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Abstract. In this article, we present two new novel finite difference approximations
of order two and four, respectively, for the three dimensional non-linear triharmonic
partial differential equations on a compact stencil where the values of u, ∂2u/∂n2 and
∂4u/∂n4 are prescribed on the boundary. We introduce new ideas to handle the bound-
ary conditions and there is no need to discretize the derivative boundary conditions.
We require only 7- and 19-grid points on the compact cell for the second and fourth
order approximation, respectively. The Laplacian and the biharmonic of the solution
are obtained as by-product of the methods. We require only system of three equations
to obtain the solution. Numerical results are provided to illustrate the usefulness of
the proposed methods.
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1 Introduction

We are concerned with the numerical solution of three dimensional non-linear trihar-
monic partial differential equation of the form:
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∇6u(x,y,z)

≡∂6u

∂x6
+

∂6u

∂y6
+

∂6u

∂z6
+6

∂6u

∂x2∂y2∂z2
+3

( ∂6u

∂x4∂y2
+

∂6u

∂x2∂y4

+
∂6u

∂z4∂y2
+

∂6u

∂z2∂y4
+

∂6u

∂x4∂z2
+

∂6u

∂x2∂z4

)

= f (x,y,z,u,ux,uy,uz,∇2u,∇2ux,∇2uy,∇2uz,∇4u,∇4ux,∇4uy,∇4uz), (x,y,z)∈Ω, (1.1)

where Ω={(x,y,z)|0< x,y,z<1} is the solution region with boundary ∂Ω and

∇2u≡ ∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
and ∇4u≡ ∂4u

∂x4
+

∂4u

∂y4
+

∂4u

∂z4
+2

( ∂4u

∂x2∂y2
+

∂4u

∂z2∂y2
+

∂4u

∂x2∂z2

)

represent the three dimensional Laplacian and biharmonic of the function u(x,y,z). We
assume that the solution u(x,y,z) is smooth enough to maintain the order of accuracy as
high as possible of the finite difference schemes under consideration.

The values of

u,
∂2u

∂n2
and

∂4u

∂n4
are prescribed on the boundary ∂Ω. (1.2)

The boundary conditions prescribed by (1.2) are called second kind boundary conditions.
Since the grid lines are parallel to coordinate axes, we assume that the boundary values
prescribed by (1.2) must satisfy the consistency conditions at all twelve edges and eight
corner points of the boundary ∂Ω, i.e., uxx =uyy =uzz and uxxxx =uyyyy =uzzzz at all cor-
ner points, uxx = uyy and uxxxx = uyyyy at all points on the lines parallel to z-axis, ···,
etc. The triharmonic equation is a sixth order elliptic partial differential equation which
is encountered in viscous flow problems. Not many researchers have tried to solve the
triharmonic equations, because it is difficult to discretize the differential equations and
boundary conditions on a compact cell and moreover triharmonic problems require large
computing power and place huge amount of memory requirements on the computa-
tional systems. Such computing power has only recently begun to become available for
academic research. Different techniques for the numerical solution of the 2D non-linear
biharmonic and 3D non-linear biharmonic equations have been considered in the liter-
ature, but not for the 3D non-linear triharmonic equations. A popular technique is to
split the biharmonic equation into two coupled Poisson equations each of which may
be discretized using the standard approximations and solving using any of the Poisson
solvers. Difficulty with this approach is that the boundary conditions for the new variable
are undefined and need to be approximated at the boundary. Smith [1] and Ehrlich [2, 3]
have solved 2D biharmonic equations using coupled second order accurate finite differ-
ence approximations. Bauer and Riess [4] have used block iterative method to solve the
equation. Later, Kwon et al. [5], Stephenson [6], Evans and Mohanty [7], Mohanty et
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al. [8–11] have developed certain second- and fourth-order finite difference approxima-
tions for the biharmonic problems using 9-point compact cell. The compact approach
involves discretizing the biharmonic equations using not just the grid values of the un-
known solution u but also the values of the derivatives uxx, uyy and uzz at the selected
grid points. For 2D and 3D problems, the aforesaid researchers have solved three and
four system of equations to obtain the values of u, uxx, uyy and u,uxx, uyy, uzz, respec-
tively. Fourth order compact finite difference schemes have become quite popular as
against the other lower order accurate schemes which require high mesh refinement and
hence are computationally inefficient. On the other hand, the higher order accuracy of the
fourth order compact methods combined with the compactness of the difference stencil
yields highly accurate numerical solutions on relatively coarser grids with greater com-
putational efficiency. Using 19-point compact cell Jain et al. [12] have derived compact
fourth order method for the solution of three dimensional nonlinear elliptic boundary
value problems and obtained convergent solution. Later, using off-step discretization,
Mohanty and Singh [13] discussed compact fourth order method for three dimensional
singularly perturbed non-linear elliptic equations. In the recent past many well known
researchers like Spotz and Carey [14], Li et al. [15], Tian et al. [16–18], Erturk and Gok-
col [19] have proposed compact fourth order schemes for the solution of nonlinear fluid
dynamics problems. A conventional approach for solving the 3D triharmonic equation
is to discretize the differential equation (1.1) on a uniform grid using 343-point approx-
imations with truncation error of order h2. This approximation connects the values of
central point in terms of 342 neighbouring values of u in 7×7×7 grid. We note that the
central value of u is connected to grid points three grids away in each direction from the
central point and the difference approximations needs to be modified at grid points near
the boundaries. There are serious computational difficulties with solution of the linear
and non-linear systems obtained through 343-point discretization of the 3D triharmonic
equation. Approximations using compact cells avoid these difficulties. The compact ap-
proach involves discretizing the biharmonic equations using not just the grid values of
the unknown solution u but also the values of the derivatives uxx and uyy at selected grid
points (see Mohanty et al. [8]). Recently, Singh et al. [20], Khattar et al. [21] and Mohanty
et al. [22–24] have developed single-cell compact finite-difference discretization of order
two and four for multi dimensional biharmonic and triharmonic problems.

In this article, we split the differential equation into system of three Poisson equations
and introduce new ideas to handle boundary conditions without discretizing them in the
system of equations. The present work is the extension of the work of 2D biharmonic and
triharmonic problems described in [23, 24]. Further, using 19-point and 7-point compact
cell (see Fig. 1), Mohanty [22] has discussed fourth and second order approximations for
the triharmonic equation ∇6u = f (x,y,z), which is a particular case of (1.1) and linear
in nature; whereas in this paper, using the same 19-point and 7-point compact cell we
discuss fourth and second order approximations for the nonlinear triharmonic equation
(1.1). The given second kind boundary conditions are exactly satisfied and no approx-
imations for derivatives need to be carried out at the boundaries. The proposed new
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Figure 1: 19-point 3D single computational cell.

technique is not applicable to the triharmonic problem of first kind. Using this approach,
we cannot obtain 19-point compact cell (see Fig. 1) fourth order approximations for the
triharmonic problem of first kind. In next section, we discuss the finite difference approx-
imation for the nonlinear triharmonic equations (1.1). In Section 3, we give the complete
derivation of the method. In Section 4, we have discussed the stability analysis and illus-
trated the methods and their convergence by solving two problems. Concluding remarks
are given in Section 5.

2 Three-dimensional discretization

Consider a three-dimensional uniform grid centred at the point (xl,ym,zn), where h> 0
is the constant mesh length in x-, y- and z- directions and xl = lh, ym = mh, zn = nh,
l,m,n= 0,1,2,··· ,N with (N+1)h= 1. Let Ul,m,nand ul,m,n be the exact and approximate
solution values of u(x,y,z) at the grid point (xl,ym,zn), respectively.

The second kind boundary conditions are given by (1.2). Since the grid lines are paral-
lel to coordinate axes and the values of u are exactly known on the boundary, this implies,
the successive tangential partial derivatives of u are known exactly on the boundary. For
example, on the plane y = 0, the values of u(x,0,z) and uyy(x,0,z) are known, i.e., the
values of ux(x,0,z), uz(x,0,z), uxx(x,0,z), uzz(x,0,z), ··· , etc. are known on the plane y=0.
This implies, the values of u, ∇2u≡uxx+uyy+uzz and ∇4u≡uxxxx+uyyyy+uzzzz+2(uxxyy+
uyyzz+uzzxx) are known on the plane y= 0. Similarly the values of u, ∇2u and ∇4u are
known on all plane sides of the cubic region Ω.

Thus, the second kind boundary conditions (1.2) may be replaced by

u= g1(x,y,z), ∇2u= g2(x,y,z), ∇4u= g3(x,y,z), (x,y,z)∈∂Ω. (2.1)
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Let us denote ∇2u= v, ∇2v=w. Then we can re-write the differential equation (1.1)
in a system of three Poisson equations of the form:

∇2u(x,y,z)≡ ∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=v(x,y,z), (x,y,z)∈Ω, (2.2a)

∇2v(x,y,z)≡ ∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
=w(x,y,z), (x,y,z)∈Ω, (2.2b)

∇2w(x,y,z)≡ ∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

= f (x,y,z,u,v,w,ux,vx,wx,uy,vy,wy,uz,vz,wz), (x,y,z)∈Ω, (2.2c)

and the Dirichlet type boundary conditions (2.1) may be re-written as

u= g1(x,y,z), v= g2(x,y,z), w= g3(x,y,z), (x,y,z)∈∂Ω. (2.3)

We assume that

f (x,y,z,u,v,w,ux,vx,wx,uy,vy,wy,uz,vz,wz) is continuous, (2.4a)

∂ f

∂s
,

∂ f

∂sx
,

∂ f

∂sy
,

∂ f

∂sz
exist and are continuous; s=u,v,w, (2.4b)

∂ f

∂s
≥0, s=u,v,w, (2.4c)

∣

∣

∣

∂ f

∂sx

∣

∣

∣
≤K,

∣

∣

∣

∂ f

∂sy

∣

∣

∣
≤K,

∣

∣

∣

∂ f

∂sz

∣

∣

∣
≤K, s=u,v,w, (2.4d)

where K is a positive constants. These conditions are must for the convergent solution
(see [12, 13]). In addition for a meaningful fourth order approximation, we assume that
u(x,y,z) is sufficiently differentiable (at least u∈C10) as high order as possible.

Let at the grid points (xl ,ym,zn), the exact and approximate solution values of v(x,y,z)
and w(x,y,z) be denoted as Vl,m,n, Wl,m,n and vl,m,n, wl,m,n, respectively.

In order to obtain fourth order approximations on the 19-point compact cell for the
system of non-linear differential equations (2.2a)-(2.2c), for S=U,V,W, let

Sxl,m,n=
1

2h
(Sl+1,m,n−Sl−1,m,n), Syl,m,n=

1

2h
(Sl,m+1,n−Sl,m−1,n), (2.5a)

Szl,m,n=
1

2h
(Sl,m,n+1−Sl,m,n−1), Sxl±1,m,n=

1

2h
(±3Sl±1,m,n∓4Sl,m,n±Sl∓1,m,n), (2.5b)

Sxl,m±1,n=
1

2h
(Sl+1,m±1,n−Sl−1,m±1,n), Sxl,m,n±1=

1

2h
(Sl+1,m,n±1−Sl−1,m,n±1), (2.5c)

Syl±1,m,n=
1

2h
(Sl±1,m+1,n−Sl±1,m−1,n), Syl,m±1,n=

1

2h
(±3Sl,m±1,n∓4Sl,m,n±Sl,m∓1,n), (2.5d)

Syl,m,n±1=
1

2h
(Sl,m+1,n±1−Sl,m−1,n±1), Szl±1,m,n=

1

2h
(Sl±1,m,n+1−Sl±1,m,n−1), (2.5e)

Szl,m±1,n=
1

2h
(Sl,m±1,n+1−Sl,m±1,n−1), Szl,m,n±1=

1

2h
(±3Sl,m,n±1∓4Sl,m,n±Sl,m,n∓1), (2.5f)
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Sxxl,m±1,n=
1

h2
(Sl+1,m±1,n−2Sl,m±1,n+Sl−1,m±1,n), (2.5g)

Sxxl,m,n±1=
1

h2
(Sl+1,m,n±1−2Sl,m,n±1+Sl−1,m,n±1), (2.5h)

Syyl±1,m,n=
1

h2
(Sl±1,m+1,n−2Sl±1,m,n+Sl±1,m−1,n), (2.5i)

Syyl,m,n±1=
1

h2
(Sl,m+1,n±1−2Sl,m,n±1+Sl,m−1,n±1), (2.5j)

Szzl±1,m,n=
1

h2
(Sl±1,m,n+1−2Sl±1,m,n+Sl±1,m,n−1), (2.5k)

Szzl,m±1,n=
1

h2
(Sl,m±1,n+1−2Sl,m±1,n+Sl,m±1,n−1). (2.5l)

Now we define the approximation:

Fl±1,m,n= f (xl±1,ym,zn,Ul±1,m,n,Vl±1,m,n,Wl±1,m,n,Uxl±1,m,n,Vxl±1,m,n,Wxl±1,m,n,

Uyl±1,m,n
,Vyl±1,m,n

,Wyl±1,m,n
,Uzl±1,m,n,Vzl±1,m,n,Wzl±1,m,n). (2.6)

Similarly, we can define the approximations Fl,m±1,n and Fl,m,n±1, respectively.

Further, we define

Uxl,m,n=Uxl,m,n−
h

12
(Vl+1,m,n−Vl−1,m,n)+

h

12
(Uyyl+1,m,n

−Uyyl−1,m,n
)

+
h

12
(Uzzl+1,m,n−Uzzl−1,m,n), (2.7a)

Vxl,m,n=Vxl,m,n−
h

12
(Wl+1,m,n−Wl−1,m,n)+

h

12
(Vyyl+1,m,n

−Vyyl−1,m,n
)

+
h

12
(Vzzl+1,m,n−Vzzl−1,m,n), (2.7b)

Wxl,m,n=Wxl,m,n−
h

12
(Fl+1,m,n−Fl−1,m,n)+

h

12
(Wyyl+1,m,n

−Wyyl−1,m,n
)

+
h

12
(Wzzl+1,m,n−Wzzl−1,m,n). (2.7c)

Similarly replacing the variable x by y and z and interchanging the subscripts (l±1,m,n)
by (l,m±1,n) and (l,m,n±1), respectively, in (2.7a)-(2.7c), we can define the approxima-

tions for Uyl,m,n, Vyl,m,n, Wyl,m,n and Uzl,m,n, Vzl,m,n, Wzl,m,n, respectively.

Finally, let

Fl,m,n= f (xl ,ym,zn,Ul,m,n,Vl,m,n,Wl,m,n,Uxl,m,n,Vxl,m,n,Wxl,m,n,

Uyl,m,n,Vyl,m,n,Wyl,m,n,Uzl,m,n,Vzl,m,n,Wzl,m,n). (2.8)

Then at each internal grid point (xl,ym,zn); l,m,n=1(1)N, the given system of differential
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equations (2.2) are discretized by

L[U]≡Ul,m−1,n−1+Ul−1,m,n−1+2Ul,m,n−1+Ul+1,m,n−1+Ul,m+1,n−1

+Ul−1,m−1,n+2Ul,m−1,n+Ul+1,m−1,n+2Ul−1,m,n−24Ul,m,n

+2Ul+1,m,n+Ul−1,m+1,n+2Ul,m+1,n+Ul+1,m+1,n+Ul,m−1,n+1

+Ul−1,m,n+1+2Ul,m,n+1+Ul+1,m,n+1+Ul,m+1,n+1

=
h2

2
[Vl+1,m,n+Vl−1,m,n+Vl,m+1,n+Vl,m−1,n+Vl,m,n+1

+Vl,m,n−1+6Vl,m,n]+O(h6), (2.9a)

L[V]=
h2

2
[Wl+1,m,n+Wl−1,m,n+Wl,m+1,n+Wl,m−1,n+Wl,m,n+1

+Wl,m,n−1+6Wl,m,n]+O(h6), (2.9b)

L[W]=
h2

2
[Fl+1,m,n+Fl−1,m,n+Fl,m+1,n+Fl,m−1,n+Fl,m,n+1

+Fl,m,n−1+6Fl,m,n]+Tl,m,n, (2.9c)

where L[V] and L[W] can be obtained from L[U] by replacing U by V and W, respectively
and Tl,m,n=O(h6). Note that, the approximations (2.9a)-(2.9c) require only 19- grid points
with a single computational cell. Incorporating the Dirichlet boundary conditions given
by (2.3) into the difference methods (2.9a)-(2.9c), we obtain the three sparse system of
tri-block-block diagonal matrix equations, which can be solved by appropriate iterative
methods (see [25–30]).

3 Derivation of the fourth order discretization

For the derivation of the fourth order method (2.9a)-(2.9c), we follow the technique given
by Mohanty [23, 24].

At the grid point (xl ,ym,zn), let us denote

Sijk =
∂i+j+kS

∂xl
i∂ym

j∂zn
k
, α

(S)
l,m,n=

∂ f

∂Sxl,m,n
, β

(S)
l,m,n=

∂ f

∂Syl,m,n
, γ

(S)
l,m,n=

∂ f

∂Szl,m,n
,

S=U,V,W. (3.1)

Further, at the grid point (xl,ym,zn), we define

Fl,m,n= f (xl ,ym,zn,Ul,m,n,Vl,m,n,Wl,m,n,Uxl,m,n,Vxl,m,n,Wxl,m,n,

Uyl,m,n,Vyl,m,n,Wyl,m,n,Uzl,m,n,Vzl,m,n,Wzl,m,n). (3.2)

Using Taylor expansion about the grid point (xl ,ym,zn), we first obtain

L[W]=
h2

2
[Fl+1,m,n+Fl−1,m,n+Fl,m+1,n+Fl,m−1,n+Fl,m,n+1

+Fl,m,n−1+6Fl,m,n]+O(h6). (3.3)
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Now by the help of the approximations (2.5a)-(2.5l), from (2.6), we obtain

Fl±1,m,n=Fl±1,m,n+
h2

6
T1±O(h3). (3.4)

Similarly,

Fl,m±1,n=Fl,m±1,n+
h2

6
T2±O(h3), (3.5a)

Fl,m,n±1=Fl,m,n±1+
h2

6
T3±O(h3), (3.5b)

where

T1=−2U300α
(U)
l,m,n−2V300α

(V)
l,m,n−2W300α

(W)
l,m,n+U030β

(U)
l,m,n+V030β

(V)
l,m,n+W030β

(W)
l,m,n

+U003γ
(U)
l,m,n+V003γ

(V)
l,m,n+W003γ

(W)
l,m,n,

T2=U300α
(U)
l,m,n+V300α

(V)
l,m,n+W300α

(W)
l,m,n−2U030β

(U)
l,m,n−2V030β

(V)
l,m,n−2W030β

(W)
l,m,n

+U003γ
(U)
l,m,n+V003γ

(V)
l,m,n+W003γ

(W)
l,m,n,

T3=U300α
(U)
l,m,n+V300α

(V)
l,m,n+W300α

(W)
l,m,n+U030β

(U)
l,m,n+V030β

(V)
l,m,n+W030β

(W)
l,m,n

−2U003γ
(U)
l,m,n−2V003γ

(V)
l,m,n−2W003γ

(W)
l,m,n.

Now we consider the linear combination:

Uxl,m,n=Uxl,m,n+ha11(Vl+1,m,n−Vl−1,m,n)+ha12(Uyyl+1,m,n−Uyyl−1,m,n)

+ha13(Uzzl+1,m,n−Uzzl−1,m,n), (3.6a)

Vxl,m,n=Vxl,m,n+hb11(Wl+1,m,n−Wl−1,m,n)+hb12(Vyyl+1,m,n
−Vyyl−1,m,n

)

+hb13(Vzzl+1,m,n−Vzzl−1,m,n), (3.6b)

Wxl,m,n=Wxl,m,n+hc11(Fl+1,m,n−Fl−1,m,n)+hc12(Wyyl+1,m,n
−Wyyl−1,m,n

)

+hc13(Wzzl+1,m,n−Wzzl−1,m,n), (3.6c)

Uyl,m,n=Uyl,m,n+ha21(Vl,m+1,n−Vl,m−1,n)+ha22(Uxxl,m+1,n−Uxxl,m−1,n)

+ha23(Uzzl,m+1,n−Uzzl,m−1,n), (3.6d)

Vyl,m,n=Vyl,m,n+hb21(Wl,m+1,n−Wl,m−1,n)+hb22(Vxxl,m+1,n−Vxxl,m−1,n)

+hb23(Vzzl,m+1,n−Vzzl,m−1,n), (3.6e)

Wyl,m,n=Wyl,m,n+hc21(Fl,m+1,n−Fl,m−1,n)+hc22(Wxxl,m+1,n−Wxxl,m−1,n)

+hc23(Wzzl,m+1,n−Wzzl,m−1,n), (3.6f)

Uzl,m,n=Uzl,m,n+ha31(Vl,m,n+1−Vl,m,n−1)+ha32(Uxxl,m,n+1−Uxxl,m,n−1)

+ha33(Uyyl,m,n+1
−Uyyl,m,n−1

), (3.6g)
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Vzl,m,n=Vzl,m,n+hb31(Wl,m,n+1−Wl,m,n−1)+hb32(Vxxl,m,n+1−Vxxl,m,n−1)

+hb33(Vyyl,m,n+1
−Vyyl,m,n−1

), (3.6h)

Wzl,m,n=Wzl,m,n+hc31(Fl,m,n+1−Fl,m,n−1)+hc32(Wxxl,m,n+1−Wxxl,m,n−1)

+hc33(Wyyl,m,n+1
−Wyyl,m,n−1

), (3.6i)

where aij, bij and cij, i, j=1,2,3 are parameters to be determined.
Now using the approximations defined in previous section and (3.4)-(3.5b), from

(3.6a)-(3.6i), we obtain

Uxl,m,n=Uxl,m,n+
h2

6
T4+O(h4), Vxl,m,n=Vxl,m,n+

h2

6
T5+O(h4), (3.7a)

Wxl,m,n=Wxl,m,n+
h2

6
T6+O(h4), Uyl,m,n=Uyl,m,n+

h2

6
T7+O(h4), (3.7b)

Vyl,m,n=Vyl,m,n+
h2

6
T8+O(h4), Wyl,m,n=Wyl,m,n+

h2

6
T9+O(h4), (3.7c)

Uzl,m,n=Uzl,m,n+
h2

6
T10+O(h4), Vzl,m,n=Vzl,m,n+

h2

6
T11+O(h4), (3.7d)

Wzl,m,n=Wzl,m,n+
h2

6
T12+O(h4), (3.7e)

where

T4=(1+12a11)U300+12(a11+a12)U120+12(a11+a13)U102,

T5=(1+12b11)V300+12(b11+b12)V120+12(b11+b13)V102,

T6=(1+12c11)W300+12(c11+c12)W120+12(c11+c13)W102,

T7=(1+12a21)U030+12(a21+a22)U210+12(a21+a23)U012,

T8=(1+12b21)V030+12(b21+b22)V210+12(b21+b23)V012,

T9=(1+12c21)W030+12(c21+c22)W210+12(c21+c23)W012,

T10=(1+12a31)U003+12(a31+a32)U201+12(a31+a33)U021,

T11=(1+12b31)V003+12(b31+b32)V201+12(b31+b33)V021,

T12=(1+12c31)W003+12(c31+c32)W201+12(c31+c33)W021.

By the help of the approximations (3.7a)-(3.7e), from (2.8), we get

Fl,m,n=Fl,m,n+
h2

6
T13+O(h4), (3.8)

where

T13=T4α
(U)
l,m,n+T5α

(V)
l,m,n+T6α

(W)
l,m,n+T7β

(U)
l,m,n+T8β

(V)
l,m,n

+T9β
(W)
l,m,n+T10γ

(U)
l,m,n+T11γ

(V)
l,m,n+T12γ

(W)
l,m,n.
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Finally, by the help of the relations (3.4)-(3.5b) and (3.8), from (2.9c) and (3.3), we obtain
the local truncation error

Tl,m,n=
−h4

6
[T1+T2+T3+3T13]+O(h6). (3.9)

The proposed difference methods (2.9a)-(2.9c) are to be of O(h4), the coefficient of h4 in
(3.9) must be zero, and we obtain a relation

T1+T2+T3+3T13=0. (3.10)

Substituting the values of T1, T2, T3 and T13 in (3.10), we obtain the values of parameters
ai1=bi1= ci1=−1/12 for i=1,2,3 and aij =bij= cij=1/12 for i=1,2,3 and j=2,3, and the

local truncation error (3.9) reduces to Tl,m,n=O(h6).
The details of the convergence analysis of the difference scheme for a scalar 3D nonlin-

ear elliptic equation has been discussed in [12], in which it has been shown that uh→u as
h→0. The same error analysis can be carried out for the system of three elliptic equations.
We have omitted the convergence analysis for the proposed fourth order approximations
(2.9a)-(2.9c) because of the crude mathematical calculation involved in error analysis with
three unknown variables u, v and w.

4 Stability analysis and numerical results

Consider the test equation

∇6u(x,y,z)=G(x,y,z), 0< x,y,z<1. (4.1)

Applying the proposed method (2.9a)-(2.9c) to the above equation, we obtain

L[U]=
h2

2
[Vl+1,m,n+Vl−1,m,n+Vl,m+1,n+Vl,m−1,n+Vl,m,n+1+Vl,m,n−1+6Vl,m,n], (4.2a)

L[V]=
h2

2
[Wl+1,m,n+Wl−1,m,n+Wl,m+1,n+Wl,m−1,n+Wl,m,n+1+Wl,m,n−1+6Wl,m,n], (4.2b)

L[W]=
h2

2
[Gl+1,m,n+Gl−1,m,n+Gl,m+1,n+Gl,m−1,n+Gl,m,n+1+Gl,m,n−1+6Gl,m,n], (4.2c)

where Gl,m,n=G(xl,ym,zn),··· , etc.
An iterative method for (4.2a)-(4.2c) can be written as:

24Iu(k+1)=Au(k)− h2

2
Bv(k)+0w(k)+RHU, (4.3a)

24Iv(k+1)=0u(k)+Av(k)− h2

2
Bw(k)+RHV, (4.3b)

24Iw(k+1)=0u(k)+0v(k)+Aw(k)+RHW, (4.3c)
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where u(k), v(k), w(k) are solution vectors and RHU, RHV, RHW are right hand side
vectors consists of boundary and homogenous function values.

Above iterative method in matrix form can be written as:





U(k+1)

V(k+1)

W(k+1)



=G





U(k)

V(k)

W(k)



+RH, (4.4)

where

G=
1

24













A
−h2

2
B 0

0 A
−h2

2
B

0 0 A













, RH=





RHU

RHV

RHW



.

We denote 0 as the N-th order null matrix, I= [0,1,0] as the N-th order identity matrix
and H=[1,2,1], Q=[2,0,2], J=[1,6,1] as N-th order tridiagonal matrices and C=[I,H, I],
D=[H,Q,H], E=[0, I,0], F=[I, J, I], as the N-th order block-tridiagonal matrices, where,
in general, we denote

[a,b,c]=















b c 0

a b c
. . .

a b c
0 a b















N×N

as N-th order tridiagonal matrix whose eigen values are given by

b+2
√

accos
( πj

N+1

)

, j=1,2,··· ,N. (4.5)

The N-th order block-block-tridiagonal matrices A and B associated with (4.3a)-(4.3c) are
defined by

A=















D C 0

C D C
. . .

C D C

0 C D















N×N

and B=















F E 0

E F E
. . .

E F E

0 E F















N×N

.

The eigenvalues of I, H and Q are 1 (N-times), 2+2cos(kπh) and 4cos(kπh), k=1,2,··· ,N,
respectively, where (N+1)h=1.
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The eigenvalues of C and D are given by

ξ jk =2+2[cos(jπh)+cos(kπh)], j,k=1(1)N, (4.6)

ηjk =4[cos(jπh)+cos(kπh)+cos(jπh)cos(kπh)], j,k=1(1)N. (4.7)

The matrix A associated with the iteration matrix G whose eigenvalues are given by

γijk =ηjk+2ξ jk cos(iπh), i, j,k=1,2,··· ,N

or

γijk=4[cos(iπh)+cos(jπh)+cos(kπh)+cos(iπh)cos(jπh)

+cos(jπh)cos(kπh)+cos(kπh)cos(iπh)], i, j,k=1,2,··· ,N.

Similarly, the eigenvalues of the matrix B associated with the iteration matrix G are given
by

σijk =6+2[cos(iπh)+cos(jπh)+cos(kπh)], i, j,k=1,2,··· ,N. (4.8)

The iterative method (4.4) is stable as long as ρ(G)≤1, where ρ(G) is the spectral radius
of G.

The characteristic equation of the matrix G is given by

det

















1

24
γijk−λ

−h2

48
σijk 0

0
1

24
γijk−λ

−h2

48
σijk

0 0
1

24
γijk−λ

















=0, i, j,k=1,2,··· ,N. (4.9)

Thus the eigenvalues of G are given by

λijk =λ=
1

24
γijk=

1

6
[cos(iπh)+cos(jπh)+cos(kπh)+cos(iπh)cos(jπh)

+cos(jπh)cos(kπh)+cos(kπh)cos(iπh)], i, j,k=1,2,··· ,N. (4.10)

The maximum values of all eigenvalues of G occur at i= j= k=1, hence

ρ(G)=max |λijk|=
cos(πh)

2
[1+cos(πh)]≤1, (4.11)

which is satisfied for all variable angles πh. Hence the iterative method (4.3a)-(4.3c) is
stable.
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The second order approximations for the system of differential equations (2.2a)-(2.2c)
are straightforward and can be written as:

Ul,m,n−1+Ul,m−1,n+Ul−1,m,n−6Ul,m,n+Ul+1,m,n+Ul,m+1,n+Ul,m,n+1

=h2Vl,m,n+O(h4), (4.12a)

Vl,m,n−1+Vl,m−1,n+Vl−1,m,n−6Vl,m,n+Vl+1,m,n+Vl,m+1,n+Vl,m,n+1

=h2Wl,m,n+O(h4), (4.12b)

Wl,m,n−1+Wl,m−1,n+Wl−1,m,n−6Wl,m,n+Wl+1,m,n+Wl,m+1,n+Wl,m,n+1

=h2 f
(

xl,ym,zn,Ul,m,n,Vl,m,n,Wl,m,n,Uxl,m,n,Vxl,m,n,Wxl,m,n,

Uyl,m,n,Vyl,m,n,Wyl,m,n,Uzl,m,n,Vzl,m,n,Wzl,m,n

)

+O(h4). (4.12c)

Note that, the second order approximations (4.12a)-(4.12c) require only 7-grid points on
a single computational cell (see Fig. 1).

By combining the difference equations at each internal grid points, we obtain a large
sparse system of matrix to solve. At each interior mesh point, we have three unknowns u,
∇2u≡v and ∇4u≡w, that is, the number of bands with non-zero entries is increased, and
so is the size of the final matrix for the same mesh size. However, by this new method,
the values of the Laplacian and biharmonic which are often of interest are also computed.

Whenever f (x,y,z,u,v,w,ux,vx,wx,uy,vy,wy,uz,vz,wz) is linear (or, non-linear) in u, v,
w, ux, vx, wx, uy, vy, wy, uz, vz, wz, the difference equations (2.9a)-(2.9c) or (4.12a)-(4.12c)
form a linear (or non-linear) system. To solve such a system or indeed to demonstrate the
existence of a solution, we use iterative methods. In this section, we solve the following
three test problems in the region 0 < x,y,z < 1, whose exact solutions are known. The
boundary conditions and right hand side homogeneous functions are obtained by using
the exact solutions. In all cases, we have considered u(0)=0 as the initial approximation
and the iterations were stopped when the absolute error tolerance |u(k+1)−u(k)|≤ 10−12

was achieved. In all cases, we have calculated maximum absolute errors (l∞-norm) for
different grid sizes. All computations were performed using double precision arithmetic.

Example 4.1. (Variable coefficient problems)

(a) The equation

∇6u=(1+x2)(∇4u)x+(1+z2)(∇2u)z+(1+x2)ux

+(1+z2)uz+G(x,y,z), 0< x,y,z<1. (4.13)

The exact solution is u(x,y,z)=sin(πx)sin(πy)sin(πz).

(b) The equation

∇6u=(1+cos2x)(∇4u)x+(1+cos2z)(∇2u)z+(1+cos2x)ux

+(1+cos2z)uz+G(x,y,z), 0< x,y,z<1. (4.14)

The exact solution is u(x,y,z)= ex+y+z.
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Table 1: The maximum absolute errors.

h Example 4.1(a) Example 4.1(b)
O(h4)-Method O(h2)-Method O(h4)-Method O(h2)-Method

u 0.3056(-02) 0.1672(+00) 0.4072(-05) 0.3254(-02)
1

4
∇2u 0.8884(-01) 0.3213(+01) 0.6836(-04) 0.1233(-01)

∇4u 0.7455(+00) 0.4642(+02) 0.8206(-04) 0.2698(-01)
u 0.1664(-03) 0.3924(-01) 0.2610(-06) 0.9828(-03)

1

8
∇2u 0.4622(-02) 0.7692(+00) 0.3427(-05) 0.3566(-02)

∇4u 0.3477(-01) 0.1133(+02) 0.4673(-05) 0.7401(-02)
u 0.7889(-05) 0.9678(-02) 0.1247(-07) 0.2614(-03)

1

16
∇2u 0.2845(-03) 0.1800(+00) 0.1611(-06) 0.1024(-02)

∇4u 0.1224(-02) 0.2820(+01) 0.3054(-06) 0.2918(-02)
u 0.4416(-06) 0.2408(-02) 0.8742(-09) 0.8256(-04)

1

32
∇2u 0.1054(-04) 0.4756(-01) 0.8055(-08) 0.7766(-03)

∇4u 0.7772(-04) 0.7040(+00) 0.1293(-07) 0.8751(-03)
u 0.2612(-07) 0.5182(-03) 0.5419(-10) 0.1821(-04)

1

64
∇2u 0.6518(-06) 0.1118(-01) 0.4984(-09) 0.1442(-03)

∇4u 0.4518(-05) 0.8288(-01) 0.8055(-08) 0.1919(-03)

The maximum absolute errors are tabulated in Table 1.

Example 4.2. (Navier-Stokes model equation in terms of stream function ψ) The steady-
state two dimensional incompressible Navier-Stokes equations in the traditional velocity-
pressure formulation is given by

1

Re
(uxx+uyy)=uux+vuy+px, (4.15a)

1

Re
(vxx+vyy)=uvx+vvy+py, (4.15b)

ux+vy =0, (4.15c)

where u, v are velocities along the x- and y-directions respectively, p represents the pres-
sure and Re > 0 is the Reynolds number. Though this formulation represents the fluid
flow phenomena, its direct solution traditionally has been difficult to obtain due to the
presence of pressure term in Eqs. (4.15a) and (4.15b). Partly in order to avoid handling
the pressure variable, an alternative formulation using stream-function and vorticity has
been used for several decades. The relation between stream function ψ and velocity com-
ponents are given by

u(x,y)=ψy, v(x,y)=−ψx. (4.16)
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The relation (4.16) satisfies automatically the Eq. (4.15c). Substituting (4.16) into the
Eqs. (4.15a) and (4.15b) and eliminating the pressure terms, we obtain the Navier-Stokes
equation in terms of stream function ψ as:

1

Re
(ψxxxx+2ψxxyy+ψyyyy)=ψy(ψxxx+ψxyy)−ψx(ψxxy+ψyyy). (4.17)

We consider a more general form of this equation to incorporate a forcing term G(x,y):

1

Re
(ψxxxx+2ψxxyy+ψyyyy)=ψy∇2ψx−ψx∇2ψy+G(x,y). (4.18)

This formulation has been very successful and has been used by a large number of
researchers (see [14–19]) to test new methods for the numerical solutions of a variety of
fluid flow problems.

Similarly, we choose three-dimensional model Navier-Stokes equations in terms of
stream function ψ:

1

Re
∇6ψ=ψy(∇2ψ)x−ψx(∇2ψ)y+(∇2ψ)y(∇4ψ)x−(∇2ψ)x(∇4ψ)y

+ψx(∇4ψ)y−ψy(∇4ψ)x+G(x,y,z), 0< x,y,z<1. (4.19)

The exact solution is given by ψ(x,y,z)= ex sin(πy)sin(πz).
The maximum absolute errors are tabulated in Table 2 for various values of Re.

Table 2: The maximum absolute errors.

h O(h4)-Method O(h2)-Method
Re=102 Re=104, 106, 108 Re=102, 104, 106, 108

ψ 0.2791(-02) 0.2798(-02)
1

4
∇2ψ 0.5231(-01) 0.5311(-01) Over Flow

∇4ψ 0.6734(+00) 0.6884(+00)
ψ 0.1277(-03) 0.1287(-03)

1

8
∇2ψ 0.2416(-02) 0.2524(-02) Over Flow

∇4ψ 0.3235(-01) 0.3363(-01)
ψ 0.6540(-05) 0.6688(-05)

1

16
∇2ψ 0.1118(-03) 0.1228(-03) Over Flow

∇4ψ 0.1628(-02) 0.1741(-02)
ψ 0.3318(-06) 0.3424(-06)

1

32
∇2ψ 0.7659(-05) 0.7772(-05) Over Flow

∇4ψ 0.8452(-04) 0.8460(-04)
ψ 0.2068(-07) 0.2112(-07)

1

64
∇2ψ 0.4522(-06) 0.4604(-06) Over Flow

∇4ψ 0.5202(-05) 0.5204(-05)
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5 Final remarks

In this article, we derived two new novel compact finite difference discretizations of or-
der two and four, respectively, for the 3D non-linear triharmonic partial differential equa-
tions. The methods are derived on 7- and 19-point compact stencils, respectively, using
the values of u, its Laplacian and biharmonic as the unknowns. We have obtained the
numerical solutions of Laplacian and biharmonic of u as by-products of the methods,
which are quite often of interest in many applied mathematics problems. Our meth-
ods are used to solve two problems including Navier Stokes model equation in terms of
stream function ψ. While solving Navier Stokes equations of motion, numerical results
confirm that the proposed fourth order discretization method produces oscillation free
solution for high Reynolds number, whereas the corresponding second order method be-
comes unstable and produces overflow solution. We are currently working to extend this
technique to solve time dependent parabolic partial differential equations.
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