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Abstract. In this work the Laguerre basis for the biharmonic equation introduced by
Jie Shen is employed in the spectral solution of self-similar problems of the boundary
layer theory. An original Petrov-Galerkin formulation of the Falkner-Skan equation is
presented which is based on a judiciously chosen special basis function to capture the
asymptotic behaviour of the unknown. A spectral method of remarkable simplicity
is obtained for computing Falkner-Skan-Cooke boundary layer flows. The accuracy
and efficiency of the Laguerre spectral approximation is illustrated by determining the
linear stability of nonseparated and separated flows according to the Orr-Sommerfeld
equation. The pentadiagonal matrices representing the derivative operators are ex-
plicitly provided in an Appendix to aid an immediate implementation of the spectral
solution algorithms.
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1 Introduction

The interest in self-similar solutions of the boundary layer equation started in the first half
of last century when, a few years after Prandtl formulated the boundary layer equations
in 1904, Blasius obtained the ordinary differential equation for the self-similar boundary
layer on a flat plate at zero incidence, see [12] and the references therein, and Falkner
and Skan [9] derived the general equation for self-similar boundary layers, which is the
subject of the present work. Despite such a long history, this problem still collects the
interest of researchers and new numerical approaches are tested on it.
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Two main difficulties have to be faced in the numerical approximation of the Falkner-
Skan equation. First, the interval where the solution is sought for is semi-infinite. Second,
while conditions on both the unknown and its first derivative supplement the nonlinear
differential equation at the wall, at infinity only the first derivative is assigned.

Starting from the early work of Hartree [13], so many different approaches have been
proposed to tackle these difficulties that a full account of them would be the subject for
a review article and out of the scope of the present paper, so we will provide just a few
references. Here, it will suffice to say that two approaches have been mainly adopted
to overcome the difficulty arising from the semi-infinite domain: truncation and map-
ping. After the problem has been reduced to a finite interval problem, the second dif-
ficulty can be addressed by solving directly the boundary value problem by means of
finite differences [1], finite elements [2] or spectral methods [11]. Alternatively, exploit-
ing shooting methods, the problem can be transformed into an initial value problem, see
for instance [5]. A third approach is to restate the problem as a free boundary problem, as
first attempted by R. Fazio [10] in the context of self-similar boundary layers and, more
recently, by Zhang and Chen [24].

Problems on a semi-infinite domain, however, can be solved without any truncation
or rescaling if one introduces Laguerre polynomials/functions [22, 23] or rational func-
tions [4] to build a suitable basis. Recently, Parand and coworkers [17,18] proposed spec-
tral collocation solvers for the Blasius equation which employ Laguerre functions and
rational Chebyshev functions, respectively. With respect to truncation methods, these
approaches do not require to properly choose the domain size, but allow the user to se-
lect spatial resolution of the basis by appropriately selecting a coordinate scaling factor.

While being quite convenient and simple to implement, the collocation approach
in spectral methods leads to discrete operators which are full, nonsymmetric, even for
self-adjoint problems, and poorly conditioned, especially when high order derivatives
are present. On the contrary, in a series of works spanning different coordinate sys-
tems and domain geometries, Jie Shen has shown that the spectral Galerkin method can
lead to very simple, sparse and optimally conditioned discrete operators. Moreover, the
Galerkin method guarantees optimal error estimates. These good properties apply, in
particular, to spectral methods on the semi-infinite interval based on Laguerre functions,
as shown in [22]. In this work we adopt two different Laguerre spectral bases, both pro-
posed in [22], to solve the Falkner-Skan-Cooke equations and to implement a linear sta-
bility solver for both 2D and 3D problems in the parallel flow approximation. By virtue
of the adopted bases, boundary conditions are taken into account very easily. Moreover,
when discretized, the derivative operators with constant coefficients lead to sparse ma-
trices whose entries have been computed in closed form.

Unfortunately, the Galerkin method can not be applied straightforwardly to solve
neither the Blasius nor the Falkner-Skan equation, since Laguerre functions do not sat-
isfy the asymptotic behaviour of the solution, whose limit at infinity is unknown a-priori.
To overcome this difficulty, we propose to modify the standard Galerkin method for so-
lutions in L2 to a Petrov-Galerkin method by resorting to a change of variable and in-
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troducing a special trial function in the set of the trial functions to properly represent the
partially unknown asymptotic behaviour of the solution at infinity. In this way we obtain
an elegant, accurate, extremely simple to implement, stable and fast solution algorithm to
compute the self-similar boundary layer velocity profiles and to investigate their stability
for 2D and 3D flow configurations.

The paper is organized as follows. In the next Section, the Falkner-Skan equations are
recalled both in strong form and in weak form. In Section 3, the spectral Laguerre basis
for the biharmonic problem is recalled. In Section 4, the Falkner-Skan ordinary differen-
tial equation is discretized. In Section 5, a rescaling of the semi-infinite computational
domain is introduced which allows to better exploit the proposed basis and results ob-
tained by the present approach are compared with the established literature. In Section
6, the Cooke equation is discretized and some tests are performed. In Section 7, the pro-
posed techniques are applied to the solution of 2D and 3D linear stability problems under
the parallel flow assumption. The final section is devoted to some concluding remarks.
In the appendix, the coefficients of the constant coefficient linear operators employed
throughout the paper are reported in closed form for the first time.

2 Falkner-Skan equation and weak formulation

The Falkner-Skan equation is a third order nonlinear ordinary differential equation which
describes the self-similar velocity profile of the boundary layer flow over a wedge, [20],

f ′′′+α f f ′′+β
[

1−( f ′)2
]

=0, (2.1)

where f (η)is the unknown while α and β are real constants. For β=0, the Falkner-Skan
equation reduces to the Blasius equation. The Falkner-Skan equation is supplemented by
the following boundary conditions:

f (0)=0, f ′(0)=0, lim
η→∞

f ′(η)=1. (2.2)

It should be noted that, for β = 0, the only nonhomogeneity in this problem lies in the
third boundary condition as η→∞. The problem is a classical two-point boundary value
problem, although the asymptotic condition for η→∞ introduces the difficulty typical of
any differential problem over an unbounded domain. This difficulty can be tackled in a
spectral context by means of a basis built upon the Laguerre polynomials.

On the other hand, f ′(∞)=1 implies the asymptotic behaviour f (η)→η+K, as η→∞,
where K is an unknown constant. Therefore the application of Laguerre polynomials
directly to the variable f (η) is not possible and one must introduce a new unknown by
the following change of variables

f (η)=ψ(η)+η
(

1−e−
η
2
)

. (2.3)
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The derivatives of ψ are easily evaluated by a direct calculation which gives

f ′(η)=ψ′(η)+1−
(

1−
1

2
η
)

e−
η
2 , (2.4a)

f ′′(η)=ψ′′(η)+
(

1−
1

4
η
)

e−
η
2 , (2.4b)

f ′′′(η)=ψ′′′(η)−
1

8
(6−η)e−

η
2 . (2.4c)

Introducing these expressions in the Falkner-Skan equation (2.1) gives the equation for
the new unknown ψ

ψ′′′+αψψ′′−β(ψ′)2+αa(η)ψ′′+βb(η)ψ′+αc(η)ψ= r(η), (2.5)

where we have introduced the following three shorthands

a(η)≡η
(

1−e−
η
2
)

, (2.6a)

b(η)≡−2
[

1−
(

1−
1

2
η
)

e−
η
2

]

, (2.6b)

c(η)≡
(

1−
1

4
η
)

e−
η
2 , (2.6c)

together with a fourth function for the right-hand side

r(η)≡
1

8

[

6−η+2α(η−4)η+8β(η−2)
]

e−
η
2 +

1

4

[

α(4−η)η+β(η−2)2
]

e−η. (2.7)

The boundary conditions supplementing equation (2.5) for the new unknown ψ are fully
homogeneous and read

ψ(0)=0, ψ′(0)=0, lim
η→∞

ψ′(η)=0. (2.8)

While for η = 0 the boundary conditions on the unknown and its first derivative are
homogeneous, asymptotically only the derivatives vanish, since the limit value of the
unknown as η→∞ has to be determined in the solution process.

To write Eq. (2.5) in a weak variational form, let us introduce the test function v(η) to
be defined below, but which is assumed to satisfy the following boundary conditions

v(0)=0 and v(∞)=0. (2.9)

Notice that v(η) must be taken to be asymptotically homogeneous to be integrable on the
semi-infinite interval.

We first take the inner product of the Eq. (2.5) with the functions v, to obtain

∫ ∞

0
v(η)

[

ψ′′′+αψψ′′−β(ψ′)2+αa(η)ψ′′+βb(η)ψ′+αc(η)ψ
]

dη=
∫ ∞

0
v(η)r(η)dη. (2.10)
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We now split the integrals of the various terms on the left-hand side and apply the inte-
gration by parts to three of them, obtaining

−
∫ ∞

0
v′(η)ψ′′dη+

[

v(η)ψ′′
]∞

0
−α

∫ ∞

0
[v(η)ψ]′ψ′dη+α

[

v(η)ψψ′
]∞

0

−β
∫ ∞

0
v(η)(ψ′)2dη−α

∫ ∞

0
[v(η)a(η)]′ψ′dη+α

[

v(η)a(η)ψ′
]∞

0

+β
∫ ∞

0
v(η)b(η)ψ′dη+α

∫ ∞

0
v(η)c(η)ψdη=

∫ ∞

0
v(η)r(η)dη.

Thanks to the boundary conditions (2.9) satisfied by v(η), the three boundary terms van-
ish and the final weak variational equation will be: find ψ∈K={u(η)=k+w(η)|k∈R, w∈
H2(0,∞), u(0)=u′(0)=0} such that

−
∫ ∞

0
v′(η)ψ′′dη−

∫ ∞

0

[

αv′(η)ψψ′+(α+β)v(η)(ψ′)2
]

dη

+
∫ ∞

0

{

−α[v(η)a(η)]′ψ′+βv(η)b(η)ψ′+αv(η)c(η)ψ
}

dη

=
∫ ∞

0
v(η)r(η)dη, ∀v∈H1

0 (0,∞), (2.11)

where H1
0(0,∞) = {v ∈ H1(0,∞), v(0) = 0}. The weak formulation (2.11) is a Petrov-

Galerkin method due to the different functional spaces taken for the test and trial func-
tions.

3 Laguerre spectral basis for fourth order problems

To ensure the stability of the discrete approximation of the weak problem, the basis func-
tions for the Galerkin-Laguerre spectral approximation of the biharmonic equation (in
one dimension) [22] are considered

C0(η)= e−
η
2 , C1(η)=ηe−

η
2 , (3.1a)

Ci(η)= e−
η
2 [Li−2(η)−2Li−1(η)+Li(η)], i≥2. (3.1b)

The first two basis functions would enable one to satisfy nonhomogeneous boundary
conditions for the unknown variable and its derivative at η = 0. Since ψ(0)= 0, the first
basis function C0(η) will not be used in the sequel. For i ≥ 2 the basis functions Ci(η)
satisfy homogeneous boundary conditions at η=0. For this reason, since the solution ψ
does not go to zero at infinity but tends to an unknown constant, the biharmonic basis
(3.1) must be modified as it will be described in the next section.

It can be proved that

Ci(η)=
η2e−

η
2 L

(2)
i−2(η)

i(i−1)
, i≥2. (3.2)
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In fact, let us rewrite the polynomial expression

Li−2(η)−2Li−1(η)+Li(η)= [Li−2(η)−Li−1(η)]−[Li−1(η)−Li(η)] (3.3)

and consider the polynomial identity

ηL
(k+1)
i−1 (η)=(i+k)L

(k)
i−1(η)−iL

(k)
i (η), (3.4)

which, in the particular case k=0, reduces to

ηL
(1)
i−1(η)= i[Li−1(η)−Li(η)]. (3.5)

Using the latter identity for both terms on the right hand side of relation (3.3), we obtain

Li−2(η)−2Li−1(η)+Li(η)=
η

i(i−1)

[

iL
(1)
i−2(η)−(i−1)L

(1)
i−1(η)

]

. (3.6)

Exploiting one more time the same identity (3.4) but now with k= 1, we obtain the ex-
pression

Li−2(η)−2Li−1(η)+Li(η)=
η2L

(2)
i−2(η)

i(i−1)
, i≥2, (3.7)

which, after multiplication by e−
η
2 , proves (3.2).

4 Laguerre spectral approximation

The functions C∗
i (η), i=1,2,··· , for the expansion of ψ are identical to those used as test

functions, but for the first one. The first test function is

C1(η)=ηe−
η
2 , (4.1)

while the first trial function is chosen to be

C∗
1 (η)=1−

(

1+
η

2

)

e−
η
2 (4.2)

to satisfy identically all boundary conditions (2.8) on ψ. Then, we assume C∗
i (η)=Ci(η),

for any i≥2. With this assumption we have the expansion

ψ(η)=
N

∑
i=1

ψiC
∗
i (η). (4.3)

The test functions Ci(η) span the finite dimensional space

P0,N =
{

v : v= e−
η
2 ηp(η), p(η)∈PN(0,∞)

}

, (4.4)



F. Auteri and L. Quartapelle / Commun. Comput. Phys., 12 (2012), pp. 1329-1358 1335

where PN(0,∞) is the space of polynomial functions up to the degree N defined on the
semi-infinite interval [0,∞). The trial functions C∗

i (η) span the finite dimensional space

KN =
{

v : v=αC∗
1 (η)+e−

η
2 η2 p(η), α∈R, p(η)∈PN−1(0,∞)

}

. (4.5)

Introducing the expansion (4.3) in the weak formulation (2.11) and employing the
Ci(η) function as test functions, the discretized Falkner-Skan problem yields the system
of nonlinear equations

−T∗ψ−nl(ψ)+(−αA∗+βB∗+αC∗)ψ= r. (4.6)

The matrix T∗ for the third order derivative term, after the integration by parts, has ele-
ments given by

t∗i,j =
∫ ∞

0
C ′

i (η)C
∗′′
j (η)dη, i, j≥1. (4.7)

Thus, matrix T∗ is obtained by eliminating the first row and column of matrix T, cal-
culated in the Appendix in (A.7), and by evaluating the elements t∗i,1 of the (new) first
column, to give, for any i, j≥1,

T∗=
1

8

































1 3 1
1
2 0 −2 −1
1
2 2 0 −2 −1

1 2
. . .

. . .
. . .

1
. . .

. . . −2 −1

. . . 2 0 −2

1 2 0

































. (4.8)

The components of the nonlinear term nl of the Falkner-Skan equation are

nli(ψ)=
∫ ∞

0

[

αC ′
i (η)ψψ′+(α+β)Ci(η)(ψ

′)2
]

dη. (4.9)

The elements of matrix A∗ corresponding to the third term of the equation are

a∗i,j =
∫ ∞

0
[Ci(η)a(η)]

′C∗′
j (η)dη

=
∫ ∞

0

[

C ′
i (η)a(η)+Ci(η)a

′(η)
]

C∗′
j (η)dη, i, j≥1. (4.10)

The elements of matrix B∗ are defined by

b∗i,j=
∫ ∞

0
Ci(η)b(η)C

∗′
j (η)dη, i, j≥1. (4.11)
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Finally, the elements of matrix C∗ are

c∗i,j =
∫ ∞

0
Ci(η)c(η)C

∗
j (η)dη, i, j≥1. (4.12)

The right-hand side of the nonlinear system is ri=
∫ ∞

0 Ci(η)r(η)dη. All the linear terms of
the system can be collected together by introducing the matrix L∗=−T∗−αA∗+βB∗+αC∗,
to recast the nonlinear system (4.6) in the form N(ψ)≡ L∗ψ−nl(ψ)−r = 0. Then the
Jacobian matrix for the Newton iteration will be

J(ψ)=
∂N(ψ)

∂ψ
. (4.13)

The explicit evaluation of the partial derivatives of the nonlinear term (4.9) gives the
elements of the Jacobian matrix in the form

Ji,j(ψ)= ℓ
∗
i,j−

∫ ∞

0

{

αC ′
i (η)

[

ψ′(η)C∗
j (η)+ψ(η)C∗′

j (η)
]

+2(α+β)Ci(η)ψ
′(η)C∗′

j (η)
}

dη,

(4.14)
where ℓ∗i,j =−t∗i,j−αa∗i,j+βb∗i,j+αc∗i,j. If the Newton method is implemented in incremen-

tal form, the variation ∆ψk+1 = ψk+1−ψk of the unknown at the iteration k+1 will be

provided by ∆ψk+1=−[J(ψk)]
−1N(ψk).

5 Independent variable scaling

To improve the accuracy of the solver, it is useful to properly scale the independent vari-
able. In fact, as the polynomial degree is increased, the approximation resolution is in-
creased mainly far from the wall, where it is less needed. It is then useful to scale the
independent variable to improve the resolution near the wall and, eventually, the ap-
proximation accuracy.

We introduce then a scaling factor χ and the new variable η̂ defined as the scaled
variable η, namely η̂ = η/χ. By introducing this scaling in the unknown function, we
obtain

f (η)= f (χη̂)= f̂ (η̂)= f̂
(η

χ

)

. (5.1)

The derivatives of the original unknown function can be computed in terms of the deriva-
tives of the scaled unknown by the chain rule,

f ′(η)= f̂ ′(η̂)
dη̂

dη
=

1

χ
f̂ ′(η̂), f ′′(η)=

1

χ2
f̂ ′′(η̂), f ′′′(η)=

1

χ3
f̂ ′′′(η̂). (5.2)

Introducing the above substitutions in the Falkner-Skan equation and simplifying we
obtain the equation for the scaled unknown

f̂ ′′′+χα f̂ f̂ ′′+χβ
[

χ2−
(

f̂ ′
)2]

=0 (5.3)



F. Auteri and L. Quartapelle / Commun. Comput. Phys., 12 (2012), pp. 1329-1358 1337

supplemented by the three boundary conditions

f̂ (0)=0, f̂ ′(0)=0, lim
η̂→∞

f̂ ′(η̂)=χ. (5.4)

Also in this case, a change of variables is required to accommodate the asymptotic
boundary condition for f̂ within the framework of the Petrov-Galerkin formulation,

f̂ (η̂)= ψ̂(η̂)+χη̂
(

1−e−
η̂
2
)

, (5.5)

where the χ coefficient in front of the second term on the right hand side should be noted.
By virtue of this coefficient, the asymptotic boundary condition is satisfied, provided
ψ̂(η̂) tends to a constant for η̂→∞.

The derivatives of f̂ can also be computed

f̂ ′(η̂)= ψ̂′(η̂)+χ
[

1−
(

1−
1

2
η̂
)

e−
η̂
2

]

, (5.6a)

f̂ ′′(η̂)= ψ̂′′(η̂)+χ
(

1−
1

4
η̂
)

e−
η̂
2 , (5.6b)

f̂ ′′′(η̂)= ψ̂′′′(η̂)−
1

8
χ(6− η̂)e−

η̂
2 . (5.6c)

Substituting these expressions in the scaled Falkner-Skan equation (5.3), the equation for
the new unknown ψ̂ assumes the form

ψ̂′′′+χαψ̂ψ̂′′−χβ
(

ψ̂′
)2
+χ2

[

αa(η̂)ψ̂′′+βb(η̂)ψ̂′+αc(η̂)ψ̂
]

= r̂(η̂), (5.7)

where the functions a, b and c are the same defined for the unscaled problem but are
evaluated for the new scaled independent variable η̂. The new right-hand side is

r̂(η̂)≡
1

8
χ
{

6− η̂+χ2[2α(η̂−4)η̂+8β(η̂−2)]
}

e−
η̂
2 +

1

4
χ3

[

α(4− η̂)η̂+β(η̂−2)2
]

e−η̂. (5.8)

The weak formulation is obtained in the very same way as done before. The nonlinear
system of equations of the scaled problem can be written compactly as

L̂∗
χψ̂−χnl(ψ̂)= r̂, (5.9)

where the matrix of the linear part of the scaled equation L̂∗
χ ≡−T∗+χ2(−αA∗+βB∗+

αC∗) has been introduced and where r̂i =
∫ ∞

0 Ci(η̂)r̂(η̂)dη̂, for i=1,2,··· .

5.1 Results

To assess the accuracy properties of the proposed method, present results are compared
with reference values provided in the literature. In particular, for the Blasius equation
(α=0.5 and β=0), the most accurate solutions to date were those obtained by a Laguerre
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Table 1: Blasius equation, f ′′(0) value. Comparison of present result without scaling (second column), with
scaling factor χ=0.1 (third column) with the values from [18] (last column). The reference value is 0.3320573362
from [10], as reported in [3].

N Present Present χ=0.1 see [18]
8 0.3483630118 0.4700048153 0.332061648

10 0.3398081761 0.3812924020 0.332058234
12 0.3290996249 0.3434963326 0.332057001
19 0.3335549762 0.3320575807 0.332057314
33 0.3321517910 0.3320573362 0.332057334
64 0.3320554809 0.3320573362 –

Table 2: Falkner-Skan equation, f ′′(0) value. Comparison of present result for α= 1 and several values of β
with the reference values from [19] and [3]. Spectral resolution N = 64. Second column: no scaling. Third
column: scaling factor χ=0.1. The apex r indicates the reversed flow cases.

β Present Present χ=0.1 see [19] see [3]
2 1.687217 1.687218169 1.687218 1.687218
1 1.232587 1.232587657 1.232588 1.232589
0.5 0.927686 0.927680040 0.927680 0.927680

−0.1 0.319223 0.319269760 0.319270 0.319270
−0.15 0.216381 0.216361406 0.216362 0.216361
−0.18 0.128778 0.128636221 0.128638 0.128637
−0.1988 0.007870 0.005218188 0.005226 0.005225
−0.18r −0.097915 −0.097692060 – –
−0.15r −0.132795 −0.133421238 – –
−0.1r −0.141544 −0.140546213 – –

collocation method in [18], which reports values obtained with different scalings depend-
ing on the number of points. For N = 33 the present Petrov-Galerkin method provides
two more significant digits, as shown in Table 1.

Concerning the solution of the Falkner-Skan equations, we compare our results with
those reported in [19] and [3] in Table 2. Results are calculated for α=1 both without scal-
ing and with scaling factor χ=0.1. While the former do not achieve a notable degree of
accuracy, the latter can provide up to 10 exact significant digits, improving considerably
the existent results reported in the literature. The last three rows of the same table report
f ′′(0) for the reversed flow for three different values of β. For the flows with β=−0.18,
our solutions provide the f ′′(0) with an additional significant figure with respect to the
result f ′′(0)=−0.09769206 reported in [14].

6 Cooke equation

The Falkner-Skan solution for a two-dimensional boundary layer on a wedge has been
extended to 3D by Cooke [6] to represent the boundary layer on a swept wedge, see also
Appendix B in [7].
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Figure 1: Falkner-Skan velocity profiles for different values of the β parameter and α=1.

A further equation is added to the Falkner-Skan one, which describes the behaviour
of the z component of the velocity in nondimensional form g(η)=w(η)/limη→∞w(η),

g′′+α f (η)g′=0, (6.1)

supplemented by the boundary conditions

g(0)=0 and lim
η→∞

g(η)=1. (6.2)

Before discretizing the Cooke equation it is necessary to relieve the non-homogeneous
asymptotic condition. Let us introduce the following change of variables:

g(η)=γ(η)+1−e−
η
2 , (6.3)

the auxiliary unknown satisfies homogeneous asymptotic conditions and can be there-
fore discretized directly by generalized Laguerre functions. The first and second deriva-
tives of the unknown function can be immediately computed

g′(η)=γ′(η)+
1

2
e−

η
2 , g′′(η)=γ′′(η)−

1

4
e−

η
2 . (6.4)

Introducing the change of variables in the Cooke equation, we obtain

γ′′+α f (η)γ′=h(η), (6.5)

where h(η)≡ 1
4 [1−2α f (η)]e−

η
2 .
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A Galerkin discretization can be envisaged for this equation. Let us consider the
following generalized Laguerre functions as basis functions:

Bi(η)≡
ηe−

η
2 L

(1)
i−1(η)

i
, for i≥1, (6.6)

the expansion for the auxiliary unknown γ(η) which automatically satisfies the boundary
and asymptotic conditions will read

γ(η)=
I

∑
i=1

γiBi(η). (6.7)

The equation can be rewritten in weak form by taking the inner-product, in the L2 sense,
of the equation with the basis functions themselves. Integrating by parts the first term,
since the basis functions annihilate at the extremes, we obtain, for all 1≤ i≤ I,

I

∑
j=1

[

−
∫ ∞

0
B′

i(η)B
′
j(η)dη+α

∫ ∞

0
Bi(η) f (η)B′

j(η)dη
]

γj=
∫ ∞

0
Bi(η)h(η)dη, (6.8)

which can be put in the following matrix form
(

−D̃2+αF̃
)

γ=h, (6.9)

where D̃2 is the stiffness matrix, after the integration by parts, in the basis Bi(η), with
elements defined by

d̃2
i,j =

∫ ∞

0
B′

i(η)B
′
j(η)dη, i, j≥1. (6.10)

Matrix D̃2 is tridiagonal and its elements can be computed in closed form, see the ap-
pendix,

D̃2=
1

4



























2 1

1 2 1

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . 1

1 2



























. (6.11)

The matrix F̃ is full and its elements are defined as

f̃i,j =
∫ ∞

0
Bi(η) f (η)B′

j(η)dη, i, j≥1. (6.12)

The components of the right-hand side h are defined as

hi =
∫ ∞

0
Bi(η)h(η)dη, i≥1. (6.13)

The Cooke equation is linear and can be readily solved once the solution f (η) of the
Falkner-Skan equation has been determined.
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6.1 Results

In Table 3 we report the value of g′(0) for several values of the β parameter in the Falkner-
Skan-Cooke equations. All reported values have been computed for α=1 and N=64. To
obtain the tenth exact significant figure also for β =−0.1988 and for two reverse flow
solutions with β=−0.18 and β=−0.15, the spatial resolution must be increased. For N=
128 and χ=0.1 we find g′(0)=0.3285663718, 0.2557614367 and 0.2030896681, respectively.

Table 3: Falkner-Skan equation, g′(0) value. Comparison of present result for several values of β and N= 64
without scaling (second column), with scaling factor χ=0.1 (third column). The apex r indicates the reversed
flow cases.

β g′(0) g′(0), χ=0.1
2 0.60521 0.6051972393
1 0.57048 0.5704652525
0.5 0.53899 0.5389789351

−0.1 0.43675 0.4367975316
−0.15 0.40931 0.4093363120
−0.18 0.38117 0.3811240379
−0.1988 0.33004 0.328566372
−0.18r 0.25560 0.255761437
−0.15r 0.20342 0.203089668
−0.1r 0.13052 0.1315065229

Moreover, in Fig. 2 the w(η) profiles are shown for the same values of the parameter
β reported in the table. Please note that two different profiles are plotted for negative
values of β, since both the attached solution and the reverse flow solution have been
provided, with an inflection point occurring only in the latter.
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Figure 2: Cooke velocity profiles for different values of the β parameter and α=1.
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Figure 3: Velocity profiles of the Falkner-Skan-Cooke swept boundary layer for θ=30◦ in a coordinate system
aligned with the free stream velocity. Left: longitudinal component. Right: transverse component.
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Figure 4: Velocity profiles of the Falkner-Skan-Cooke swept boundary layer for θ=45◦ in a coordinate system
aligned with the free stream velocity. Left: longitudinal component. Right: transverse component.

Finally, it is also interesting to show the velocity profiles in a coordinate system with
an axis parallel to the external flow, and the other axis perpendicular to it. This is espe-
cially interesting to highlight the inflection point which is present in the traverse velocity
profile, which severely affects the stability of the boundary layer. Let us denote by Ue and
We the velocity components of the external velocity in a Cartesian frame such that the ex-
ternal velocity Ue =Uex̂+Weẑ is a function of the x coordinate only. A new reference
frame is introduced which is rotated by the angle θ = tan−1(We/Ue) with respect to the
original Cartesian frame. The velocity components in this rotated frame are denoted by
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Uθ(η) and Wθ(η). They are obtained from U(η) and W(η) by the transformation matrix
of the axis rotation, to give

Uθ(η)= |Ue|
[

cos2 θ f ′(η)+sin2θg(η)
]

, Wθ(η)= |Ue|sinθcosθ[− f ′(η)+g(η)]. (6.14)

In Fig. 3 the streamwise and transverse components of the velocity profile in the Falkner-
Skan-Cooke boundary layer are provided for a sweep angle θ = 30◦. In the next figure,
Fig. 4, the analogous profiles are given for a sweep angle θ = 45◦ which is characterized
by the maximum transverse velocity for fixed β, see e.g., [15].

7 Linear stability for unbounded parallel flows

7.1 Two-dimensional disturbances: Orr-Sommerfeld equation

Let us consider a planar steady flow with velocity U(y), x̂ parallel to a horizontal wall at
y=0 and a wave-like, two-dimensional perturbation

ψperturb(ξ,η,τ)=φ(η)ei α(ξ−cτ), (7.1)

where all variables are dimensionless and defined as follows

ξ=
x

G(x̄)
, η=

y

G(x̄)
, τ=

tUe

G(x̄)
, (7.2)

with G(x) denoting a generic boundary layer thickness. In the perturbation expression
(7.1) the dimensionless wavenumber variable α should not be confused with the param-
eter of the Falkner-Skan equation. The dimensionless phase velocity c has to be deter-
mined by solving the generalized eigenvalue problem, to locate the most unstable mode
as a function of the dimensionless wavenumber α and of the Reynolds number defined
by

Re=
UeG(x̄)

ν
. (7.3)

The equation governing the wave-like perturbation is the celebrated Orr-Sommerfeld
equation

1

Re

(

φ′′′′−2α2φ′′+α4φ
)

+iα[U(η)−c]
(

−φ′′+α2φ
)

+iαU ′′(η)φ=0, (7.4)

where U =U/Ue is the dimensionless base flow velocity and the prime denotes differ-
entiation with respect to the dimensionless wall normal coordinate η. The equation is
supplemented by the homogeneous boundary conditions

φ(0)=φ′(0)=φ(∞)=φ′(∞)=0. (7.5)

A couple of observations are in order. First, the Orr-Sommerfeld equation assumes the
base flow to be parallel. In general this is not the case for a boundary layer flow, since the
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boundary layer thickness grows with the spatial coordinate x. However, the parallel Orr-
Sommerfeld problem can be viewed as the zero order approximation to the non-parallel
linear stability problem when a multiple scale expansion is employed. Second, it is to
be emphasized that the previous equation has been made nondimensional employing,
as local reference length, the function G(x) which is proportional to the local boundary
layer thickness. Hence, all constants, i.e., Re, α, and c, and the dependent variable η are
referred to such function G(x). In the literature, however, results are often referred to the
boundary layer displacement thickness δ1(x), which is proportional to G(x). In this case
a simple scaling of the relevant quantities allows one to compare results. In fact, let us
consider the Reynolds number:

Re1=
Ueδ1(x̄)

ν
=Re

δ1(x̄)

G(x̄)
, (7.6)

where, since U(y)/Ue=U(η)= f ′(η), the ratio

δ1(x̄)

G(x̄)
=

∫ ∞

0
[1−U(η)]dη= lim

η→∞
[η− f (η)]=− lim

η→∞
ψ(η)=−ψ1 (7.7)

is a constant, not depending on x̄, in a similitude boundary layer. It can be noted in
passing that, for the Blasius problem, the first expansion coefficient ψ1 is related to the
constant b1 occurring in the asymptotic expansion of the solution as η →∞ [16, pp. 105]
given by

fBlasius(η)∼η−b1+b2

∫ ∞

η
dσ

∫ ∞

σ
e−

(λ−b1)
2

4 dλ+··· (7.8)

with b2 denoting another constant and b1=−ψ1=1.72078765752.

In general, for the Falkner-Skan solution, we have

Re=Re1
G(x̄)

δ1(x̄)
=

Re1

|ψ1|
. (7.9)

Similarly,

α1

δ1(x̄)
=

α

G(x̄)
⇒α=α1

G(x̄)

δ1(x̄)
=

α1

|ψ1|
(7.10)

and

c1δ1(x̄)= cG(x̄)⇒ c1= c
G(x̄)

δ1(x̄)
=

c

|ψ1|
. (7.11)

Now, by separating the part containing the eigenvalue and regrouping some terms, the
Orr-Sommerfeld equation becomes

φ′′′′−2α2φ′′+α4φ+iαRe
{

−
[

U(η)φ′−U ′(η)φ
]′
+α2U(η)φ

}

= icαRe
(

−φ′′+α2φ
)

. (7.12)
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The weak variational form of the problem is obtained by multiplying the equation by a
test function v(η) satisfying the two conditions v(0)=0 and v′(0)=0 and integrating all
terms of the equation. The eigenfunction φ(η) is expanded as follows

φ(η)=
I

∑
i=2

φiCi(η) (7.13)

and the test function is taken as v(η) = Ci(η). In the weak equation, the term with the
fourth order derivative and all those with a second order derivative are integrated by
parts. The velocity U of the parallel base flow is expressed by U = f ′, with f solution to
the Falkner-Skan equation. This means that f (η)=ψ(η)+η(1−e−η/2), with ψ(η) given by
the expansion (4.3) and solution to the nonlinear system (4.6). This leads to the discrete
eigenvalue problem

[

D4+2α2D2+α4M+iαRe
(

N+α2U
)]

φ= icαRe
(

D2+α2M
)

φ. (7.14)

Here M, D2 and D4 denote the square matrices with elements defined by mi,j =
∫ ∞

0 Ci(η)Cj(η)dη, d2
i,j =

∫ ∞

0 C ′
i (η)C

′
j(η)dη and d4

i,j =
∫ ∞

0 C ′′
i (η)C

′′
j (η)dη, with i, j≥2. They are

obtained from the complete matrices introduced in the Appendix, which account also for
the first two modes corresponding to i = 0 and i = 1, by eliminating the first two rows
and two columns. Moreover, U and N denote the square matrices with elements defined
respectively by

ui,j=
∫ ∞

0
Ci(η) f ′(η)Cj(η)dη, i, j≥2, (7.15a)

ni,j=
∫ ∞

0
C ′

i (η)
[

f ′(η)C ′
j(η)− f ′′(η)Cj(η)

]

dη, i, j≥2. (7.15b)

We note the particular form of the expression of the term
[

U ′(η)φ
]′

in the Orr-
Sommerfeld equation (7.12). This form is crucial to avoid, jointly with the integration
by parts, the explicit evaluation of the second derivative U′′ which otherwise ”must be
known accurately”, as pointed out in [20, pp. 434]. On the other hand, the use of the
biharmonic basis Ci(η) in the solution of the Falkner-Skan equation, guarantees a com-
putation of U ′= f ′′ with the required accuracy.

The generalized complex eigenvalue problem (7.14) can be written compactly as

A(α,Re)φ= cB(α,Re)φ, (7.16)

where

A(α,Re)=D4+2α2D2+α4M+iαRe
(

N+α2U
)

, B(α,Re)= iαRe
(

D2+α2M
)

. (7.17)

The complex eigenvalue c = cr+ici will depend on α and Re, namely: c = cr(α,Re)+
ici (α,Re). The Orr-Sommerfeld problem can be also recast in scaled form and the corre-
sponding equation for the unknown φ̂(η̂)=φ(χη̂)=φ(η) would be

φ̂′′′′−2α̂2φ̂′′+ α̂4φ̂+iχα̂Re
{

−
[

Û (η̂)φ̂′−Û ′(η̂)φ̂
]′
+ α̂2Û(η̂)φ̂

}

=i ĉα̂Re
(

−φ̂′′+ α̂2φ̂
)

, (7.18)
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Figure 5: Neutral stability curves for two different Falkner-Skan boundary layers. Solid line: decelerating,
nonseparated, boundary layer with αFS = 1, βFS =−0.18. Dashed line: decelerating, separated, boundary layer
with αFS =1, βFS =−0.18.

where the prime acting on φ̂ denotes differentiation with respect to the new variable η̂,
Û (η̂)=U(χη̂) and Û ′(η̂)=χU ′(χη̂), and also α̂=χα and c= ĉ/χ. In terms of the origi-
nal solution f (η) to the unscaled Falkner-Skan equation (2.1), the scaled Orr-Sommerfeld
equation reads

φ̂′′′′−2α̂2φ̂′′+ α̂4φ̂+i α̂Re
{

−
[

χ f ′(χη̂)φ̂′−χ2 f ′′(χη̂)φ̂
]′
+ α̂2χ f ′(χη̂)φ̂

}

=i ĉα̂Re
(

−φ̂′′+ α̂2φ̂
)

. (7.19)

As a test case, we calculated the neutral stability curves for to two decelerating
Falkner-Skan boundary layers, both for αFS = 1, βFS =−0.18. The results are reported
in Fig. 5, that are in excellent agreement with the analogous figure reported in [14].

7.2 Three-dimensional disturbances: Orr-Sommerfeld-Squire system

We now consider three-dimensional disturbances of the normal velocity consisting in
plane waves propagating parallel to the plane wall:

v(ξ,η,ζ,τ)=v(η)ei (αξ+βζ−αcτ), (7.20)

where ζ=z/g(x̄). Again, the wavenumber variables α and β here should not be confused
with the constant parameters occurring in the Falkner-Skan equation. By a direct calcu-
lation the problem for the linear stability of the 3D perturbations assumes the form of a
system for the normal components of velocity v=un =uy and vorticity ω=ωn=ωy, see
e.g., [21, pp. 57]:











1

Re

(

v′′′′−2α2
⋄v′′+α4

⋄v
)

−iα
[

U (η)v′−U ′(η)v
]′
+iαα2

⋄U (η)v= icα
(

−v′′+α2
⋄v
)

,

1

Re

(

−ω′′+α2
⋄ω

)

+iαU (η)ω= icαω−iβU ′(η)v,

(7.21)

where α2
⋄=α2+β2 and where the terms containing the eigenvalue of the temporal problem

have been written on the right hand side. The boundary conditions for the variables v
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and ω are v(0) = v′(0) = v(∞) = v′(∞) = 0 and ω(0) = ω(∞) = 0. Thanks to Squire’s
theorem, see e.g., [21], the transversal disturbances do not modify the linear stability of
the Falkner-Skan flows. However, the preceding equations have been presented since
they represent a step necessary to study the linear stability of the boundary layer with
crossflow component solution to the Cooke equation, as described below.

7.3 Stability of Falkner-Skan-Cooke flow

Consider now the three-dimensional boundary layer in which the direction of the mean
flow parallel to the wall depends on the normal coordinate. We assume that the span-
wise velocity component is the solution to the Cooke equation and that the velocity is
described in the rotated Cartesian frame so that U(η) =Uθ(η)x̂+Wθ(η)ẑ, with the two
components defined in (6.14), independent of x and z. The adimensionalization of the
problem is based on the modulus of the external velocity, namely |Ue|=

√

U2
e +W2

e .
The equations for the linear stability analysis of the 3D perturbations v(ξ,η,ζ,τ) =

v(η)ei (αξ+βζ−αcτ) in the rotated reference frame, with the x axis aligned with the direction
of the external velocity can be written by introducing the scaled Reynolds number

Re1,θ =
|Ue|δ1

ν
=

Ueδ1

νcosθ
=

Re1

cosθ
=

|ψ1|

cosθ
Re=Reθ |ψ1|, (7.22)

with Reθ =Re/cosθ, and by defining the two functions, thanks to (6.14),

Sθ(η,α⋄)=αUθ(η)+βWθ(η)

=α
[

cos2θ f ′(η)+sin2 θg(η)
]

+βsinθcosθ[− f ′(η)+g(η)] (7.23)

and

Rθ(η,α⋄)=−βUθ(η)+αWθ(η)

=−β
[

cos2 θ f ′(η)+sin2θg(η)
]

+αsinθcosθ[− f ′(η)+g(η)], (7.24)

where α⋄ = αx̂+βẑ is the wave vector in the plane of the plate. The Orr-Sommerfeld-
Squire equations for the linear stability of the solution to the Falkner-Skan-Cooke equa-
tions are















1

Reθ

(

v′′′′−2α2
⋄v′′+α4

⋄v
)

−i
∂

∂η

[

Sθ(η,α⋄)v′−
∂Sθ(η,α⋄)

∂η
v
]

+iα2
⋄Sθ(η,α⋄)v= icα

(

−v′′+α2
⋄v

)

,

1

Reθ

(

−ω′′+α2
⋄ω

)

+iSθ(η,α⋄)ω= icαω+i
∂Rθ(η,α⋄)

∂η
v,

(7.25)

where ∂ηSθ(η,α⋄) = αU ′
θ(η)+βW ′

θ(η). The Orr-Sommerfeld-Squire system can be dis-
cretized by introducing the following expansion of the unknowns

v(η)=
I

∑
i=2

viCi(η) and ω(η)=
I

∑
i=1

ωiBi(η). (7.26)
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To implicitly satisfy boundary conditions, the expansion for v is the same as that for φ in
(7.13) and the expansion for ω is the same as that for γ in (6.7). Employing the same basis
functions Ci(η) and Bi(η) as test functions, the Galerkin formulation of the two Eqs. (7.25)
leads to the two algebraic eigenvalue problems

A(α⋄,Reθ)v= cB(α⋄,Reθ)v, Ã(α⋄,Reθ)ω= cB̃(α,Reθ)ω (7.27)

involving the two pairs of matrices

A(α⋄,Reθ)=D4+2α2
⋄D2+α4

⋄M+iReθ

[

Nθ(α⋄)+α2
⋄Sθ(α⋄)

]

, (7.28a)

B(α⋄,Reθ)= iαReθ

(

D2+α2
⋄M

)

(7.28b)

and

Ã(α⋄,Reθ)= D̃2+α2
⋄M̃+iReθ S̃θ(α⋄), (7.29a)

B̃(α,Reθ)= iαReθ M̃. (7.29b)

The matrices M, D2, D4 are the same as in the two-dimensional problem, the matrix D̃2

has already been given in (6.11), M̃ has elements m̃i,j =
∫ ∞

0 Bi(η)Bj(η)dη, i, j≥1 given by

M̃=





















2 −1

−1 2 −1

−1
. . .

. . .

. . .
. . . −1

−1 2





















. (7.30)

Finally the matrices Sθ(α⋄), Nθ(α⋄) and S̃θ(α⋄) have elements defined as follows

sθ
i,j(α⋄)=

∫ ∞

0
Ci(η)Sθ(η,α⋄)Cj(η)dη, i, j≥2, (7.31a)

nθ
i,j(α⋄)=

∫ ∞

0
C ′

i (η)
[

Sθ(η,α⋄)C
′
j(η)−

∂Sθ(η,α⋄)

∂η
Cj(η)

]

dη, i, j≥2, (7.31b)

s̃θ
i,j(α⋄)=

∫ ∞

0
Bi(η)Sθ(η,α⋄)Bj(η)dη, i, j≥1. (7.31c)

For any eigenfunction v of the Orr-Sommerfeld equation with eigenvalue c it is possible
to determine the vorticity ωp which is the particular solution to the nonhomogeneous
Squire equation

[

−ω′′
p+α2

⋄ωp+iReθSθ(η,α⋄)ωp

]

= iReθ [∂ηRθ(η,α⋄)]v(η), (7.32)

supplemented by the homogeneous boundary conditions ωp(0)=0 and ωp(∞)=0. This
second-order equation once recast in weak form yields the linear algebraic system

[

D̃2+α2
⋄M̃+iReθS̃θ(α⋄)

]

ωp= iReθr(α⋄) (7.33)
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with the vector r on the right-hand side defined by

ri(α⋄)=
∫ ∞

0
Bi(η)[∂ηRθ(η,α⋄)]v(η)dη. (7.34)

The longitudinal and spanwise components u(η) and w(η) of the velocity associated
with the considered eigenfunction v(η) can be finally evaluated by solving the two linear
systems

M̃u= i
αq−βp

α2+β2
and M̃w= i

βq−αp

α2+β2
, (7.35)

where

qi =
∫ ∞

0
Bi(η)v

′(η)dη and pi =
∫ ∞

0
Bi(η)ωp(η)dη. (7.36)

A scaled version of Eqs. (7.25) for the unknowns v̂(η̂) = v(η) and ω̂(η̂) = ω(η), with
η̂=η/χ, is



























1

Reθ

(

v̂′′′′−2α̂2
⋄v̂′′+ α̂4

⋄v̂
)

−i
∂

∂η̂

[

χSθ(χη̂,α̂⋄)v̂′−χ2 ∂Sθ(χη̂,α̂⋄)

∂η
v̂
]

+i α̂2
⋄χSθ(χη̂,α̂⋄)v̂= i ĉα̂

(

− v̂′′+ α̂2
⋄v̂
)

,

1

Reθ

(

−ω̂′′+ α̂2
⋄ω̂

)

+iχSθ(χη̂,α̂⋄)ω̂= i ĉα̂ω̂+iχ
∂Rθ(χη̂,α̂⋄)

∂η
v̂,

(7.37)

where α̂⋄=χα⋄ and ĉ=χc. The scaled version of the two eigenvalue problems (7.27) will
be

Â(α̂⋄,Reθ)v̂= ĉB(α̂⋄,Reθ)v̂, ˆ̃A(α̂⋄,Reθ)ω̂= ĉB̃(α̂,Reθ)ω̂, (7.38)

where

Â(α̂⋄,Reθ)=D4+2α̂2
⋄D2+ α̂4

⋄M+iReθχ
[

N̂θ(α̂⋄)+ α̂2
⋄Sθ(α̂⋄)

]

, (7.39a)

ˆ̃A(α̂⋄,Reθ)= D̃2+ α̂2
⋄M̃+iReθχS̃θ(α̂⋄), (7.39b)

with the elements of matrix N̂θ(α̂⋄) defined by

n̂θ
i,j(α̂⋄)=

∫ ∞

0
C ′

i (η)
[

Sθ(η,α̂⋄)C
′
j(η)−χ

∂Sθ(η,α̂⋄)

∂η
Cj(η)

]

dη, i, j≥2. (7.40)

7.4 Results

To test the Orr-Sommerfeld solver for the three-dimensional self-similar boundary layer,
the neutral stability curves for three different values of the βFS parameter have been com-
puted, with αFS always set to one, and for different values of the spanwise wave-number
β.

In Fig. 6, the curve of neutral stability to 2D perturbation for an accelerating boundary
layer with βFS=0.5 is reported. In this case, the favourable pressure gradient has the effect
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Figure 6: Neutral stability curve of two-dimensional disturbances (β=0) for θ=30◦ for an accelerating Falkner-
Skan-Cooke boundary layer with αFS =1 and βFS =0.5.
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Figure 7: Neutral stability curves of three-dimensional disturbances for θ=30◦ for an accelerating Falkner-Skan-
Cooke boundary layer with αFS=1 and βFS=0.5. Solid line: β=0.1. Dashed line: β=0.2. Dotted line: β=0.3.
Dotted-dashed line: β=0.4.

of stabilizing the boundary layer moving the critical Reynolds number to a value which
is approximately ten times that for the Blasius boundary layer, see, e.g., [8, pp. 226].

When three-dimensional perturbations are considered, the situation changes dramat-
ically. A new branch of the neutral stability curve appears for relatively small α, namely
for rather high longitudinal wavelengths, as shown in Fig. 7 where the neutral stability
curves for four different values of the spanwise wave-number, β = 0.1, 0.2, 0.3, 0.4, are
reported. The unstable perturbations in this case are quasi-two-dimensional spanwise-
modulated waves. In the considered interval, the critical Reynolds number diminishes
for increasing transversal wavenumbers.

While for an accelerated 3D boundary layer the instability is dominated by spanwise
perturbations, the contrary is observed for a decelerating 3D boundary layer, whose neu-
tral curves computed for βFS =−0.1 are reported in Fig. 8 for β= 0, 0.1, 0.2, 0.3. In this
case, the flow is increasingly linearly stable for higher wavenumbers of the transversal
perturbation.

When a separated boundary layer is considered, with βFS =−0.1, the instability do-
main in the Re-α plane becomes considerably larger as expected, and the critical Reynolds
number decreases substantially, as previously found for a 2D separated Falkner-Skan
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Figure 8: Neutral stability curves of two and three-dimensional disturbances for θ = 30◦ for a decelerating
Falkner-Skan-Cooke boundary layer with αFS=1 and βFS=−0.1. Solid line: β=0. Dashed line: β=0.1. Dotted
line: β=0.2. Dotted-dashed line: β=0.3.
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Figure 9: Neutral stability curves of two and three-dimensional disturbances for θ=30◦ for a separated Falkner-
Skan-Cooke boundary layer with αFS =1 and βFS =−0.1. Solid line: β=0. Dashed line: β=0.1.

boundary layer. The neutral stability curves for this case are reported in Fig. 9 for β= 0
and β=0.1. The neutral stability curve is found to be largely insensitive to the spanwise
wavelength of the perturbation.

The eigenfunctions corresponding to the most unstable eigenvalue for θ = 30◦ for a
decelerating nonseparated Falkner-Skan-Cooke boundary layer with αFS = 1 and βFS =
−0.1, at values Re=346, α=0.366, β=0.2 are reported in Fig. 10.

All the results presented in this section are given only as an example of the power of
the proposed spectral method for self-similar boundary layer calculations and they do
not pretend to contribute originally to the linear theory of boundary layer stability which
is beyond the purpose of the present paper.

8 Conclusions

In this work a new Galerkin spectral solver for the Falkner-Skan equations has been pro-
posed which exploits a suitable basis of Laguerre functions first proposed by Jie Shen for
fourth order differential equations on the semi-infinite interval [22]. The Falkner-Skan
solver has been completed by a spectral solver for the Cooke equation, governing the self-
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Figure 10: Eigenfunction corresponding to the most unstable eigenvalue for θ = 30◦ for a decelerating non-
separated Falkner-Skan-Cooke boundary layer with αFS = 1 and βFS =−0.1, Re= 346, α= 0.366, β= 0.2. In
lexicographic order: u, v, w, ω. Solid line: modulus. Dashed line: real part. Dotted-dashed line: imaginary
part.

similar profile of the transversal velocity component, to compute the three-dimensional
boundary layer over a flat plate for different values of the external velocity distribution
and for different sweep angles. The proposed solver is simple, since the boundary con-
ditions are satisfied by construction in the spectral approximation and the solution al-
gorithm amounts only to matrix multiplications and linear system solutions within a
Newton iteration.

The paper addresses also the linear stability of the aforementioned base flow in the
parallel approximation by providing a new spectral solver for the Orr-Sommerfeld eigen-
value problem for unconfined boundary layer shear flows. The same algorithmic in-
gredients of the boundary value solvers are employed to tackle the eigenvalue problem
leading to an extremely simple, accurate and stable solver.

All the numerical tests demonstrate the advantages of the proposed numerical tech-
niques to study the linear stability of the considered flows.
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Appendix

A Matrices for the biharmonic Laguerre basis

To discretize differential equations over a semi-infinite interval by means of Laguerre
polynomials, the matrices representing the derivatives of the unknown variable must be
calculated. In this appendix, such matrices are computed in closed form. To this aim we
need to express the first and second derivatives of the basis functions in terms of a linear
combination of Laguerre polynomials times the exponential function.

Let us now start by considering the first derivative of the basis functions. The deriva-
tive of the first two functions can be evaluated directly,

C ′
0(x)=−

1

2
e−

x
2 and C ′

1(x)= e−
x
2

(

1−
1

2
x
)

.

For the derivative of the remaining basis functions, with i ≥ 2, we use the identity

[L
(k)
i−k(x)]′=−L

(k+1)
i−k−1(x) to compute

C ′
1(x)=

e−
x
2

i(i−1)

{

2xL
(2)
i−2(x)−

1

2
x2L

(2)
i−2(x)−x2L

(3)
i−3(x)

}

=
e−

x
2

i(i−1)

{

2xL
(2)
i−2(x)−

1

2
x2L

(2)
i−2(x)−x

[

iL
(2)
i−3(x)−(i−2)L

(2)
i−2(x)

]

}

=
e−

x
2

i(i−1)

{

−
1

2
x2L

(2)
i−2(x)−ix

[

L
(2)
i−3(x)−L

(2)
i−2(x)

]

}

=
e−

x
2

i(i−1)

{

−
1

2
x2L

(2)
i−2(x)+ixL

(1)
i−2(x)

}

,

where in the last step the identity L
(2)
i−3(x)−L

(2)
i−2(x)=−L

(1)
i−2(x) has been exploited. The

identity (3.4) with k=1 is now used to reduce the order of the Laguerre polynomial in the
first term to give

C ′
1(x)=

e−
x
2

i(i−1)

{

−
x

2

[

iL
(1)
i−2(x)−(i−1)L

(1)
i−1(x)

]

+ixL
(1)
i−2(x)

}

=
e−

x
2

i(i−1)

x

2

{

−iL
(1)
i−2(x)+(i−1)L

(1)
i−1(x)+2iL

(1)
i−2(x)

}

=
e−

x
2

2i(i−1)

{

ixL
(1)
i−2(x)+(i−1)xL

(1)
i−1(x)

}

=
x−

x
2

2i(i−1)

{

i(i−1)
[

Li−2(x)−Li−1(x)
]

+(i−1)i
[

Li−1(x)−Li(x)
]

}

=
e−

x
2

2

[

Li−2(x)−Li(x)
]

.
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We proceed similarly for the second derivatives. The second derivative of the first two
basis functions is

C ′′
0 (x)=

1

4
e−

x
2 and C ′′

1 (x)=−e−
x
2

(

1−
1

4
x
)

.

For the other basis functions we obtain

C ′′
i (x)=

d

dx
C ′

i (x)=−
e−

x
2

4

[

Li−2(x)−Li(x)
]

+
e−

x
2

2

[

−L
(1)
i−3(x)+L

(1)
i−1(x)

]

=
e−

x
2

4

[

−2L
(1)
i−3(x)+2L

(1)
i−1(x)−L

(0)
i−2(x)+L

(0)
i (x)

]

.

Thanks to the identity

L
(1)
i−1(x)−L

(1)
i−3(x)=L

(1)
i−1(x)−L

(1)
i−2(x)+L

(1)
i−2(x)−L

(1)
i−3(x)

=L
(0)
i−1(x)+L

(0)
i−2(x)= Li−1(x)+Li−2(x),

we obtain finally

C ′′
i (x)=

e−
x
2

4

[

2Li−2(x)+2Li−1(x)−Li−2(x)+Li(x)
]

=
e−

x
2

4

[

Li−2(x)+2Li−1(x)+Li(x)
]

.

The basis functions Ci(x), i=0,1,2,··· , and their first and second derivatives are collected
in the following table:

C0(x)= e−
x
2 C1(x)=xe−

x
2 Ci(x)= e−

x
2 [Li−2(x)−2Li−1(x)+Li(x)]

C ′
0(x)=− 1

2 e−
x
2 C ′

1(x)= e−
x
2
(

1− 1
2 x

)

C ′
i (x)= 1

2 e−
x
2 [Li−2(x)−Li(x)]

C ′′
0 (x)= 1

4 e−
x
2 C ′′

1 (x)=−e−
x
2
(

1− 1
4 x

)

C ′′
i (x)= 1

4 e−
x
2 [Li−2(x)+2Li−1(x)+Li(x)]

where i≥2.
Once the derivatives of the basis functions have been expressed by means of La-

guerre Li(x) polynomials, it is straightforward to compute the entries of the matrices
corresponding to the derivative operators in weak form exploiting the orthogonality re-
lationship

∫ ∞

0
e−xLi(x)Lj(x)dx=δi,j, i, j≥0, (A.1)

or in the simplest cases, by direct calculation.

A.1 First order derivative matrix

The matrix F representing the first derivative in the considered Laguerre basis has ele-
ments defined by

fi,j =
∫ ∞

0
Ci(x)C ′

j(x)dx, i, j≥0. (A.2)
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Also this matrix is pentadiagonal and is found to be antisymmetric but for the first diag-
onal element, according to

F=
1

2









































−1 1 1

−1 0 1 −1

−1 −1 0 −2 1

1 2 0 −2 1

−1 2 0
. . .

. . .

−1
. . .

. . .
. . . 1

. . .
. . . 0 −2 1

−1 2 0 −2

−1 2 0









































. (A.3)

A.2 Second order derivative (stiffness) matrix

The second order stiffness matrix S=D2, after integration by parts, has elements defined
by

si,j =
∫ ∞

0
C ′

i (x)C ′
j(x)dx, i, j≥0. (A.4)

This matrix is again symmetric and always pentadiagonal, its entries being

D2=
1

4









































1 −1 −1

−1 2 1 1

−1 1 2 0 −1

1 0 2 0 −1

−1 0 2
. . .

. . .

−1
. . .

. . .
. . . −1

. . .
. . .

. . . 0 −1

−1 0 2 0

−1 0 2









































. (A.5)

A.3 Third order derivative matrix

The elements of the matrix corresponding to the weak third order derivative are, after
integration by parts,

ti,j =
∫ ∞

0
C ′

i (x)C ′′
j (x)dx, i, j≥0. (A.6)
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The profile of T is still pentadiagonal and its entries are found to be

T=
1

8





































−1 3 −1

1 −4 3 1

1 −3 0 −2 −1

−1 2 0 −2 −1

1 2
. . .

. . .
. . .

1
. . .

. . . −2 −1
. . . 2 0 −2

1 2 0





































. (A.7)

A.4 Fourth order derivative matrix

The elements of matrix Q=D4 of the fourth order derivative, after two successive inte-
grations by parts, are defined by

qi,j =
∫ ∞

0
C ′′

i (x)C ′′
j (x)dx, i, j≥0. (A.8)

The pentadiagonal symmetric matrix D4 has entries

D4=
1

16









































1 −3 1

−3 10 −5 −1

1 −5 6 4 1

−1 4 6 4 1

1 4 6
. . .

. . .

1
. . .

. . .
. . . 1

. . .
. . .

. . . 4 1

1 4 6 4

1 4 6









































. (A.9)

A.5 Mass matrix

The mass matrix M with elements

mi,j=
∫ ∞

0
Ci(x)Cj(x)dx, i, j≥0, (A.10)
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is symmetric and is found to be pentadiagonal, with the following entries:

M=









































1 1 1

1 2 3 −1

1 3 6 −4 1

−1 −4 6 −4 1

1 −4 6
. . .

. . .

1
. . .

. . .
. . . 1

. . .
. . .

. . . −4 1

1 −4 6 −4

1 −4 6









































. (A.11)

A.6 Matrices for the harmonic basis

For completeness we give the matrix D̃2 of the second order derivative, after integration
by parts, and the mass matrix M̃ associated with the basis

B0(η)≡ e−
η
2 and Bi(η)≡

ηe−
η
2 L

(1)
i−1(η)

i
, for i≥1. (A.12)

The elements of the matrices are defined respectively by

d̃2
i,j =

∫ ∞

0
B′

i(η)B
′
j(η)dη and m̃i,j=

∫ ∞

0
Bi(η)Bj(η)dη, for i, j≥0.

Both matrices are symmetric tridiagonal and are as follows:

D̃2=
1

4

























1 −1

−1 2 1

1 2 1

1
. . .

. . .

. . .
. . . 1

1 2

























and M̃=

























1 1

1 2 −1

−1 2 −1

−1
. . .

. . .

. . .
. . . −1

−1 2

























. (A.13)
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