t f inal

‖w(t)‖∗≤ e‖w(t=0)‖∗ , (6.7)

which seems quite satisfactory.
Fig. 3 shows the stability margin of G, i.e., the real part of the rightmost eigenvalue of

the reduced system matrix G, for several values of α and k (the number of replacement
variables). We find that G is stable for all the test cases, even when α>0. If G were found
to be unstable for some problem, it could always be stabilized by reducing α, to zero if
necessary.

Note that the random matrix problem tested here is neutrally stable, and so it is a
hard test for the stability of a reduced system.

Influence of the time decay parameter α

Fig. 4 shows the error of the new ORV scheme on the random matrix problem, using
several different values of the time decay parameter α. Increasing α tells the scheme it
should improve accuracy for t small and allow larger errors for t large. The figure shows
exactly this behavior.

Error compared to the expected solution

None of these schemes approximating Eq. (1.1) are able to make use of all of the informa-
tion in the initial conditions. The ORV and m+k schemes use only part of the information
in the unresolved initial conditions, and the Galerkin and T-System schemes do not use
any unresolved initial data at all. So an arguably fairer way to test the accuracy of the
different schemes is to compare them to the expected solution

zexp(t)=Ez0

(

z(t)|x(t=0)
)

= eFtE(z0|x0). (6.8)

In the case of S a diagonal matrix, which is the case for both test problems,

ẑ0=E(z0|x0)=

[

x0

0

]

. (6.9)

The vector ẑ0 was used as the initial conditions for both the exact solution and all of the
approximation schemes.

Fig. 5 shows this version of the error for the ORV scheme and competitors. The results
are somewhat similar to Fig. 1. The biggest difference is that the T-System gives good
accuracy for small times, which it does not do when compared to the true solution. This
is expected, since it is designed specifically to approximate the expected solution. Also
the m+k and Galerkin schemes also give a little bit of accuracy for small times, which
they do not do when compared to the true solution.

An interesting property of the expected solution is that since it doesn’t depend on y0,
the ORV approximation of it does not use the matrix R.



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1537

6.2.1 Convergence with respect to k

Fig. 6 shows the decay of the solution error for the random matrix problem, as the number
of replacement variables increases. The error of the new ORV method is better than the
old ORV method for all k, and the error decays more rapidly as k increases. The error
displayed is integrated over time, i.e.,

error2=
∫ Tf inal

0

m

∑
i=1

(

xi(t)−(x∗)i(t)
)2

dt. (6.10)

Multiple local minima

The original version of ORV [1] used an error measure that sometimes had many local
minima, which greatly complicates any numerical minimization process. Not so for this
new version of ORV. Its error measure seems to have only a single minima.

This was investigated by computing the minimum many times, initializing the min-
imization software with a different random starting vector each time. In every case, it
converged to the same solution.

This is a welcome result, but I cannot prove that the local minima is always unique,
or even provide any motivation why might be so.

7 Discussion and conclusions

This paper builds upon the ORV method presented in [1] by introducing a new, more nat-
ural criterion for the dynamic accuracy of a reduced system, and develops the machinery
necessary to optimize the new criterion. The resulting new reduced system works well,
at least on the problems it has been tested against:

1. The new ORV scheme achieves better accuracy than the original version. In the case
of the heat equation, it has better accuracy than both the original ORV and the m+k
schemes. The original version of ORV could only equal the accuracy of m+k.

2. It has guaranteed stability, at least in the α=0 case.

3. It does not require the user provide a suitable-for-all-time probability density on
the phase space.

4. The associated minimization problem has a unique local minimum.

Note that the last two points make the new ORV scheme easier to use.

This new version of ORV fixes many of the issues of the original ORV, but has some
possibly-limiting qualities of its own:

1. It is probably more difficult to extend this version of ORV to nonlinear problems.



1538 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

2. Evaluating the error function and its gradient is more complex than for the original
ORV. Not necessarily in the sense of the amount of CPU time required, but in the
sense of the number of equations and amount of software required. This may make
it harder to generalize or extend.

Appendix

A Initializing the random matrix problem

Computations were done using version 3.0.1 of Octave and version 9.04 of Ubuntu Linux.
Octave’s random number generator was seeded with a constant value to insure the same
problem was always used. Essentially the following code was used to generate the ran-
dom matrix problem:

function [F, x0] = init_randprob(nm)

randn("seed", 42);

F0 = randn(nm,nm);

r = max(real(eig(F0)));

F = F0 - r\asteye(columns(F0))

x0 = randn(nm, 1)

endfunction

and the function call

[F, x0] = init_randprob(2);

should produce the output:

F = 0.13721 -0.12000

0.22221 -0.13721

x0 = 1.8949

-1.4611

Versions 3.0.5 and 3.2.3 of Octave were found to generate the same numbers.

B Near-simultaneous zero crossings

Suppose u(t) is a vector-valued function of time with m components and u∗(t) is an ap-
proximation of it. In many cases the difference components di(t) = ui(t)−(u∗)i(t) will
oscillate about zero. If most or all of the components happen to cross zero at almost the
same time, the error e(t)= ‖u(t)−u∗(t)‖ will have a momentary sharp drop, which we
name a near-simultaneous zero-crossing (NSZC). If m=1 then this must happen repeat-
edly, but it is actually not unusual for it to happen (with smaller reductions in error) even
if m=2 or 3 or even more.



A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540 1539

One can support this with a crude Monte-Carlo simulation.

NSZC are observed to happen in Fig. 2 near t=0.1 with m=4 and a momentary error
drop of 30x and in Fig. 5 near t=0.2 with m=5 with a momentary drop of about 3x.

Notes:

1. NSCZ is not unique to the ORV approximation of an ODE. The author has observed
it to happen with the m+k approximation and the old ORV method as well.

2. If m= 4, then large drops in error are unlikely, but if most of the components are
tiny, and (say) 2 are larger, then effectively m = 2. This is the case with the heat
equation, and a 30x drop with m=2 is not surprising.

3. A large momentary drop in error with m=5 is unlikely, but the error drop in Fig. 5
is only 3x, and that size of error drop can happen with m=5.

Acknowledgments

The author acknowledges the support of this work under RGC grant HKBU 200910, and
appreciates the hospitality of the Department of Mathematics at Hong Kong Baptist Uni-
versity during his visits. He also appreciates the hospitality and useful discussions of his
host, Professor Wai Sun Don.

References

[1] A. Solomonoff and Wai Sun Don, Reduction of linear systems of ODES with optimal replace-
ment variables, Commun. Comput. Phys., 9 (2011), 756–779.

[2] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX+XB = C, Commun.
ACM, 15(9) (1972), 820–826.

[3] Steven G. Johnson, The NLopt nonlinear-optimization package, ab-initio.mit.edu/nlopt.
[4] John W. Eaton, GNU Octave Manual, Network Theory Limited, 2002, ISBN=0-9541617-2-6,

also www.octave.org.
[5] A. Chorin, O. H. Hald and R. Kupferman, Optimal prediction with memory, Phys. D, 166

(2002), 239–257.
[6] A. Chorin and P. Stinis, Problem reduction, renormalization and memory, Commun. Appl.

Math. Comput. Sci., 1(1) (2005), 1–27.
[7] A. J. Chorin and O. H. Hald, Stochastic Tools in Mathematics and Science, Springer, 2006
[8] A. Chertock, D. Gottlieb and A. Solomonoff, Modified optimal prediction and its application

to a particle-method problem, J. Sci. Comput., 37 (2008), 189–201.
[9] D. Givon, R. Kupferman and A. Stuart, Extracting macroscopic dynamics: model problems

and algorithms, Nonlinearity, 17(6) (2004), R55–R127, MR 2097022.
[10] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, 1972.
[11] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.
[12] Wikipedia contributors, Trace (linear algebra), Wikipedia, the free encyclopedia.
[13] L. Sirovich, Analysis of turbulent flows by means of the empirical eigenfunctions, Fluid Dyn.

Res., 8 (1991), 85–100.



1540 A. Solomonoff / Commun. Comput. Phys., 12 (2012), pp. 1520-1540

[14] J. Brandts, A comparison of subspace methods for sylvester equations, preprint No. 1183,
Universiteit Utrecht Mathematics Institute, 2001.

[15] P. Benner, E. S. Quintana-Orti, G. Quintana-Orti, Efficient numerical algorithms for balanced
stochastic truncation, 2001, see also http://matwbn.icm.edu.pl/ksiazki/amc/amc11/amc1

156.pdf.
[16] A. Antoulas, D. Sorensen, K. A. Gallivan, P. Van Dooren, A. Grama, C. Hoffman and A.

Sameh, Model Reduction of Large-Scale Dynamical Systems, Computational Science-ICCS
2004, 4th International Conference, Kraków, Poland, June 6-9, 2004, Proceedings, Part III, M.
Bubak, G. Dick van Albada, P. M. A. Sloot and J. Dongarra, eds., Lecture Notes in Computer
Science, 3038 (2004), 740–747.


