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Abstract. A unified process for the construction of hierarchical conforming bases on
a range of element types is proposed based on an ab initio preservation of the under-
lying cohomology. This process supports not only the most common simplicial ele-
ment types, as are now well known, but is generalized to squares, hexahedra, prisms
and importantly pyramids. Whilst these latter cases have received (to varying de-
grees) attention in the literature, their foundation is less well developed than for the
simplicial case. The generalization discussed in this paper is effected by recourse to
basic ideas from algebraic topology (differential forms, homology, cohomology, etc)
and as such extends the fundamental theoretical framework established by the work
of Hiptmair [16–18] and Arnold et al. [4] for simplices. The process of forming hierar-
chical bases involves a recursive orthogonalization and it is shown that the resulting
finite element mass, quasi-stiffness and composite matrices exhibit exponential or bet-
ter growth in condition number.
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1 Introduction

High order curl and div conforming finite and boundary elements have become increas-
ingly popular over recent years due to the demand for accurate and efficient solvers in,
for, example, electromagnetics. Generally, these higher order schemes provide higher
convergence rates and are correspondingly more economical than their lower order coun-
terparts. For problems with singular solutions, however, the convergence rate is indepen-
dent of the order of these bases if elements with uniform size and polynomial order are
employed. This makes the use of adaptive (both in terms of element size (h) and order (p))
schemes highly attractive. This paper concerns the construction of hierarchical conform-
ing basis functions, which are essential to the development of such adaptive strategies.
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High order conforming bases on simplices, squares and hexahedra were proposed
as far back as 1980 [24], comprising unisolvent spaces together with degrees of freedom
identified with submanifolds. Numerous variations on this theme followed, eg [10, 14].
In many ways these constructions were founded on specific realizations of Nédélec’s
original idea.

Following the early work of Bossavit [7, 8], algebraic topology (AT) (principally dif-
ferential forms, homology and cohomology) provided the essential tools on which such
conforming bases could be placed on a sound theoretical footing. Subsequently these
techniques were further developed by Hiptmair [16–18], Bossavit [9] and notably Arnold
et al. [4] where the theoretical foundations for spaces on simplices are fully developed for
conforming spaces of arbitrary dimension. The construction of spaces on other element
geometries (squares, hexahedra, prisms, pyramids) has received less attention. Although
constructions exist, these rarely follow the AT framework, relying instead on Nédélec’s
original prescription. Exceptions to this are Bluck et al. [5] in 2D. Importantly, the desire
for geometric flexibility in finite element methods leads to the need for schemes which
employ both tetrahedra and hexahedra. This necessarily leads to a requirement for pris-
matic and pyramidal elements. Development of conforming bases on pyramids is rare
and most notable in this context is the work of Gradinaru & Hipmair [12] and Graglia
et al. [13]. Such functions are not wholly polynomial in nature and as a result are not
directly amenable to construction via the Koszul operator employed by Arnold et al.

The development of hierarchical conforming bases is relatively recent, with much of
the early work due to Webb [27], Andersen et al. [2, 3] in the context of curl-conforming
simplicial finite elements. Hiptmair [16] briefly discusses the construction of hierarchical
bases in terms of spaces of differential forms, again applied to simplices. Ilic & Notaros
[19] develop curl-conforming hierarchical bases on curvilinear hexahedra, although poor
conditioning is an issue. This issue of poor conditioning of the resulting matrix equations
frequently arises in the development of hierarchical schemes. Indeed the bases developed
by Webb are also very poorly conditioned. Techniques to address this have been the sub-
ject of much recent work, notably Ilic & Notaros [20], Ingelstrom [21,22] for multilevel FE
solvers using simplicial elements, Abdul-Rahman at al. [1] and Schöberl [25]. It has been
shown by Graglia et al. [15] that hierarchical curl conforming bases can be classified as
type A, B or C according to their approximation properties. Most recently Xin & Cai [28]
(for triangles) and Xin et al. [29] (for tetrahedra) have investigated the dependence of
condition number on element order for certain type A hierarchical curl-conforming basis
functions. In the work presented here, we will develop a very general construction on a
wide range of element types and for both 1 and 2-forms (curl and div conforming respec-
tively). We will follow the Graglia classification (where appropriate), extending them to
2-form cases and perform a conditioning analysis analogous to [29] for all element types.

The contributions contained in this paper are as follows:

1. The construction of conforming spaces of differential forms valid for all element
types (simplices, hexahedra, prisms and pyramids) and of all orders, based on an
ab initio preservation of the underlying cohomology.
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2. Novel spaces for pyramids (essential for a conforming representation on mixed el-
ement geometries) which are piecewise polynomial in nature, allowing an applica-
tion of the Koszul operator.

3. A general (ie non element-type specific) geometric decomposition of these function
spaces over submanifolds, allowing continuity of trace between all element types.

4. An algorithm for the construction of corresponding hierarchical bases up to arbi-
trary order.

5. It is shown that these bases give rise to mass, quasi-stiffness and composite ma-
trices which grow exponentially or better with polynomial degree. In particular,
tetrahedra and hexahedra exhibit consistently better conditioning than both prisms
and pyramids.

In Section 2 we construct (directly from the cohomological requirements) canonical
function spaces on a wide range of element geometries of all orders. For the case of sim-
plices, this is merely a special case (in 2 and 3 dimensions) of the work of Arnold et al. and
is included for completeness. For tensor product spaces (squares, hexahedra, prisms),
whilst an approach based on the application of the Koszul operator is entirely feasible,
we instead make use of the Künneth formula — again a basic tool in AT as this leads
much more directly to the corresponding canonical spaces. For the pyramidal case, the
Koszul operator is applied to a recently developed class of piecewise polynomial func-
tions [6]. These functions are not yet appropriate as finite/boundary elements as they do
not naturally enforce continuity of trace at element boundaries. This is addressed in Sec-
tion 3 where a geometric decomposition is developed which results in appropriate DOF
defined in terms of test forms which span sub-spaces of the canonical function space.
The construction of bases then becomes largely a matter of the choice of a basis for these
test forms. We construct hierarchical spaces of test forms which lead to an explicit pro-
jection operator, written in terms of the DOF. Inversion of the projection operator leads
naturally to appropriate hierarchical bases. Finally, explicit examples up to 2nd or 3rd
order for all elements considered are tabulated in Section 4 together with an analysis of
condition number growth of the mass, quasi-stiffness and composite matrices.

2 Construction of canonical spaces

As is increasingly common, we shall use the calculus of differential forms to describe this
approach. It is not an aim of this paper to provide an introduction to these methods; there
are numerous, more instructive sources available (e.g. [23]). However, we will introduce
some relevant basic properties, so as to fix our notation.

2.1 Properties of differential forms

A differential form of order r on a manifold M on dimension m is a totally anti-symmetric
tensor of type (0,r). That is, they are entirely covariant. We have the following general
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definition: If we denote the vector space of r−forms at a point p ∈ M by Ωr
p(M), an

element ωr ∈Ωr
p(M) is expanded as

ωr =
1

r!
ωr

µ1µ2···µr
dxµ1 ∧dxµ2 ∧···∧dxµr . (2.1)

Note that for consistency with the above definitions, we define 0-forms to be the space of
real functions. When no confusion can arise we will usually drop the index ’r’.

2.1.1 Exterior derivative

The exterior derivative d is a map d :Ωr(M)−→Ωr+1(M) whose action on an r-form ω is
defined by

dω=
1

r!

(
∂

∂xν
ωµ1···µr

)
dxν∧dxµ1 ∧···∧dxµr . (2.2)

What follows is an important formula, which is easy to prove from the basic definitions:

d2ω=d(dω)=0. (2.3)

The following Leibnitz formula can also be obtained:

d(ωq∧ηr)=(dωq)∧ηr+(−1)q ωq∧(dηr). (2.4)

There are two subspaces of Ωr(M) which will be central to our subsequent analysis:
The space of r-forms whose exterior derivatives vanish are denoted by Zr(M) and is often
termed the null space of r-forms. Any ωr∈Zr(M) is said to be closed. The space of r-forms
which are the exterior derivative of some (r−1)-form∈Ωr−1(M) is denoted by Br(M).
Any ωr∈Br(M) is said to be exact and ∃µr−1∈Ωr−1(M) such that ωr=dµr−1. Equivalently,
Br(M)=dΩr−1(M)= Im(d). Using (2.3) it is clear that Br(M)⊂Zr(M), and we can then
define so-called de Rham cohomology groups as the quotient Hr(M) = Zr(M)

/
Br(M).

The relevance of these cohomology groups is that for the C∞ case (ie, non-discrete) they
are topological invariants. This property follows from the duality between these groups
and homology groups, expressed by de Rham’s theorem [23]:

Theorem 2.1 (de Rham’s theorem). If M, is a compact manifold, Hr (M) and Hr (M) are
finite-dimensional, then the map Λ : Hr (M)×Hr (M)→R defined by

Λ([c],[ω])=
∫

c
ω (2.5)

is bilinear and non-degenerate. Thus Hr (M) is the dual vector space of Hr (M).

Essentially, it is this feature of the continuum (the duality of homology and cohomol-
ogy) which we seek to mimic in the discrete case. An important result for the subsequent
analysis is that for any contractible manifold M:

Hr (M)=

{
R, if r=0,
∅, if r>0.

(2.6)
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2.1.2 Pull-back of differential forms

Consider a map f : M−→N between two manifolds M and N. This map also results in a
corresponding map between tangent spaces in the manifolds, namely a push-forward:

f∗ : TpM→Tf (p)N. (2.7)

Differential forms, however, which are operators on tangent spaces, are then subject to a
corresponding map f∗, called the pull-back, i.e.

f ∗ : Ω∗(N)→Ω∗(M). (2.8)

Note that this map acts in the opposite sense as f and f∗. It is also important to note that
the exterior derivative commutes with the pull-back, i.e.

d f ∗ω= f ∗dω. (2.9)

In our applications we will usually consider f to be a map from an intrinsic space spec-
ified on a reference element to a manifold in an appropriate element in physical space.
This is usually done via interpolatory shape functions. The pull-back then takes differen-
tial forms from our physical element onto differential forms on the reference element.

2.1.3 Trace and continuity

The trace of a differential form is essentially the restriction of a form defined on a man-
ifold M to a sub-manifold Γ⊂ M and is written as ωr|Γ or trΓ (ω

r). This is an important
example of the application of the pull-back. If Γ⊂ M then we may always define a map
f : Γ→M and we can define the trace as

trΓ (ω
r)= f ∗ωr. (2.10)

It can be proven that the above expression is itself an r-form on Γ⊂M. Note also that the
trace then commutes with the exterior derivative. Let us now consider a partitioning of
a manifold M into disjoint manifolds M1 and M2 with a common boundary Γ. Define an
r-form on each of M1 and M2 by αr and βr respectively. Then the two forms agree on Γ if

trΓ (α
r)= trΓ (βr). (2.11)

A useful result is that the trace is distributive over the exterior product, i.e.

trΓ (α∧β)= trΓ (α)∧trΓ (β) . (2.12)

Differential forms naturally possess the degrees of continuity that are required by real
physical quantities such as electric fields (1-forms) and magnetic fluxes (2-forms). The
apparent mixture of continuity requirements is simply a misleading result of the usual
vector calculus, which defines continuity in terms of individual vector components. This
problem is elegantly resolved by use of differential forms, as their continuity is defined
in terms of their operations as mappings on tangent vectors.
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2.1.4 Inner product

Note that two r-forms α and β can always be combined to give an m-form α∧∗β, where ∗
is a well-defined Hodge operator. The integral of α∧∗β over M is then well defined. We
thus define an inner product of two r-forms by,

(α,β)=
∫

α∧∗β. (2.13)

Since α∧∗β=β∧∗α, the inner product is symmetric, i.e.

(α,β)=(β,α). (2.14)

Any two r-forms α and β for which (α,β)=0 are said to be orthogonal. It is important to
note that we can form appropriate Hilbert spaces using this inner product. Using Stokes
theorem, the following useful identity may be derived [23]:

(dα,β)=
(

α,d†β
)
+
∫

∂M

α∧∗β. (2.15)

2.2 Canonical spaces

We begin by considering an arbitrary m-dimensional element M′∈R
m on which we have

spaces of differential forms Ωr (M′). We will assume that there exists a parent element
M and a well-defined map f : M → M′. These parent elements are the usual base sim-
plices, cartesian product spaces, prisms and pyramids on which appropriate intrinsic
coordinates are defined. For any ω′ ∈ Ωr (M′) we have, by pull-back, a corresponding
ω∈Ωr (M). In this way, our analysis is applicable to general curvilinear elements.

Throughout this work, we will be concerned with polynomial differential forms ω∈
Ωr (M). These are forms where ωr

µ1µ2···µr
in (2.1) is a polynomial in the intrinsic coordi-

nates on M. Before we move onto particular cases, it is useful to begin with a general
discussion on the form that such spaces take. Given any linear operator (in this case
the exterior derivative), we can clearly decompose any finite dimensional (i.e. Discrete,
hence the h subscript) Ωr

h(M) into its null subspace and its complement as follows

Ωr
h(M)=Zr

h(M)⊕(Zr
h(M))c , (2.16)

where the superscript c in (2.16) represents the complement. It is a basic result of linear
algebra that

(
Zr

h(M)
)c ∼= Im(d)= Br+1

h (M) (as described in Section 2.1.1), where ∼= indi-
cates isomorphism. An isomorphism is a map which is bijective (1-1 and onto, hence an
inverse exists). Note it is not necessary for the elements of the spaces to be of the same
kind, merely that for each element in one space there is one (and only one) element in
the other. We can, as with C∞ differential forms, formally compute cohomology groups.
There is no guarantee, however, that these satisfy de Rham’s theorem, i.e. that they are
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dual to the underlying homology. Indeed, they may well not even be topological invari-
ants at all. We must then ensure that this is the case, and it is this requirement which

motivates the next step: If the (r+1)th-cohomology group is to be trivial (as it is for all of
the cases discussed here, i.e. contractible manifolds), then we see immediately that

(Zr
h (M))c∼=Zr+1

h (M). (2.17)

This means that there must exist an isomorphism κ such that

Ωr
h (M)=Zr

h (M)⊕κ
(

Zr+1
h (M)

)
. (2.18)

It is important to note that this construction is invariant under pull-back, and certainly
does not impose any restriction to affine maps on M. The isomorphism κ is certainly not
unique. Note that this isomorphism is called a lifting operator by [18], where the Poincaré
map is used to construct Whitney elements on simplices. More recently the Koszul op-
erator has been used in this role [4] and it is this approach we take here. Specifically, for
any r-form ω defined as in (2.1), the action of Koszul operator is defined as

κωr =
1

r!

r

∑
i=1

(−1)i+1ωr
µ1···µi···µr

xµi dxµ1 ∧··· d̂xµi ∧···∧dxµr , (2.19)

where the d̂xµi term is omitted.
One final important point is to verify that these spaces are comprised of linearly in-

dependent sets of forms, for if this is not the case the essential property of unisolvency
will not hold. This issue is resolved in the following theorem:

Theorem 2.2. If the elements of the spaces Ωr−1
h (M) and Zr+1

h (M) are linearly independent,

then the elements of Ωr
h(M)=Zr

h (M)⊕κ
(
Zr+1

h (M)
)

are also linearly independent.

Proof. Noting that Zr
h(M) = dΩr−1

h (M) let us assume that there are elements of Zr
h (M)

which are are linearly dependent. That is, ∃αi∈Ωr−1
h (M) such that dα1=∑

N1
i=2bidαi where

N1=dimΩr−1
h (M)−1 and bi are constants, not all zero. Thus

d

(
α1−

N1

∑
i=2

biαi

)
=0 =⇒ α1−

N1

∑
i=2

biαi= k (2.20)

for some constant k. Hence α1 =∑
N1
i=2biαi+k and then Ωr−1

h (M) is not linearly indepen-
dent. This is a contradiction and as a result Zr

h(M) is linearly independent.

We now apply a similar argument to the space κ
(
Zr+1

h (M)
)
: Let us assume that

κ
(
Zr+1

h (M)
)

is linearly dependent. That is, ∃ωi∈Zr+1
h (M) such that κ(ω1)=∑

N2
j=2cjκ(ω1)

where N2 =dimZr+1
h (M) and ci are constants, not all zero. Thus from the linearity of κ,

we have

κ

(
ω1−

N2

∑
j=2

cjωj

)
=0 =⇒ ω1−

N2

∑
j=2

cjωj=0. (2.21)
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Hence ω1 =∑
N
i=2cjωj and then Zr+1

h (M) is not linearly independent. This is again a con-

tradiction and as a result κ
(
Zr+1

h (M)
)

must be linearly independent.

It remains to show that taken together, the spaces Zr
h(M) and κ

(
Zr+1

h (M)
)

are mutu-
ally independent: If this is not the case, then ∃bi,cj,αi,ωj such that

d

(
N1

∑
i=2

biαi

)
+κ

(
N2

∑
j=2

cjωj

)
=0, (2.22)

where not all of the bi and cj are zero. Applying the exterior derivative to both sides gives

dκ

(
N2

∑
j=2

cjωj

)
=0 =⇒

(
N2

∑
j=2

cjωj

)
=0, (2.23)

which implies that Zr+1
h (M) is not linearly independent. Again we have a contradiction

and the proof is complete.

2.3 Simplexes

The results on simplices are specific realizations of the results given in [4] and are pre-
sented here for completeness and to aid the subsequent development for other element
geometries. Before we proceed, it is useful to define some polynomial spaces which we
will use throughout the following discussion. We denote the complete space of polyno-
mials of order ≤ k on a simplex M in n-dimensions as Pn,k(M) and the space of homoge-
neous polynomials of order = k as P̃n,k(M). We will frequently remove the dependence
on M where no confusion arises.

The dimension of these polynomial spaces is given by

dimPn,k=

(
n+k

k

)
, dimP̃n,k=

(
n+k−1

k

)
. (2.24)

2.3.1 Two dimensional case

In two space dimensions we define a graded algebra of polynomial differential forms as
follows: We select a polynomial space of 0-forms, complete to order k0. Thus we have

Ω0
k0
=P2,k0

=
{

ζ l
1ζm

2 ;l+m≤ k0

}
. (2.25)

Similarly we also define a complete space of 2-forms, complete to order k2, so we have

Ω2
k2
=P2,k2

dζ1∧dζ2. (2.26)

Note that the exterior derivative of all 2-forms vanish in two dimensions so this space is
also the null space of 2-forms, ie Z2

k2
=Ω2

k2
. We then have a graded algebra defined by

Ω∗=Ω0
k0
⊕Ω1

k0k2
⊕Ω2

k2
, (2.27)
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where
Ω0

k0
=P2,k0

, Ω1
k0k2

=Z1
k0
⊕κ
(

Ω2
k2

)
, Ω2

k2
=P2,k2

dζ1∧dζ2. (2.28)

Note that Z1
k0

is uniquely defined by Ω0
k0

since Z1
k0
=dΩ0

k0
. Hence, using (2.25) we have

Z1
k0
=

k0

⊕
j=1

⊕
l+m=j

(
lζ l−1

1 ζm
2 dζ1+mζ l

1ζm−1
2 dζ2

)
. (2.29)

Applying the Koszul operator to (2.26) then gives:

κ(Ω2
k2
)=

k2

⊕
j=0

⊕
l+m=j

ζ l
1ζm

2 (ζ2dζ1−ζ1dζ2) (2.30)

We can easily compute the dimensions of the spaces of differential forms since dimZ1
k0
=

dimP2,k0
−1, and the dimension of a space is preserved under isomorphism, hence:

dimΩ0
k0
=

1

2
(k0+1)(k0+2), (2.31a)

dimΩ1
k0k2

=
1

2
(k0+1)(k0+2)+

1

2
(k2+1)(k2+2)−1, (2.31b)

dimΩ2
k2
=

1

2
(k2+1)(k2+2). (2.31c)

We have thus obtained all of the polynomial differential forms needed to define the
graded algebra (2.27): These 0-form and 2-form spaces are complete (and linearly inde-
pendent) up to orders k0 and k2 respectively. As a result of this and Theorem 2.2 we see
that Ω1

k0k2
is linearly independent. It is desirable (though not necessary) for the 1-form

spaces to be complete up to some degree: Firstly this provides us with homogeneous spaces
of forms whose orders of approximation are identical along all edges. Secondly, such a
feature is useful in the confirmation of commuting diagram properties, (although it is the
opinion of the author that such properties are to be viewed as sufficient, rather than nec-
essary conditions). It can easily be shown that the 1-form spaces Ω1

k0k2
are complete up

to order min(k0−1,k2+1). Equivalently, then, for Ω1
k0k2

to be complete up to order k0−1,
we must have k2≥k0−2. In Section 3.6, the satisfaction of commuting diagram properties
will require that

d†Ω1
k0k2

⊂Ω0
k0

and d†Ω2
k2
⊂Ω1

k0k2
, (2.32)

where the adjoint exterior derivative is based on a trivial intrinsic metric.
These provide a further (sufficient) constraint on k2 as follows: Since the Ω1

k0k2
are

polynomial 2-forms of degree at most max(k0−1,k2+1) then from the first expression in
(2.32) we would require k2+1≤k0 ⇐⇒ k2<k0. Consideration of the second expression in
(2.32) leads to a similar constraint (strictly speaking, it leads to k2 ≤ k0 but this is weaker
than the first). Summarizing, then, in such circumstances we would require k0>k2≥k0−2,
that is, we have either k2= k0−1 or k2= k0−2.
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If we choose k2=k0−1, then the dimension of the 1-form spaces reduce to the expres-
sions derived by [16] and result in spaces analogous to Nédélecs first family. Alterna-
tively choosing k2 = k0−2 results in Nédélecs second family. Note that choices outside
these limits can be made, but will result in inhomogeneous spaces with differing orders
of approximation on each edge, as has been demonstrated in [5]. Homogeneous spaces
arise only when k2 = k0−1 or k2 = k0−2. Generally, then, for any given order k we have
two homogeneous graded algebras, given by

Ω∗
k =Ω0

k⊕

{
Ω1

k(k−1)⊕Ω2
k−1,

Ω1
k(k−2)⊕Ω2

k−2.
(2.33)

Implementations of this two dimensional case are given in [5] in the context of boundary
elements and we refer the reader to that article for more specific details.

2.3.2 Three dimensional case

In three space dimensions we follow a process largely identical to the two dimensional
case: Firstly we select a polynomial space of 0-forms, complete to order k0. Thus we have

Ω0
k0
=P3,k0

=
{

ζ l
1ζm

2 ζn
3 ;l+m+n≤ k0

}
. (2.34)

We then define a complete space of 3-forms, complete to order k3, so we have

Ω3
k3
=P3,k3

dζ1∧dζ2∧dζ3. (2.35)

Note that now the exterior derivative of all 3-forms vanish so this space is also the null
space of 3-forms, ie Z3

k3
=Ω3

k3
. We then have a tentative graded algebra defined by

Ω∗=Ω0
k0
⊕Ω1

k0k2
⊕Ω2

k2k3
⊕Ω3

k3
, (2.36)

where Ω1
k0k2

=Z1
k0
⊕κ
(

Z2
k2

)
and Ω2

k2k3
=Z2

k2
⊕κ
(
Ω3

k3

)
.

Note again that Z1
k0

is uniquely defined by Ω0
k0

since Z1
k0
= dΩ0

k0
. Hence, from (2.34)

we have

Z1
k0
=

k0

⊕
j=1

⊕
l+m+n=j

(
lζ l−1

1 ζm
2 ζn

3 dζ1+mζ l
1ζm−1

2 ζn
3 dζ2+nζ l

1ζm
2 ζn−1

3 dζ3

)
. (2.37)

For the next step to complete the definition of the graded algebra we need to define
Z2

k2
. Unlike the definitions of Z1

k0
and Z3

k3
, this is a non-trivial activity. To obtain such a

space we define a prototype space Z2
p,k2

as the space of 2-forms with coefficients which

are themselves complete spaces of polynomials up to order k2. Furthermore we can write
Z2

p,k2
as the direct sum of homogeneous null spaces Z̃2

p,k of orders up to and including k2.
Hence

Z2
p,k2

= Z̃2
p,0⊕Z̃2

p,1⊕···⊕Z̃2
p,k2

. (2.38)
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These spaces have dimension given by

dimZ̃2
p,k2

=3

(
2+k2

k2

)
, (2.39)

dimZ2
p,k2

=3

(
3+k2

k2

)
. (2.40)

We now need to reduce the dimension of this space by selecting only those forms
which vanish under the application of the exterior derivative. For each of the proto-
type homogeneous null spaces Z̃2

p,k, the action of the exterior derivative will produce a

homogeneous polynomial 3-form of degree k−1. We can create an incidence matrix M
where the rows are identified with the members of Z̃2

p,k and the columns are identified

with 3-forms Ω̃3
k−1 whose coefficients are members of P̃3,k−1. The entries correspond to

the action of the exterior derivative on each of the members of Z̃2
p,k. We can construct an

augmented matrix, AM, by appending the identity matrix of order dimZ̃2
p,k to M, giving

AM=
[

M I
]
.

The next step is to perform a row reduction of M on the matrix AM, giving a matrix
AMred=

[
Mred N

]
. We can then construct a matrix Nred by removing any of the rows

from N for which Mred is not rank deficient. The null space Z̃2
p,k is then given by

Z̃2
k =[Nred]Z̃

2
p,k. (2.41)

We can repeat this process for every order k=0,··· ,k2, and construct the 2-form null space
from

Z2
k2
= Z̃2

0⊕Z̃2
1⊕···⊕Z̃2

k2
. (2.42)

Note that for each order k, the number of terms of order k in the prototype space Z̃2
p,k is

3dim P̃3,k. The rank of the incidence matrix M is precisely the dimension of the homoge-
neous polynomial space of degree k−1, that is dimP̃3,k−1. Note that by this construction,
Z2

k2
is linearly independent. The dimension of this space can be computed as

dimZ̃2
k2
=3

k2

∑
k=0

dim P̃3,k−
k2−1

∑
k=0

dimP̃3,k

= 3dim P̃3,k2
+2

k2−1

∑
k=0

dimP̃3,k=3

(
2+k2

k2

)
+2

(
2+k2

k2−1

)
. (2.43)

Using the above expression and (2.42), and with a little algebra, one can show that

dimZ2
k2
=

1

6
(k2+1)(k2+2)(2k2+9). (2.44)
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In fact this process results in the following closed form expression for the 2-form null
spaces:

Z2
k2
=

k2

⊕
j=0

{
⊕

m+n=j
dζm+1

2 ∧dζn+1
3 ⊕ ⊕

l+n=j
dζn+1

3 ∧dζ l+1
1 ⊕ ⊕

l+m=j
dζ l+1

1 ∧dζm+1
2

}

k2

⊕
j=0

⊕
l+m+n=j
1≤m≤j

(
ζ l+1

1 dζm
2 ∧dζn+1

3 −ζm
2 dζn+1

3 ∧dζ l+1
1

)

k2

⊕
j=0

⊕
l+m+n=j
1≤m≤j

(
ζm

2 dζn+1
3 ∧dζ l+1

1 −ζn+1
3 dζ l+1

1 ∧dζm
2

)
. (2.45)

Applying the Koszul operator then gives

κ(Z2
k2
)=

k2

⊕
j=0





⊕
m+n=j

ζm
2 ζn

3 (ζ3dζ2−ζ2dζ3)⊕

⊕
l+n=j

ζ l
1ζn

3 (ζ1dζ3−ζ3dζ1)⊕

⊕
l+m=j

ζ l
1ζm

2 (ζ2dζ1−ζ1dζ2)





k2

⊕
j=0

⊕
l+m+n=j
1≤m≤j

(
m(n+1)ζ l+1

1 ζm−1
2 ζn

3 (ζ3dζ2−ζ2dζ3)
−(l+1)(n+1)ζ l

1ζm
2 ζn

3 (ζ1dζ3−ζ3dζ1)

)

k2

⊕
j=0

⊕
l+m+n=j
1≤m≤j

(
(l+1)(n+1)ζ l

1ζm
2 ζn

3 (ζ1dζ3−ζ3dζ1)
−(l+1)mζ l

1ζm−1
2 ζn+1

3 (ζ2dζ1−ζ1dζ2)

)
. (2.46)

Finally, κ(Ω3
k3
) is readily obtained by application of (2.19) to (2.35):

κ(Ω3
k3
)=

k3

⊕
j=0

⊕
l+m+n=j

ζ l
1ζm

2 ζn
3 (ζ1dζ2∧dζ3+ζ2dζ3∧dζ1+ζ3dζ1∧dζ2) (2.47)

All of the required elements of the graded algebra (2.36) are thus obtained. Again, we
can easily compute the dimensions of the spaces of differential forms since dimZ1

k0
=

dimP3,k0
−1, and the dimension of a space is preserved under isomorphism, hence:

dimΩ0
k0
=

1

6
(k0+1)(k0+2)(k0+3), (2.48a)

dimΩ1
k0k2

=
1

6
(k0+1)(k0+2)(k0+3)+

1

6
(k2+1)(k2+2)(2k2+9)−1, (2.48b)

dimΩ2
k2k3

=
1

6
(k2+1)(k2+2)(2k2+9)+

1

6
(k3+1)(k3+2)(k3+3), (2.48c)

dimΩ3
k3
=

1

6
(k3+1)(k3+2)(k3+3). (2.48d)
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Using Theorem 2.2 and the linear independence of Ω0
k0

and Z2
k2

we see that Ω1
k0k2

is lin-

early independent. In the same way the linear independence of Ω2
k2k3

is ensured by that of

Ω1
k0k2

and Ω3
k3

. Constraints on k0, k2 and k3 can be arrived at in an identical manner to that
in Section 2.3.1 for two dimensional simplexes. The 0-forms and 3-forms are complete to
orders k0 and k3 respectively; 1-forms are complete to order min(k0−1,k2+1) and 2-forms
are complete to order min(k2,k3+1). The desire for homogeneous spaces and commuting
properties leads to an identical set of constraints for k0 and k2, namely k0>k2≥k0−2. The
corresponding analysis for 2 and 3 forms leads to the additional constraint k2≥k3≥k2−1.
These guarantee that the following properties are satisfied:

d†Ω1
k0k2

⊂Ω0
k0

, d†Ω2
k2k3

⊂Ω1
k0k2

and d†Ω2
k3
⊂Ω2

k2k3
. (2.49)

As a result, in such circumstances, for any given order k we have four possible graded
algebras, given by

Ω⋆

k =Ω0
k⊕





Ω1
k(k−1)⊕

{
Ω2

(k−1)(k−1)⊕Ω3
k−1,

Ω2
(k−1)(k−2)⊕Ω3

k−2,

Ω1
k(k−2)⊕

{
Ω2

(k−2)(k−2)⊕Ω3
k−2,

Ω2
(k−2)(k−3)⊕Ω3

k−3.

(2.50)

Note that from (2.33) and (2.50) we see that on simplexes there are two distinct graded
algebras of order k in two dimensions and four in three dimensions which is entirely con-
sistent with the results in [4]. We can relate these algebras to the classification in [15]: For
1-forms (curl conforming), B and C-type spaces correspond to Ω1

k(k−1) and Ω1
k(k−2) respec-

tively. We can similarly extend this classification to 2-forms (div conforming), denoting
Ω2

kk and Ω2
k(k−1) as B and C-type spaces respectively.

2.4 Tensor product spaces

The application of the Koszul operator is not the only method for constructing appropri-
ate spaces. Notably, for tensor product spaces such as arise on squares and hexahedra we
can use the Künneth formula ( [23]). Indeed, this approach has the clear advantage of not
requiring computation of any null spaces. Let us first consider the one dimensional case:
The fact that, geometrically speaking, a quadrilateral is the product of two line manifolds
guides us in the construction of the basis forms. Let us define a simple one-dimensional
manifold M, so n=1. Then we can define 0-forms and 1-forms in terms of univariate poly-
nomials, so, Ω0(M)= P1,k(ζ1), Ω1(M)= P1,j(ζ1)dζ1 where again Pk (ζ1) is a polynomial
of degree at most k. Up to this point we have not said anything regarding the degrees of
these polynomials, indeed they can (and will) be different, as is shown in the subsequent
analysis. The graded algebra associated with the above is then Ω∗(M)=Ω0(M)⊕Ω1(M).
The cohomology groups can be computed quite simply as follows: Z0(M) arises from the
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constant term in the polynomial Pk(ζ1), so Z0(M)=R. Moreover, B0(M)=∅, since there
are no (-1)-forms which implies that H0(M)=R. Now

Z1(M)=Ω1(M)∼=
j

⊕
k′=0

R (2.51)

since 2-forms do not exist in one dimension and

B1(M)=dΩ0(M)=P1,k−1(ζ1)dζ1
∼=

k−1
⊕

k′=0
R (2.52)

thus H1(M)=⊕
j−k+1
k′=0 R. The trivial requirement that B1(M)⊂Z1(M) then implies that

j≥ k−1.
As stated earlier, quadrilaterals (and hexahedra) M are the product of simple one-

dimensional manifolds M1, M2 (and M3) of the type discussed above. The corresponding
graded algebra is then formed as a tensor product of the one-dimensional algebras. In
n−dimensions this takes the form

Ω∗(M)=
n
⊗

m=1

(
Ω0

i (Mm)⊕Ω1
j (Mm)

)
≡

n
⊕

r=0
Ωr (M), (2.53)

where
Ωr (M)= ⊕

i1+···+in=r
Ωi1 (M1)⊗···⊗Ωin (Mn). (2.54)

We have still to address the fundamental issue of cohomology. The Künneth formula
allows us to compute cohomology groups of M as a function of the submanifolds Mi as

Hr (M)= ⊕
i1+···+in=r

Hi1 (M1)⊗···⊗Hin (Mn). (2.55)

Using the Künneth formula, we can compute the cohomology groups of the manifold M
as follows:

H0(M)=R,

H1(M)=

(
j−k+1
⊕

k′=0
R

)
⊗R⊗···⊗R=

{
R, if j> k−1,
∅, if j= k−1,

H2(M)=

(
j−k+1

⊕
k′=0

R

)
⊗

(
j−k+1

⊕
k′=0

R

)
⊗···⊗R=

{
R, if j> k−1,
∅, if j= k−1,

...

Hn (M)=

(
j−k+1
⊕

k′=0
R

)
⊗

(
j−k+1
⊕

k′=0
R

)
⊗···⊗

(
j−k+1
⊕

k′=0
R

)
=

{
R, if j> k−1,
∅, if j= k−1,

(2.56)

Obviously, in order to preserve the continuous cohomology theory (that is, to maintain
a trivial cohomology), we must choose polynomial dependencies satisfying j= k−1. In
this case, the dimension of the conforming spaces is given by

dimΩr (M)=

(
n

r

)
(k+1)n−r kr. (2.57)
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The final form of the canonical basis functions are then given by substituting j=k−1 into
Eq. (2.54). For 1-forms in two dimensions we readily obtain

ω=P1,k−1(ζ1)P1,k(ζ2)dζ1+P1,k(ζ1)P1,k−1(ζ2)dζ2, (2.58)

and in three dimensions we have

ω=P1,k−1(ζ1)P1,k(ζ2)P1,k(ζ3)dζ1

+P1,k(ζ1)P1,k−1(ζ2)P1,k(ζ3)dζ2

+P1,k(ζ1)P1,k(ζ2)P1,k−1(ζ3)dζ3. (2.59)

Expressions for other forms follow similarly. In the classification of Gragial et al. [15]
these bases can be considered to be type B spaces.

2.5 Prismatic elements

Another common element type, essential for combining hexahedral and tetrahedral meshes,
is the triangular prism. The construction of spaces on prisms is a combination of that for
the 2D simplex outlined earlier and the tensor product spaces in Section 2.4. The prism
M is considered to be a product of a line L and a 2D simplex (triangle), T. The corre-
sponding graded algebra is then formed as a tensor product of the one-dimensional line
algebra and the two-dimensional simplex algebra. Hence

Ω∗(M)=
(

Ω0(L)⊕Ω1(L)
)
⊗
(

Ω0(T)⊕Ω1(T)⊕Ω2(T)
)

≡Ω0(M)⊕Ω1(M)⊕Ω2(M)⊕Ω3(M), (2.60)

where

Ω0(M)=Ω0(L)⊗Ω0(T), (2.61a)

Ω1(M)=Ω0(L)⊗Ω1(T)⊕Ω1(L)⊗Ω0(T), (2.61b)

Ω2(M)=Ω0(L)⊗Ω2(T)⊕Ω1(L)⊗Ω1(T), (2.61c)

Ω3(M)=Ω1(L)⊗Ω2(T). (2.61d)

As before, we have still to address the issue of cohomology. Using the Künneth formula,
we can compute the cohomology groups of the prism M as follows:

H0(M)=H0(L)⊗H0(T), (2.62a)

H1(M)=H0(L)⊗H1(T)⊕H1(L)⊗H0(T), (2.62b)

H2(M)=H1(L)⊗H1(T)⊕H0(L)⊗H2(T), (2.62c)

H3(M)=H1(L)⊗H2(T). (2.62d)
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Clearly, all we have to do is select the spaces Ωr (L) and Ωr (T) appropriately, so that
we obtain the cohomology associated with a contractible manifold. Indeed, we can
choose Ωr (T) to be precisely those spaces defined in Section 2.3.1. In that case, H0(T)=
R;Hr (T)=∅, r>0. The cohomology groups for the prism then reduce to

H0(M)=H0(L)⊗R; H1(M)=H1(L)⊗R; H2(M)=∅; H3(M)=∅. (2.63)

For the line L we can again choose spaces defined in Section 2.4. We then have

H0(L)=R; H1(L)=
j−k+1

⊕
k′=0

R. (2.64)

Clearly, unless we select Ωr (L) such that H0(L)=R;H1(L)=∅, we will fail to meet the
necessary demands of topology. In short then, we must have j=k−1, just as we required
in Section 2.4. This results in the following function spaces:

Ω0
kk0

(M)=Ω0
k (L)⊗Ω0

k0
(T), (2.65a)

Ω1
kk0k2

(M)=Ω0
k (L)⊗Ω1

k0k2
(T)⊕Ω1

k−1(L)⊗Ω0
k0
(T) , (2.65b)

Ω2
kk0k2

(M)=Ω0
k (L)⊗Ω2

k2
(T)⊕Ω1

k−1(L)⊗Ω1
k0k2

(T) , (2.65c)

Ω3
kk2

(M)=Ω1
k−1(L)⊗Ω2

k2
(T). (2.65d)

Influenced by the desire for homogeneous spaces and commuting diagrams we select k,
k0 and k2 appropriately. This results in two possible graded algebras for a given order k:

Ω∗
k =Ω0

kk⊕

{
Ω1

kk(k−1)⊕Ω2
kk(k−1)⊕Ω3

k(k−1)
,

Ω1
kk(k−2)⊕Ω2

kk(k−2)⊕Ω3
k(k−2)

.
(2.66)

Note that we can classify these 1 and 2-form bases as B and C-type depending on whether
Ω1(T) is type B or C.

2.6 Pyramidal elements

Another case of great importance, particularly where both hexahedral, prismatic and
simplicial elements are used in a mesh, are pyramidal elements, an example of which is
depicted in Fig. 1. As in the previous cases, we wish to construct a graded algebra of
polynomial differential forms on this element. We begin by constructing, then, a space of
0-forms: However, we cannot expect this to be complete to a given order as in the case of
a simplex. In fact, the construction of this 0-form space is not the trivial activity it was for
both simplexes and tensor product elements. Such spaces are normally obtained from
hexahedral basis functions via an appropriate mapping. This results in spaces which
are polynomials along edges and on faces, but are non-polynomial within the element.
These spaces have been used to construct spaces of 1-forms [12]. More recently, piecewise
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Figure 1: Pyramid (and constituent tetrahedra).

wholly polynomial bases of scalars (0-forms) on pyramids have been developed [6] and
it is this approach we employ here. The use of such piecewise polynomial spaces allows
us to make use of the Koszul operator (applicable only to polynomial differential forms),
as we did for simplicies.

To begin, we summarize the results in [6]: Consider the pyramid M defined in Fig. 1
where we have indicated two disjoint tetrahedra T1 and T2 which together form the pyra-
mid and the square base Q. We then define the space of 0-forms Ω0

k0
(M) in terms of

Ω0
k0
(T3) as

Ω0
k0
(M)=

k0

⊕
k=0

Ω̃0
k (M), (2.67)

where

Ω̃0
k (M)= Ω̃0

k (T3)⊕
{

P̃4,k−1(ζ1,ζ2,ζ3,θ)⊗θ
}

, θ=

{
(ζ1+ζ3)ζ2

ζ1(ζ2+ζ3)
. (2.68)

To clarify the notation, θ corresponds to the upper expression on T1 and the lower expres-
sion on T2. The same interpretation applies to the use of braces in the rest of this work,
unless otherwise stated. The dimension of these spaces can be computed as

dimΩ̃0
k (M)=

1

6
(k+1)(k+2)(k+3) . (2.69)

Thus we have dimensions of 1, 4, 10 and 20, for k=0,1,2 and 3, and so on. The null space
of 1-forms is then readily computed from Z1

k0
= dΩ0

k0
. Note we also have dimZ1

k0
(M)=

dimΩ0
k0
(M)−1. We can define a space of 3-forms on M using as for tetrahedra, i.e.

Ω3
k3
(M)=P3,k3

dζ1∧dζ2∧dζ3. (2.70)

What remains is to compute the null space of 2-forms Z2
k2

. In fact we will propose the
following general form for the null space:

Z2
k2
(M)=

k2

⊕
k=0

Z̃2
k (M), (2.71)
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where

Z̃2
k (M)= Z̃2

k (T3)⊕S̃2
k (M)⊕ T̃2

k (M), (2.72a)

S̃2
k (M)=d

{(
P̃4,k−1(ζ1,ζ2,ζ3,θ)⊗θ

)
(ζ1dζ2−ζ2dζ1)

}
, (2.72b)

T̃2
k (M)= ⊕

l+m=k

{
ζ l

2ζm
3 dζ2∧dζ3

ζ l
1ζm

3 dζ1∧dζ3

⊕ ⊕
l+m+n=k
1≤m≤k

{
ζm

2 dζn+1
3 ∧dζ l+1

1 −ζn+1
3 dζ l+1

1 ∧dζm
2

ζm
1 dζn+1

3 ∧dζ l+1
1

. (2.72c)

The dimension of Z2
k (M) can then be computed as

dimZ2
k (M)=

1

24
(1+k)(2+k)

(
k2+15k+48

)
. (2.73)

We are then in a position to create all of the spaces of the graded algebra from these null
spaces and the Koszul operator, i.e.,

Ω1
k0k2

(M)=dΩ0
k0
(M)⊕κ

(
Z2

k2
(M)

)
, (2.74a)

Ω2
k2k3

(M)=Z2
k2
(M)⊕κ

(
Ω3

k3
(M)

)
. (2.74b)

In the classification of Gragial et al. [15] these bases can be considered to be type B spaces.
In the following we demonstrate this case via a low order example:

2.6.1 Example: k0=1, k2 =0, k3=0

For the lowest order we have (k0=1,k2 =0,k3 =0) and we obtain the following 5-dimensional
0-form space:

Ω0
1(M)={1,ζ1,ζ2,ζ3}⊕

{
ζ2(ζ1+ζ3), ζ∈T1

ζ1(ζ2+ζ3), ζ∈T2

}
. (2.75)

We can then define a complete space of 3-forms (k3=0), similarly, so we have

Ω3
0=dζ1∧dζ2∧dζ3. (2.76)

Note that now the exterior derivative of all 3-forms vanish so this space is also the null
space of 3-forms, i.e. Z3

0 =Ω3
0. The null space of 1-forms is then readily computed from

Z1
1 =dΩ0

1, giving

Z1
1 (M)={dζ1,dζ2,dζ3}⊕

{
(ζ1+ζ3)dζ2+ζ2(dζ1+dζ3), ζ∈T1

(ζ2+ζ3)dζ1+ζ1(dζ2+dζ3), ζ∈T2

}
. (2.77)

What remains is to compute the null space Z2
0 of 2-forms (k2 =0). That is

Z2
0 (M)= Z̃2

0 (T3)⊕ T̃2
0 (M), (2.78)
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which gives us

Z2
0 (M)={dζ2∧dζ3,dζ3∧dζ1,dζ1∧dζ2}⊕

{
−dζ2∧dζ3, ζ∈T1

dζ3∧dζ1, ζ∈T2

}
. (2.79)

Application of the Koszul operator to (2.76) and (2.79) gives

κ
(

Z2
0

)
={ζ3dζ2−ζ2dζ3,ζ1dζ3−ζ3dζ1,ζ2dζ1−ζ1dζ2}

⊕

{
ζ3dζ2−ζ2dζ3, ζ∈T1

ζ1dζ3−ζ3dζ1, ζ∈T2

}
(2.80)

and
κ
(
Ω3

0

)
= ζ1dζ2∧dζ3+ζ2dζ3∧dζ1+ζ3dζ1∧dζ2. (2.81)

Combining these expressions we finally have the 8-dimensional 1-form discrete function
space (DFS):

Ω1
10={dζ1,dζ2,dζ3,ζ3dζ2−ζ2dζ3,ζ1dζ3−ζ3dζ1,ζ2dζ1−ζ1dζ2}

⊕

{
(ζ1+ζ3)dζ2+ζ2(dζ1+dζ3), ζ∈T1

(ζ2+ζ3)dζ1+ζ1(dζ2+dζ3), ζ∈T2

}

⊕

{
ζ3dζ2−ζ2dζ3, ζ∈T1

ζ1dζ3−ζ3dζ1, ζ∈T2

}
(2.82)

and the 5-dimensional 2-form DFS:

Ω2
00={dζ2∧dζ3,dζ3∧dζ1,dζ1∧dζ2,ζ1dζ2∧dζ3+ζ2dζ3∧dζ1+ζ3dζ1∧dζ2}

⊕

{
−dζ2∧dζ3, ζ∈T1

dζ3∧dζ1, ζ∈T2

}
. (2.83)

Note that the dimension of Ω1
10 is equal to the number of edges and the dimension of Ω2

00

is equal to the number of faces, as would be expected for this low order case.

3 Construction of hierarchical conforming bases

Clearly, the spaces constructed in Section 2.2, whilst satisfying the appropriate trivial co-
homology on a single element, must be patched together appropriately across any given
triangulation of the solution domain so as to match the cohomological (via duality with
homology) structure of the solution domain. It is shown in [4] that a sufficient condi-
tion for this is that the trace at inter-element boundaries is continuous. We must, then,
establish an appropriate basis for these spaces such that this continuity is achieved.

To this end we begin by defining appropriate degrees of freedom, a geometric decom-
position onto submanifolds (Section 3.1), hierarchical test forms and hierarchical projec-
tion operators (Sections 3.2-3.5). Recursive inversion of the projection operators eventu-
ally lead to explicit form of the hierarchical basis functions.
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3.1 Degrees of freedom

On one level, the degrees of freedom associated with an element M are simply the co-
efficients multiplying the elements of the function space Ωr (M) defined in Section 2.
Generally speaking, however, degrees of freedom are linear functionals Li : Ωr (M)→R

on Ωr (M). (Note that in the following section we will drop any reference to polynomial
order to simplify our notation.) Since the Ωr (M) constitute a Hilbert space with an inner
product we can use Riesz theorem to define degrees of freedom as

Li(ω)=(ω,ηi)≡
∫

M

ω∧∗ηi for exactly one ηi ∈Ωr (M). (3.1)

Essentially, specification of the degrees of freedom becomes a process of specifying the
appropriate ηi. We now introduce a decomposition for which this is possible. If we define
the space of r-forms whose trace vanishes on the boundary ∂M as Ωr,0(M), then we can
decompose Ωr (M) as follows:

Ωr (M)∼=
Ωr (M)

Ωr,0(M)
⊕Ωr,0(M). (3.2)

The quotient in Eq. (3.2) can be identified with the set of boundary values, and as such is
isomorphic ( [26]) to the trace space tr∂M (Ωr (M)), hence

Ωr (M)∼= tr∂M (Ωr (M))⊕Ωr,0(M), (3.3)

where tr∂M (Ωr (M))∼=Ωr (∂M).
Note that generally ∂M will itself be a union of submanifolds. Hence we may apply

a similar decomposition to each of these submanifolds. This process is limited since we
cannot support an r-form on a submanifold of dimension less than r. Following this
approach and considering M as a complex K, so that

K=
m
∪

i=r
∪
j

σi,j, (3.4)

where σi,j is the j-th i-dimensional submanifold. Note that m = dimM, M ≡ σm,1 and
dimσi,j = i, so that up to isomorphism

Ωr (M)∼=Ωr,0(σm,1)⊕

(
⊕
j

Ωr,0
(
σm−1,j

)
)
⊕···⊕

(
⊕
j

Ωr,0
(
σr+1,j

)
)
⊕

(
⊕
j

Ωr
(
σr,j

)
)

. (3.5)

For example, applying this decomposition to 1-forms in 2-dimensions we have

Ω1(M)∼=Ω1,0(σ2,1)⊕

(
⊕
j

Ω1
(
σ1,j

)
)

, (3.6)
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whereas for 1-forms in 3-dimensions we have

Ω1(M)∼=Ω1,0(σ3,1)⊕

(
⊕
j

Ω1,0
(
σ2,j

)
)
⊕

(
⊕
j

Ω1
(
σ1,j

)
)

. (3.7)

In the case of 2-forms in 3-dimensions we have the following decomposition

Ω2(M)∼=Ω2,0(σ3,1)⊕

(
⊕
j

Ω2
(
σ2,j

)
)

(3.8)

Given this decomposition we can define degrees of freedom as:

Definition 3.1. Degrees of Freedom

Lν
σr,j

(ω)≡
∫

σr,j

ω∧∗r,jη
σr,j
ν

{
η

σr,j
ν ∈Ωr

(
σr,j

)
, ∀j,

ν=1,··· ,dimΩr
(
σr,j

)
,

(3.9)

Lν
σi,j
(ω)≡

∫

σi,j

ω∧∗i,jη
σi,j
ν





η
σi,j
ν ∈Ωr,0

(
σi,j

)
, ∀j,

ν=1,··· ,dimΩr,0
(
σi,j

)
,

i= r+1,··· ,dimM,

(3.10)

where the subscript on the Hodge operator denotes a Hodge based on the induced metric

over the j-th i-dimensional submanifold. The η
σi,j
ν are test r-forms on the j-th i-dimensional

submanifold and span subspaces of the canonical space Ωr (M). These degrees of free-
dom differ slightly from the moment type used conventionally in that they take the form

of a scalar product and that the test forms η
σi,j
ν are traces of members of Ωr (M). As a

result, this ensures unisolvency since the test bases span the same spaces as the traces of
Ωr (M) and the Ωr (M) themselves are linearly independent as has been shown in Section
2.2. It is important to recognize the context in which the metric (via the scalar product) is
introduced. Metrical issues play no fundamental role in the construction of these function
spaces. Indeed the metric, in this context, arises as nothing more than a computational
tool for the enforcement of the appropriate continuity at element boundaries required to
satisfy topological properties. It should be noted that the degrees of freedom Li(ω) and
Lν

σr,j
(ω) are equivalent in the sense that

Li(ω)=0 ∀i ⇐⇒ Lν
σi,j
(ω)=0 ∀ν,i, j. (3.11)

The specific forms of the basis functions are only defined once we have specified these test
forms. Note that in order to preserve the generality of this approach, we do not a priori
specify these test forms, as is usually the case, but instead construct them algorithmically
from the underlying canonical function space. This allows one to construct appropriate
spaces even when edges or faces have different orders of approximation or geometry, as,
for instance is the case when constructing pyramidal elements.
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3.2 Hierarchical bases

All hierarchical spaces can be constructed by the recursive subtraction of projections of
lower order spaces, as explained in [17]. The construction of hierarchical bases which
span the spaces defined in Section 2 then requires the specification of a projection opera-
tor Π

r,m
k : Ωr →Ωr

k which possesses the following hierarchical property:

Π
r,m
k′

(
Π

r,m
k ω

)
=Πr

kω, ∀k′> k. (3.12)

In the following sections we explicitly define this operator in terms of appropriate hier-

archical bases ω
σi,j

k,ν and their traces on submanifolds.

3.3 Projection

We begin by defining a general kth order homogeneous projection Π̃
r,m
k as

Definition 3.2.

Π̃
r,m
k ω :=

m

∑
i=r

ni

∑
j=1

n
i,j
k

∑
ν=1

(
ω,η

σi,j

k,ν

)
σi,j(

η
σi,j

k,ν ,η
σi,j

k,ν

)
σi,j

ω
σi,j

k,ν , (3.13)

where

(ω,η)σi,j
=
∫

σi,j

ω∧∗i,jη, (3.14)

and ω
σi,j

k,ν are (as yet undetermined) global basis functions, ni is the number of i-dimensional

submanifolds, n
i,j
k =dim

(
Ω̃r

k

(
σi,j

))
if r= i and n

i,j
k =dim

(
Ω̃

r,0
k

(
σi,j

))
otherwise. Essential

to this construction will be the fact that η
σi,j

k,ν = trσi,j
ω

σi,j

k,ν. We then define

Π
r,m
k ω :=

k

∑
k′=0

Π̃
r,m
k ω. (3.15)

The expression (3.13) is a valid projection (i.e. satisfies (3.12)) provided

(
η

σi,j

k,ν ,η
σi,j

k′,ν′

)
σi,j

=δkk′δνν′ , (3.16)

(
η

σi,j

k,ν ,η
σl,n

k′,ν′

)
σi,j

=0, ∀k,k′, ∀ν,ν′,l> i. (3.17)

These are guaranteed by a construction explained later, in Section 3.4. It is not necessary,
but with the aim of generating well conditioned mass matrices, it can be desirable to

enforce the following additional constraint on the (as yet unknown) global bases
{

ω
σi,j

k,ν

}
:

(
ω

σi,j

k,ν,η
σl,n

k′ ,ν′

)
σl,n

=0, ∀k′≤ k, ∀ν,ν′,l> i, (3.18)
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then we have for all k′≤ k,

Lk′,ν′

σl,n

(
ω−Π̃

r,l
k ω
)
=
(

ω,η
σl,n

k′,ν′

)
σl,n

−
(

ω,η
σl,n

k′,ν′

)
σl,n

=0. (3.19)

This projection is clearly dependent on the metric used in the definition of the Hodge star
in (3.14). Importantly, we can highlight two distinct cases: Firstly, one could employ the
true physical metric g which depends on the particular element in question and is gener-
ally a function of the intrinsic coordinates. From this point onwards, we will denote such
a projection by Π

r,m
p,h . A second option is to use a metric intrinsic to the chart coordinates.

The metric in this case is flat and independent of the element and intrinsic coordinates.
This makes calculation of the projection much simpler and independent of the particular
element. We will usually assume that the symbol Π

r,m
h represents the projection in this

case.

3.4 Construction of hierarchical test forms

We begin by specifying Ωr
k

(
σr,j′
)
, the space of r-forms on each of the r-dimensional sub-

manifolds j′. These are easily constructed following the procedures in Section 2. The
space of r-forms which vanish on the boundary of σi,j for i > r, are given formally by
rearranging (3.3) as

Ω
r,0
k

(
σi,j

)
∼=

Ωr
k

(
σi,j

)

i−1
⊕

i′=r
⊕
j′

Ωr
k

(
σi′ ,j′

) . (3.20)

The actual computation of Ω
r,0
k

(
σi,j

)
is achieved using the degrees of freedom defined in

Section 3.1 to construct a boundary map ; a linear transformation ∂
σi,j

k : Ωr
(
σi,j

)
→Ωr

(
σi,j

)
,

defined by:

∂
σi,j

k ω=
k

∑
k′=0

i−1

∑
i′=r

n
i′

∑
j′=1

n
i′,j′

k′

∑
ν=1

(
ω,η

σi′,j′

k′,ν

)
σi′,j′(

η
σi′ ,j′

k′ ,ν ,η
σi′,j′

k′ ,ν

)
σi′,j′

ω
σi′,j′

k′,ν . (3.21)

The action of the boundary map is to project a function ω defined on some manifold σi,j

onto the bases associated with its boundary ∂σi,j. The kernel of ∂
σi,j

k (i.e. the null space) is

precisely the space of functions which vanish on the boundary of σi,j, that is Ωr,0
(
σi,j

)
=

ker
(
∂

σi,j

k

)
. The boundary map (3.21) acting on Ωr

k

(
σi,j

)
can be written as a matrix and

computing the null space of the matrix gives us the required test space Ω
r,0
k

(
σi,j

)
. Via

this process we can construct all of the spaces of test forms required to compute the
degrees of freedom in (3.9) and (3.10). This, however, is not all that we require: The
desire for hierarchality is satisfied by constructing test forms which satisfy (3.16) and
(3.17), so an appropriate basis for Ω

r,0
k

(
σi,j

)
must be selected. To achieve this we note
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that the projection of the test space Ω̃
r,0
k

(
σi,j

)
onto Ω

r,0
k′

(
σi,j

)
must vanish for k′ < k, or

equivalently Π̃
r,i
k′

(
Ω

r,0
k

(
σi,j

))
=0 for k′< k. From this we see that

Ω̃
r,0
k

(
σi,j

)
=ker

(
Π

r,i
k−1

(
Ω

r,0
k

(
σi,j

)))
. (3.22)

All that remains is to make the r-forms in Ω̃
r,0
k

(
σi,j

)
mutually orthogonal via a Gram-

Schmidt (GS) process and we obtain hierarchical test forms η
σi,j

k,ν satisfying (3.16) and
(3.17). We can now use these test spaces and the associated degrees of freedom to con-
struct basis functions suited to our original purpose, as discussed in Section 3.3.

3.5 Construction of hierarchical basis forms

We now consider the canonical shape functions
{

ωk,µ

}
constructed as in Section 2. These

functions will generally have projections (3.13) up to order k. As we wish to produce
hierarchical bases, we will need to construct a space Ω̃r

k (σm,1) of bases for which

Lk′,ν′

σl,n

(
Ω̃r

k(σm,1)
)
=0, ∀k′< k (3.23)

holds. This is easily achieved by subtracting from each ωk,µ its projection up to order

k−1. That is we construct a homogeneous canonical space Ω̃r
k (σm,1) via,

ω̃k,µ=ωk,µ−Π
r,m
k−1ωk,µ. (3.24)

Given this construction, we note that
{

ω̃k,µ

}
=
{

ω
σi,j

k,ν

}
and we can write

{
ω̃k,µ

}
= Π̃

r,m
k

{
ω

σi,j

k,ν

}
. (3.25)

This can be written in matrix notation as

{
ω̃k,µ

}
=S

({
ω̃k,µ

}
,
{

η
σi,j

k,ν

}){
ω

σi,j

k,ν

}
. (3.26)

There is some freedom over how we may recover the ω
σi,j

k,ν. Most straightforwardly we
may simply invert S so that appropriate global basis functions are obtained as

{
ω

σi,j

k,ν

}
=S−1

({
ω̃k,µ

}
,
{

η
σi,j

k,ν

}){
ω̃k,µ

}
. (3.27)

Alternatively we may obtain a partial inverse by row reduction to form a block-upper
triangular matrix. We may then obtain global bases by inversion of the individual block
matrices.

The implementation of the construction of the hierarchical bases is perhaps best ex-
plained in the algorithm shown in Table 1.

Examples of 1 and 2-forms up to 2nd or 3rd order on a wide range of elements are
tabulated in Section 4. Clearly, the conditioning of any resulting equations will depend
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Table 1: Algorithm for the construction of hierarchical bases.

k=0

Ω̃r
k

(
σr,j

)
=dζ1∧···∧dζr ∀r-dimensional submanifolds σr,j

loop

k :=k+1

for all r-dimensional submanifolds σr,j do

Ωr
k

(
σr,j

)
=Pr,k

(
σr,j

)
dMr

Ω̃r
k

(
σr,j

)
=GS

(
ker
(

Π
r,r
k−1

(
Ωr

k

(
σr,j

))))

end

for l= r+1 to m do

for all l-dimensional submanifolds σl,j do

Ω
r,0
k

(
σl,j

)
=ker

(
∂

σl,j

k Ωr
k

(
σl,j

))

Ω̃
r,0
k

(
σl,j

)
=GS

(
ker
(

Π
r,l
k−1

(
Ω

r,0
k

(
σl,j

))))

end

end

Ω̃=
(

I−Π
r,m
k−1

)
Ω̃r

k (M), where Ω̃r
k(M) is given in Section 2

Form S

(
Ω̃,⊕

j
Ω̃r

k

(
σr,j

)
⊕
j

Ω̃
r,0
k

(
σr+1,j

)
⊕···⊕Ω̃

r,0
k (σm,1)

)

{
ω

σi,j

k,ν

}
=S−1Ω̃

end loop

on the physical problem, the geometry, element distortion [11, 15] and so on. However,
given that this process gives rise to volume basis functions which are weakly mutually
orthogonal (and in many practical cases exactly orthogonal) and that the dimension of
the volume space grows faster than edge or surface spaces, then we would expect the
matrices to become increasingly diagonally dominant. The conditioning of mass matrices
arising from these bases is also demonstrated in Section 4.

3.6 Mathematical properties of the projection

A key property often required of conformal spaces is the so-called commuting de Rham
diagram (CDD) property. For the spaces constructed by [16], the CDD property is of the
form

dΠr
hω=Πr+1

h dω. (3.28)
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We will now show that the projection Πr
h satisfies both the CDD property and addition-

ally a weaker adjoint form (ACDD). The ACDD property is also seen to be satisfied by
the projection Πr

p,h, but this projection only satisfies the CDD in the affine case.

Theorem 3.1. Commuting de Rham Diagram: For any smooth ωr∈Ωr, the projection Πr
h :Ωr→

Ωr
h satisfies the commuting de Rham diagram, that is,

dΠr
hωr =Πr+1

h dωr, (3.29)

provided

d†Ωr+1
h ⊂Ωr

h and trσi−1,j′
∗i,j Ω

r+1
h

(
σi,j

)
⊂∗i−1,j′Ω

r
h

(
σi−1,j′

)
, (3.30)

∀i, j and j′.

Proof. Let us consider the projection error: πr=ωr−Πr
hωr. By the definition of the canon-

ical projection operators we see that for the i-dimensional subspaces σi,j ∈ M which con-
stitute subsets of bounding sub-manifolds of M:

∫

σi,j

πr∧∗i,jη
r =0, ∀ηr ∈

{
Ωr

h,0

(
σi,j

)
, r< i≤m,

Ωr
h

(
σi,j

)
, i= r.

(3.31)

We now consider the following expression:

∫

σi,j

dπr∧∗i,jη
r+1=

∫

σi,j

πr∧∗i,jd
†ηr+1+

∫

∂σi,j

πr∧∗i,jη
r+1,

∀ηr+1∈

{
Ωr+1

h,0

(
σi,j

)
, r+1< i≤m,

Ωr+1
h

(
σi,j

)
, r+1= i.

(3.32)

The first case in (3.32) is when r+1 < i ≤ m: In this case ηr+1 ∈Ωr+1
h,0

(
σi,j

)
and we have

that d†ηr+1∈Ωr
h

(
σi,j

)
. Hence in this case the first term on the RHS of (3.32) vanishes. The

second integral also vanishes from the second provision in the theorem. The second case
is when r+1= i and ηr+1 ∈Ωr+1

h

(
σi,j

)
, so d†ηr+1∈Ωr

h

(
σi,j

)
and again the first integral in

(3.32) vanishes according to (3.31). The second integral also vanishes due to the second
provision in the theorem which completes the proof.

A similar argument can be made for the physical projection Πr
p,h, provided the met-

rical coefficients are constant, i.e. an affine case. Note - it is the conjecture here that the
CDD is a sufficient, not necessary, condition for the convergence of numerical schemes.
In fact it is easy to show that satisfaction of the CDD implies a trivial local cohomology,
as is shown in [4].
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Theorem 3.2. Adjoint Commuting de Rham Diagram: For any smooth ωr ∈Ωr, the projection
Πr

h : Ωr →Ωr
h satisfies the adjoint commuting de Rham diagram, that is,

Πr−1
h d†Πr

hω=Πr−1
h d†ω, (3.33)

provided Ωr
h has a trivial local cohomology. The same statement holds for Πr

p,h.

Proof. Again we consider the projection error: πr =ωr−Πr
hωr. By the definition of the

canonical interpolation operators we see that for all of the i-dimensional subspaces σi,j ∈
M which constitute subsets of bounding sub-manifolds of M:

∫

σi,j

πr∧∗i,jη
r =0, ∀ηr ∈

{
Ωr

h,0

(
σi,j

)
, r< i≤m,

Ωr
h

(
σi,j

)
, i= r.

(3.34)

We now consider the following expression:
∫

σi,j

d†πr∧∗i,jη
r−1=

∫

σi,j

πr∧∗i,jdηr−1−
∫

∂σi,j

∗i,jπ
r∧ηr−1,

∀ηr−1∈

{
Ωr−1

h,0

(
σi,j

)
, r−1< i≤m,

Ωr−1
h

(
σi,j

)
, r−1= i.

(3.35)

The first case in (3.35) is when r−1<i≤m: In this case ηr−1∈Ωr−1
h,0

(
σi,j

)
, so dηr−1∈Ωr

h

(
σi,j

)
.

We also have that
tr∂σi,j

dηr−1=d
(

tr∂σi,j
ηr−1

)
=0 (3.36)

so dηr−1 ∈ Ωr
h,0

(
σi,j

)
. The first integral in on the RHS of (3.35) then vanishes by (3.34).

Moreover, since tr∂σi,j
ηr−1 = 0 then the second integral also vanishes. The second case

is when r−1= i and ηr−1 ∈Ωr−1
h

(
σi,j

)
, so dηr−1 ∈Ωr

h

(
σi,j

)
and again the first integral in

(3.35) vanishes according to (3.34). The second integral also vanishes since ∗i,jπ
r∧ηr−1=

∗i,jπ
i+1∧ηi =0 due to the fact that by definition there are no i+1 forms in i-dimensions.

We then have that

∫

σi,j

d†πr∧∗i,jη
r−1=0, ∀ηr−1∈

{
Ωr−1

h,0

(
σi,j

)
, r−1< i≤m,

Ωr−1
h

(
σi,j

)
, r−1= i.

(3.37)

From which it follows that
Πr−1

h d†Πr
hω=Πr−1

h d†ω (3.38)

as required. An identical argument holds for the projection based on the physical metric
Πr

p,h.

Note that this is a weaker statement than the conventional CDD property. If we re-
strict ourselves to affine elements we can show that (3.33) holds in the strict sense.
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Figure 2: Submanifold numbering.

4 Examples

We now demonstrate the results of the procedures outlined earlier for specific cases.
Bases of 1 and 2-forms on tetrahedra, hexahedra, prisms and pyramids are tabulated.
To assess the performance of these bases, following Xin et al. [29] we compute the con-
dition number of the mass, quasi-stiffness and composite matrices on a parent element.
The mass (M), stiffness (S) and composite (C ) matrices are defined as

M=
(

ω
σi,j

k,ν,ω
σl,n

k′,ν′

)
, S=

(
dω

σi,j

k,ν,dω
σl,n

k′,ν′

)
, C=µM+S. (4.1)

4.1 Tetrahedra

For brevity we will employ a barycentric notation, commonly employed on simplices.
Bases for other edges/faces can be obtained by proper rotations via an appropriate pull-
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back of the map
r{ijkl}= ζ1ri+ζ2rj+ζ3rk+(1−ζ1−ζ2−ζ3)rl . (4.2)

Note that proper rotations correspond to even permutations of {ijkl}. Thus, given a face
function ω{ijk} we can construct the corresponding base for ω{jkl} via

ω{jkl}= r∗{jkli}ω{ijk}. (4.3)

Similarly, given an edge function ω{ij} we can construct the corresponding base for ω{jk}

via
ω{jk}= r∗{jkli}ω{ij}. (4.4)

Type B 1- and 2-form bases on tetrahedra are given in Tables 2 and 3 respectively, up
to order k= 3. Corresponding Type C bases for both 1 and 2-forms are given in Table 4.
The condition numbers of the mass, quasi stiffness and composite matrices for a single

Table 2: B-type 1-forms for tetrahedra.

k σ 1-forms

1 {ij} −ζ jdζi+ζidζ j

{ij} 1
14

(
2ζ j+9ζiζ j−9ζ2

j

)
dζi+

1
14

(
2ζi−9ζ2

i +9ζiζ j

)
dζ j

2 {ijk} (ζiζk)dζ j−
(

ζiζ j

)
dζk(

−ζ jζk

)
dζi+

1
4 (3ζiζk)dζ j+

1
4

(
ζiζ j

)
dζk

{ij} 1
276

(
−9ζ j+3ζiζ j−78ζ2

i ζ j+41ζ2
j +196ζiζ

2
j −78ζ3

j

)
dζi+

1
276

(
9ζi−41ζ2

i +78ζ3
i −3ζiζ j−196ζ2

i ζ j+78ζiζ
2
j

)
dζ j

1
91

(
−6ζ jζk+4ζiζ jζk+3ζ jζ

2
k

)
dζi+

1
91

(
37ζiζk−82ζ2

i ζk−ζiζ
2
k

)
dζ j+

1
91

(
−33ζiζ j+78ζ2

i ζ j−2ζiζ jζk

)
dζk

{ijk} 1
580

(
498ζ jζk−719ζiζ jζk−539ζ jζ

2
k

)
dζi+

1
1259

(
−266ζiζk+1135ζ2

i ζk+390ζiζ
2
k

)
dζ j+

1
870

(
−24ζiζ j+294ζ2

i ζ j+539ζiζ jζk

)
dζk

3 1
448

(
−89ζ jζk−163ζiζ jζk+213ζ jζ

2
k

)
dζi+

1
384

(
−22ζiζk+80ζ2

i ζk−61ζiζ
2
k

)
dζ j+

1
192

(
−12ζiζ j+30ζ2

i ζ j−61ζiζ jζk

)
dζk

1
314

(
207ζ jζk−1176ζiζ jζk−441ζ jζ

2
k

)
dζi+

1
314

(
−465ζiζk+672ζ2

i ζk+147ζiζ
2
k

)
dζ j+

1
157

(
−195ζiζ j+252ζ2

i ζ j+147ζiζ jζk

)
dζk

(
3ζ2ζ3−2ζ1ζ2ζ3−3ζ2

2ζ3−3ζ2ζ2
3

)
dζ1+

(
−1ζ1ζ3+1ζ2

1ζ3+2ζ1ζ2ζ3+1ζ1ζ2
3

)
dζ2+(

−ζ1ζ2+1ζ2
1ζ2+1ζ1ζ2

2+2ζ1ζ2ζ3

)
dζ3

{ijkl} 1
15

(
24ζ2ζ3−56ζ1ζ2ζ3−24ζ2

2ζ3−24ζ2ζ2
3

)
dζ1+

1
15

(
−48ζ1ζ3+48ζ2

1ζ3+16ζ1ζ2ζ3+48ζ1ζ2
3

)
dζ2+

1
15

(
−8ζ1ζ2+8ζ2

1ζ2+8ζ1ζ2
2−24ζ1ζ2ζ3

)
dζ3

1
33

(
−12ζ2ζ3+28ζ1ζ2ζ3+12ζ2

2ζ3+12ζ2ζ2
3

)
dζ1+

1
33

(
−64ζ1ζ3+64ζ2

1ζ3+80ζ1ζ2ζ3+64ζ1ζ2
3

)
dζ2+

1
33

(
92ζ1ζ2−92ζ2

1ζ2−92ζ1ζ2
2−76ζ1ζ2ζ3

)
dζ3
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Table 3: B-type 2-forms for tetrahedra.

k σ 2-forms

1 {ijk} ζ idζ j∧dζk+ζ jdζk∧dζ i+ζkdζ i∧dζ j

{ijk} 1
3

(
2ζ idζ j∧dζk−ζ jdζk∧dζ i−ζkdζ i∧dζ j

)

1
2

(
ζ jdζk∧dζ i−ζkdζ i∧dζ j

)

2
(
−1ζ1+1ζ2

1

)
dζ2∧dζ3+(1ζ1ζ2)dζ3∧dζ1+(1ζ1ζ3)dζ1∧dζ2

{ijkl} 1
16

(
−7ζ1+7ζ2

1+16ζ1ζ2

)
dζ2∧dζ3+

1
16

(
−16ζ2+7ζ1ζ2+16ζ2

2

)
dζ3∧dζ1+

1
16 (7ζ1ζ3+16ζ2ζ3)dζ1∧dζ2

1
9

(
−7ζ1+7ζ2

1+7ζ1ζ2+9ζ1ζ3

)
dζ2∧dζ3+

1
9

(
−7ζ2+7ζ1ζ2+7ζ2

2+9ζ2ζ3

)
dζ3∧dζ1+

1
9

(
−9ζ3+7ζ1ζ3+7ζ2ζ3+9ζ2

3

)
dζ1∧dζ2

1
460

(
−145ζ1+283ζ2

1+31ζ1ζ2+31ζ1ζ3

)
dζ2∧dζ3+

1
460

(
15ζ2−177ζ1ζ2+31ζ2

2+31ζ2ζ3

)
dζ3∧dζ1+

1
460

(
15ζ3−177ζ1ζ3+31ζ2ζ3+31ζ2

3

)
dζ1∧dζ2

{ijk} 1
230 (−3ζ1ζ2+3ζ1ζ3)dζ2∧dζ3+

1
230

(
−20ζ2+115ζ1ζ2−3ζ2

2+3ζ2ζ3

)
dζ3∧dζ1+

1
230

(
20ζ3−115ζ1ζ3−3ζ2ζ3+3ζ2

3

)
dζ1∧dζ2

1
138

(
−5ζ1+5ζ2

1+8ζ1ζ2+10ζ1ζ3

)
dζ2∧dζ3+

1
69

(
7ζ2−9ζ1ζ2+4ζ2

2−41ζ2ζ3

)
dζ3∧dζ1+

1
69

(
−16ζ3+14ζ1ζ3+4ζ2ζ3+28ζ2

3

)
dζ1∧dζ2

1
23 (4ζ1ζ2−4ζ1ζ3)dζ2∧dζ3+

1
23

(
−96ζ2+92ζ1ζ2+96ζ2

2+180ζ2ζ3

)
dζ3∧dζ1+

1
23

(
96ζ3−92ζ1ζ3−180ζ2ζ3−96ζ2

3

)
dζ1∧dζ2

1
1035

(
−2880ζ1+2880ζ2

1+32ζ1ζ2+8128ζ1ζ3

)
dζ2∧dζ3+

1
1035

(
−768ζ2+3616ζ1ζ2+768ζ2

2−1440ζ2ζ3

)
dζ3∧dζ1+

1
1035

(
3648ζ3−8896ζ1ζ3−1440ζ2ζ3−3648ζ2

3

)
dζ1∧dζ2

1
63

(
−288ζ1+288ζ2

1+496ζ1ζ2+320ζ1ζ3

)
dζ2∧dζ3+

1
63

(
192ζ2−400ζ1ζ2−192ζ2

2−144ζ2ζ3

)
dζ3∧dζ1+

1
63

(
96ζ3−128ζ1ζ3−144ζ2ζ3−96ζ2

3

)
dζ1∧dζ2

3 1
28

(
10ζ1−38ζ2

1+28ζ3
1+1ζ1ζ2+1ζ1ζ3

)
dζ2∧dζ3+

1
28

(
2ζ2−13ζ1ζ2+28ζ2

1ζ2−2ζ2
2−2ζ2ζ3

)
dζ3∧dζ1+

1
28

(
2ζ3−13ζ1ζ3+28ζ2

1ζ3−2ζ2ζ3−2ζ2
3

)
dζ1∧dζ2

1
1876

(
303ζ1−1010ζ2

1+707ζ3
1−963ζ1ζ2+1876ζ2

1ζ2+109ζ1ζ3

)
dζ2∧dζ3+

1
3752

(
201ζ2−2633ζ1ζ2+1414ζ2

1ζ2−201ζ2
2+3752ζ1ζ2

2+67ζ2ζ3

)
dζ3∧dζ1+

1
1876

(
67ζ3−479ζ1ζ3+707ζ2

1ζ3−201ζ2ζ3+1876ζ1ζ2ζ3−67ζ2
3

)
dζ1∧dζ2

{ijkl} 1
2451

(
352ζ1−657ζ2

1+305ζ3
1−2465ζ1ζ2+2540ζ2

1ζ2+2451ζ1ζ2
2−51ζ1ζ3

)
dζ2∧dζ3+

1
2451

(
965ζ2−1392ζ1ζ2+305ζ2

1ζ2−3416ζ2
2+2540ζ1ζ2

2+2451ζ3
2+179ζ2ζ3

)
dζ3∧dζ1+

1
2451

(
220ζ3−521ζ1ζ3+305ζ2

1ζ3−1364ζ2ζ3+2540ζ1ζ2ζ3+2451ζ2
2ζ3−220ζ2

3

)
dζ1∧dζ2

1
3767

(
1034ζ1−3433ζ2

1+2399ζ3
1−1182ζ1ζ2+2655ζ2

1ζ2+81ζ1ζ2
2−1786ζ1ζ3+3767ζ2

1ζ3

)
dζ2∧dζ3+

1
3767

(
305ζ2−2812ζ1ζ2+2399ζ2

1ζ2−386ζ2
2+2655ζ1ζ2

2+81ζ3
2−353ζ2ζ3+3767ζ1ζ2ζ3

)
dζ3∧dζ1+

1
5519

(
442ζ3−4860ζ1ζ3+3514ζ2

1ζ3−372ζ2ζ3+3890ζ1ζ2ζ3+119ζ2
2ζ3−442ζ2

3+5519ζ1ζ2
3

)
dζ1∧dζ2

1
6913

(
946ζ1−1991ζ2

1+1045ζ3
1−5602ζ1ζ2+5864ζ2

1ζ2+4432ζ1ζ2
2−1315ζ1ζ3+1408ζ2

1ζ3+6913ζ1ζ2ζ3

)
dζ2∧dζ3+

1
6913

(
2012ζ2−3221ζ1ζ2+1045ζ2

1ζ2−6445ζ2
2+5864ζ1ζ2

2+4432ζ3
2−3409ζ2ζ3+1408ζ1ζ2ζ3+6913ζ2

2ζ3

)
dζ3∧dζ1+

1
6913

(
666ζ3−1706ζ1ζ3+1045ζ2

1ζ3−6183ζ2ζ3+5864ζ1ζ2ζ3+4432ζ2
2ζ3−666ζ2

3+1408ζ1ζ2
3+6913ζ2ζ2

3

)
dζ1∧dζ2

1
2296

(
584ζ1−1227ζ2

1+643ζ3
1−1263ζ1ζ2+1359ζ2

1ζ2+643ζ1ζ2
2−2862ζ1ζ3+3021ζ2

1ζ3+3021ζ1ζ2ζ3+2296ζ1ζ2
3

)
dζ2∧dζ3+

1
2296

(
584ζ2−1263ζ1ζ2+643ζ2

1ζ2−1227ζ2
2+1359ζ1ζ2

2+643ζ3
2−2862ζ2ζ3+3021ζ1ζ2ζ3+3021ζ2

2ζ3+2296ζ2ζ2
3

)
dζ3∧dζ1+

1
2296

(
1086ζ3−1828ζ1ζ3+643ζ2

1ζ3−1828ζ2ζ3+1359ζ1ζ2ζ3+643ζ2
2ζ3−3382ζ2

3+3021ζ1ζ2
3+3021ζ2ζ2

3+2296ζ3
3

)
dζ1∧dζ2

element are plotted in Figs. 3 and 4 for 1 and 2-forms respectively. In Fig. 3(a) we compare
the growth of the mass matrix condition number for our type B 1-forms with those of
Abdul-Rahman (Ab) [1]. In Fig. 3(b) we compare the growth of mass matrix condition
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Figure 3: Condition number vs order for single element mass matrices (a), (b), quasi-stiffness matrices (c), (d)
and composite matrices (e), (f) for B and C-type 1-form bases on tetrahedra respectively.

number for our type C 1-forms with Ingelstrom (In) [21, 22]. It is clear that for the mass
matrix, the conditioning of our bases is comparable to Ingelstrom (C-type), although not
as good as Abdul-Rahman (B-type). The growth in the condition number appears to be
exponential for the 1-forms and possibly sub-exponential for 2-forms. The composite
matrix condition number reduces as the coupling parameter µ increases, as is the case
in [29] for type A bases. Broadly similar behaviour for both B and C-type 2-form bases is
observed in Fig. 4.
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Figure 4: Condition number vs order for single element mass matrices (a), (b), quasi-stiffness matrices (c), (d)
and composite matrices (e), (f) for B and C-type 2-form bases on tetrahedra respectively.

4.2 Hexahedra

The construction of the canonical spaces on hexahedra is very simple since the construc-
tion of the discrete function space involves the specification of the discrete function space
on simple one-dimensional manifolds for 1-forms and two dimensional manifolds for 2-
forms as discussed in Section 2. The construction of the hierarchical bases then follows
that outlined in Section 3. For brevity, only the functions associated with edge 7 (for
1-forms) and face 1 are given, where the submanifold numbering is indicated in Fig. 2.
Other functions can be readily obtained via a rotation pullback. The condition numbers
of resulting mass, quasi-stiffness and composite matrices are shown in Fig. 5. Both 1 and
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Table 4: 1-form and 2-form bases for tetrahedra (C-type).

k σ 1-forms

1 {ij} −ζ jdζi+ζidζ j

2 {ij} 1
2

(
−ζ jdζi−ζidζ j

)

{ij} 1
12

(
ζ j+3ζiζ j−3ζ2

j

)
dζi+

1
12

(
−ζi+3ζ2

i −3ζiζ j

)
dζ j

3 −ζ jζkdζi−ζiζkdζ j−ζiζ jdζk

{ijk} 1
4

(
ζ jζkdζi+5ζiζkdζ j−3ζiζ jdζk

)

3
31

(
−11ζ jζkdζi+7ζiζkdζ j+2ζiζ jdζk

)

k σ 2-forms

1 {ijk} ζidζ j∧dζk+ζ jdζk∧dζi+ζkdζi∧dζ j

2 {ijk} 1
3

(
2ζidζ j∧dζk−ζ jdζk∧dζi−ζkdζi∧dζ j

)

1
2

(
ζ jdζk∧dζi−ζkdζi∧dζ j

)

1
5

(
−ζi+2ζ2

i

)
dζ j∧dζk+

1
10

(
ζ j−5ζiζ j

)
dζk∧dζi+

1
10 (ζk−5ζiζk)dζi∧dζ j

{ijk} 1
10

(
−ζ j+5ζiζ j

)
dζk∧dζi+

1
10 (ζk−5ζiζk)dζi∧dζ j

1
6

(
ζ j−ζiζ j−4ζ jζk

)
dζk∧dζi+

1
6

(
−ζk+ζiζk+2ζ2

k

)
dζi∧dζ j

4
(
−ζ2+ζ1ζ2+ζ2

2+2ζ2ζ3

)
dζ3∧dζ1+4

(
ζ3−ζ1ζ3−2ζ2ζ3−ζ2

3

)
dζ1∧dζ2

8
3

(
−ζ1+ζ2

1+3ζ1ζ3

)
dζ2∧dζ3+

2
3

(
−ζ2+5ζ1ζ2+ζ2

2−2ζ2ζ3

)
dζ3∧dζ1

+ 2
3

(
5ζ3−13ζ1ζ3−2ζ2ζ3−5ζ2

3

)
dζ1∧dζ2

3 8
11

(
−6ζ1+6ζ2

1+11ζ1ζ2+7ζ1ζ3

)
dζ2∧dζ3+

8
11

(
4ζ2−9ζ1ζ2−4ζ2

2−3ζ2ζ3

)
dζ3∧dζ1

+ 8
11

(
2ζ3−3ζ1ζ3−3ζ2ζ3−2ζ2

3

)
dζ1∧dζ2

{ijkl} 1
5

(
−7ζ1+7ζ2

1+3ζ1ζ2+3ζ1ζ3

)
dζ2∧dζ3+

1
5

(
1ζ2+3ζ1ζ2−1ζ2

2−1ζ2ζ3

)
dζ3∧dζ1

+ 1
5

(
1ζ3+3ζ1ζ3−1ζ2ζ3−1ζ2

3

)
dζ1∧dζ2

1
65

(
−27ζ1+27ζ2

1+56ζ1ζ2+4ζ1ζ3

)
dζ2∧dζ3

+ 4
195

(
−64ζ2+42ζ1ζ2+64ζ2

2+25ζ2ζ3

)
dζ3∧dζ1

+ 4
195

(
14ζ3+3ζ1ζ3+25ζ2ζ3−14ζ2

3

)
dζ1∧dζ2

2
11

(
−4ζ1+4ζ2

1+4ζ1ζ2+5ζ1ζ3

)
dζ2∧dζ3+

2
11

(
−4ζ2+4ζ1ζ2+4ζ2

2+5ζ2ζ3

)
dζ3∧dζ1

2
11

(
−6ζ3+5ζ1ζ3+5ζ2ζ3+6ζ2

3

)
dζ1∧dζ2

2-forms exhibit exponential growth although there is evidence that 1-forms may show
sub-exponential behaviour.

4.3 Prisms

This prism element has canonical functions given in (2.82) with manifold numbering
shown in Fig. 2. Basis forms are tabulated for the type B case in Table 6 and those for
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Table 5: 1-form and 2-form bases for hexahedra.

k σ 1-forms

1 σ1,7 ζ1ζ2dζ3

σ1,7
1
4 ζ1ζ2(5ζ2+5ζ1−8)(2ζ3−1)dζ3

ζ2(ζ2−1)(ζ3−1)(ζ3+1)dζ1

σ2,1
1
2 ζ2(ζ2−1)(ζ3−1)(ζ2−2ζ1+1)dζ1

ζ1(1−ζ1)(ζ3−1)dζ2

2 1
2 ζ1(1−ζ1)(2ζ1−1)(ζ3−1)dζ2

−ζ1ζ2ζ3(ζ2−1)(ζ3−1)dζ1

ζ1ζ3(ζ1−1)(ζ3−1)dζ2

σ3
1
2 ζ2ζ3(3ζ1−2)(ζ2−1)(ζ3−1)dζ1

1
2 ζ1ζ3(ζ1−1)(2ζ2−1)(ζ3−1)dζ2

ζ1ζ2(ζ1−1)(ζ2−1)dζ3

1
2 ζ1ζ2(ζ1−1)(ζ2−1)(2ζ3−1)dζ3

k σ 2-forms

1 σ2,1 (1−ζ3)dζ1∧dζ2

1
2 (2ζ2−1)(1−ζ3)dζ1∧dζ2

σ2,1
1
2 (2ζ1−1)(1−ζ3)dζ1∧dζ2

1
4 (2ζ1−1)(2ζ2−1)(1−ζ3)dζ1∧dζ2

ζ1ζ2(ζ2−1)dζ3∧dζ1

1
2 ζ1(ζ2−1)ζ2(2ζ3−1)dζ3∧dζ1

ζ1ζ3(ζ3−1)dζ2∧dζ3

1
2 ζ1(ζ1−1)(3ζ3−2)dζ2∧dζ3

2 1
2 ζ2ζ3(3ζ1−2)(1−ζ2)dζ3∧dζ1

σ3 ζ2ζ3(ζ3−1)dζ1∧dζ2

1
2 ζ3(ζ3−1)(3ζ2−2)dζ1∧dζ2

1
2 ζ1(ζ1−1)(2ζ2−1)dζ2∧dζ3

1
2 ζ3(ζ3−1)(2ζ1−1)dζ1∧dζ2

1
4 (3ζ1−2)(1−ζ2)(3ζ3−2)dζ3∧dζ1

1
4 ζ1(ζ1−1)(2ζ2−1)(2ζ3−1)dζ2∧dζ3

1
4 ζ3(2ζ1−1)(2ζ2−1)(ζ3−1)dζ1∧dζ2

the type C case in Table 7. For brevity, only the functions associated with edges 1 and
8 (for 1-forms), and faces 1 and 3 are given. Again, bases for other edges and faces can
be readily obtained via a rotation pullback. The dependence of condition number on
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Table 6: 1-form and 2-form bases for prism – type B.

k σ 1-forms

1 σ1,2 (−ζ2+ζ2ζ3)dζ1+(ζ1−ζ1ζ3)dζ2

σ1,7 (1−ζ1−ζ2)dζ3

σ1,2
1

28

(
4ζ2+18ζ1ζ2−18ζ2

2+49ζ2ζ3−53ζ2ζ2
3−18ζ1ζ2ζ2

3+18ζ2
2ζ2

3

)
dζ1+

1
28

(
4ζ1−18ζ2

1+18ζ1ζ2+49ζ1ζ3−53ζ1ζ2
3+18ζ2

1ζ2
3−18ζ1ζ2ζ2

3

)
dζ2

σ1,7
1
4

(
−2+7ζ1−5ζ2

1+7ζ2−10ζ1ζ2−5ζ2
2+4ζ3−14ζ1ζ3+10ζ2

1ζ3−14ζ2ζ3+20ζ1ζ2ζ3+10ζ2
2ζ3

)
dζ3

2 σ2,1

(
1ζ2−1ζ2

2−1ζ2ζ2
3+1ζ2

2ζ2
3

)
dζ1+

(
1ζ1ζ2−1ζ1ζ2ζ2

3

)
dζ2

1
4

(
3ζ2−4ζ1ζ2−3ζ2

2−3ζ2ζ2
3+4ζ1ζ2ζ2

3+3ζ2
2ζ2

3

)
dζ1+

1
4

(
−4ζ1+4ζ2

1+3ζ1ζ2+4ζ1ζ2
3−4ζ2

1ζ2
3−3ζ1ζ2ζ2

3

)
dζ2(

−ζ2ζ3+ζ2ζ2
3

)
dζ1+

(
ζ1ζ3−ζ1ζ2

3

)
dζ2

1
2

(
ζ2ζ3−ζ2ζ2

3

)
dζ1+

1
2

(
ζ1ζ3−ζ1ζ2

3

)
dζ2

σ2,4 −ζ1ζ2dζ3
1
2 (ζ1ζ2−2ζ1ζ2ζ3)dζ3

k σ 2-forms

1 σ2,1 (ζ3−1)dζ1∧dζ2

σ2,4 ζ1dζ2∧dζ3+ζ2dζ3∧dζ1

σ2,1
1
3 (1−3ζ2−ζ3+3ζ2ζ3)dζ1∧dζ2
1
2 (1−2ζ1−ζ2−ζ3+2ζ1ζ3+ζ2ζ3)dζ1∧dζ2

σ2,4
1
2 (−ζ1+2ζ1ζ3)dζ2∧dζ3+

1
2 (−ζ2+2ζ2ζ3)dζ3∧dζ1

1
2 ζ1dζ2∧dζ3+

1
2 ζ2dζ3∧dζ1

1
4 (ζ1−2ζ1ζ3)dζ2∧dζ3+

1
4 (−ζ2+2ζ2ζ3)dζ3∧dζ1

2
(
−1ζ2ζ3+1ζ2ζ2

3

)
dζ1∧dζ2

(−1ζ1ζ2)dζ2∧dζ3+
(
1ζ2−1ζ2

2

)
dζ3∧dζ1(

−1ζ3+2ζ2ζ3+1ζ2
3−2ζ2ζ2

3

)
dζ1∧dζ2

σ3
1
4

(
4ζ1−4ζ2

1−3ζ1ζ2

)
dζ2∧dζ3+

1
4

(
3ζ2−4ζ1ζ2−3ζ2

2

)
dζ3∧dζ1

1
2

(
1ζ3−2ζ1ζ3−1ζ2ζ3−1ζ2

3+2ζ1ζ2
3+1ζ2ζ2

3

)
dζ1∧dζ2

1
2

(
−1ζ1+1ζ2

1+2ζ1ζ3−2ζ2
1ζ3

)
dζ2∧dζ3+

1
2 (1ζ1ζ2−2ζ1ζ2ζ3)dζ3∧dζ1

1
8

(
−3ζ1+3ζ2

1+4ζ1ζ2+6ζ1ζ3−6ζ2
1ζ3−8ζ1ζ2ζ3

)
dζ2∧dζ3+

1
8

(
−4ζ2+3ζ1ζ2+4ζ2

2+8ζ2ζ3−6ζ1ζ2ζ3−8ζ2
2ζ3

)
dζ3∧dζ1

Table 7: 1-form and 2-form bases for prism – type C.

k σ 1-forms

1 σ1,2 (−ζ2+ζ2ζ3)dζ1+(ζ1−ζ1ζ3)dζ2

σ1,7 (1−ζ1−ζ2)dζ3

σ1,2
1
4

(
−2ζ2+7ζ2ζ3−5ζ2ζ2

3

)
dζ1+

1
4

(
−2ζ1+7ζ1ζ3−5ζ1ζ2

3

)
dζ2

σ1,7
1
4 (ζ1+ζ2−1)(5ζ1+5ζ2−2)(2ζ3−1)dζ3

2
(
−ζ2ζ3+ζ2ζ2

3

)
dζ1+

(
ζ1ζ3−ζ1ζ2

3

)
dζ2

1
2

(
ζ2ζ3−ζ2ζ2

3

)
dζ1+

1
2

(
ζ1ζ3−ζ1ζ2

3

)
dζ2

σ2,4 −ζ1ζ2dζ3
1
2 (ζ1ζ2−2ζ1ζ2ζ3)dζ3

k σ 2-forms

1 σ2,1 (ζ3−1)dζ1∧dζ2

σ2,4 ζ1dζ2∧dζ3+ζ2dζ3∧dζ1

σ2,1
1
3 (1−3ζ2−ζ3+3ζ2ζ3)dζ1∧dζ2
1
2 (1−2ζ1−ζ2−ζ3+2ζ1ζ3+ζ2ζ3)dζ1∧dζ2

2 σ2,4
1
2 (−ζ1+2ζ1ζ3)dζ2∧dζ3+

1
2 (−ζ2+2ζ2ζ3)dζ3∧dζ1

1
2 ζ1dζ2∧dζ3+

1
2 ζ2dζ3∧dζ1

1
4 (ζ1−2ζ1ζ3)dζ2∧dζ3+

1
4 (−ζ2+2ζ2ζ3)dζ3∧dζ1

σ3

(
−ζ3+ζ2

3

)
dζ1∧dζ2

1
3

(
ζ3−3ζ1ζ3−ζ2

3+3ζ1ζ2
3

)
dζ1∧dζ2

1
2

(
ζ3−ζ1ζ3−2ζ2ζ3−ζ2

3+ζ1ζ2
3+2ζ2ζ2

3

)
dζ1∧dζ2
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Figure 5: Condition number vs order for single element mass matrices, quasi-stiffness matrices and composite
matrices for 1-form bases ((a), (b), (c )) and 2-form bases ((d), (e), (f)) on hexahedra.

element order of the resulting matrices is shown in Figs. 6 (1-forms) and 7 (2-forms).
Type B and C 1-forms exhibit exponential and sub-exponential behaviour respectively.
The corresponding 2-forms (both B and C types) exhibit exponential growth. It is worth
also noting that the condition numbers for the composite matrices for prisms rise more
rapidly with element order than either tetrahedra or hexahedra, implying relatively poor
conditioning.
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Figure 6: Condition number vs order for single element mass matrices (a), (b), quasi-stiffness matrices (c), (d)
and composite matrices (e), (f) for B and C-type 1-form bases on prisms.

4.4 Pyramids

This pyramid element has canonical functions given in (2.74) with manifold numbering
shown in Fig. 2. The functions associated with edges 2 and 7 (for 1-forms), and faces 1
and 3 are given in Tables 8 and 9 for 1 and 2-forms respectively. The condition numbers
of the resulting matrices are shown in Fig. 8. In both cases we see sub-exponential growth
with element order. As is the case for prisms, the composite matrices for pyramids rise
more rapidly with element order than either tetrahedra or hexahedra, again implying
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Table 8: 1-form bases for pyramid.

k σ 1-forms

1 σ1,1 (1−ζ2−ζ3)dζ1+





(ζ1−ζ2)dζ3

0

σ1,8





−ζ3dζ2+ζ2dζ3

−ζ3dζ1+ζ1dζ3

σ1,1
1
84





(
−42+84ζ1+147ζ2−294ζ1ζ2−105ζ2

2+210ζ1ζ2
2+96ζ3−108ζ1ζ3−107ζ2ζ3+210ζ2

2ζ3−54ζ2
3

)
dζ1(

−42+84ζ1+147ζ2−294ζ1ζ2−105ζ2
2+210ζ1ζ2

2+96ζ3−189ζ1ζ3−159ζ2ζ3+315ζ1ζ2ζ3−54ζ2
3+105ζ1ζ2

3

)
dζ1+

+ 1
84





105
(
−ζ2ζ3+ζ1ζ2ζ3+ζ2ζ2

3

)
dζ2+

(
−66ζ1+108ζ2

1+40ζ2−187ζ1ζ2+105ζ1ζ2
2+54ζ1ζ3+105ζ2

2ζ3

)
dζ3

28ζ1ζ3dζ2+
(
−26ζ1−105ζ2

1+26ζ1ζ2+105ζ2
1ζ2+54ζ1ζ3+105ζ2

1ζ3

)
dζ3

σ1,8
1
4





6ζ2ζ3dζ1+(−2ζ3+3ζ1ζ3+3ζ2ζ3)dζ2+
(

10ζ2−9ζ1ζ2−3ζ2
2

)
dζ3

(−2ζ3+3ζ1ζ3+3ζ2ζ3)dζ1+6ζ1ζ3dζ2+
(

10ζ1−3ζ2
1−9ζ1ζ2

)
dζ3

σ2,1
1
3





ζ2ζ3dζ1+
(

ζ1−ζ2
1−ζ1ζ3

)
dζ2+(ζ2−ζ1ζ2)dζ3(

3ζ1−3ζ2
1−2ζ1ζ3

)
dζ2+

(
ζ1−3ζ2

1+2ζ1ζ2

)
dζ3

2 1
2





(
ζ1−ζ2

1−2ζ1ζ2+2ζ2
1ζ2−ζ1ζ3−ζ2ζ3+3ζ1ζ2ζ3+ζ2ζ2

3

)
dζ2+

(
−ζ2

2+ζ1ζ2
2+ζ2

2ζ3

)
dζ3(

−ζ1ζ3+ζ1ζ2ζ3+ζ1ζ2
3

)
dζ1+

(
ζ1−ζ2

1−2ζ1ζ2+2ζ2
1ζ2−ζ1ζ3+2ζ2

1ζ3

)
dζ2+

(
−ζ1ζ2+ζ2

1ζ2+ζ2
1ζ3

)
dζ3

1
3





(
−3ζ2+3ζ2

2+2ζ2ζ3

)
dζ1+

(
−ζ2−2ζ1ζ2+3ζ2

2

)
dζ3(

−3ζ2+3ζ2
2+3ζ2ζ3

)
dζ1−ζ1ζ3dζ2+(−ζ1+ζ1ζ2)dζ3

1
2





(
ζ2−2ζ1ζ2−ζ2

2+2ζ1ζ2
2−ζ2ζ3+2ζ2

2ζ3

)
dζ1+

(
−ζ2ζ3+ζ1ζ2ζ3+ζ2ζ2

3

)
dζ2+

(
−ζ1ζ2+ζ1ζ2

2+ζ2
2ζ3

)
dζ3(

ζ2−2ζ1ζ2−ζ2
2+2ζ1ζ2

2−ζ1ζ3−ζ2ζ3+3ζ1ζ2ζ3+ζ1ζ2
3

)
dζ1+

(
−ζ2

1+ζ2
1ζ2+ζ2

1ζ3

)
dζ3

σ2,3
1
2





(ζ1ζ3−ζ2ζ3)dζ2+
(
−ζ1ζ2+ζ2

2

)
dζ3

0

1
4





(3ζ1ζ3+ζ2ζ3)dζ2+
(

4ζ2−3ζ1ζ2−ζ2
2

)
dζ3

4ζ1ζ3dζ2+4ζ1 (1−ζ2)dζ3

σ3





−ζ2ζ3dζ1+
(

ζ3−ζ1ζ3−ζ2
3

)
dζ2+(−ζ2+ζ1ζ2)dζ3(

ζ3−ζ2ζ3−ζ2
3

)
dζ1−ζ1ζ3dζ2+(−ζ1+ζ1ζ2)dζ3

1
5





3ζ2ζ3dζ1+
(
−3ζ3+3ζ1ζ3+3ζ2

3

)
dζ2+(−7ζ2+7ζ1ζ2+10ζ2ζ3)dζ3(

−3ζ3+3ζ2ζ3+3ζ2
3

)
dζ1+3ζ1ζ3dζ2+(−7ζ1+7ζ1ζ2+10ζ1ζ3)dζ3

Table 9: 2-form bases for pyramid.

k σ 2-forms

1 σ2,1 ζ1dζ2∧dζ3+ζ2dζ3∧dζ1+(−1+ζ3)dζ1∧dζ2

σ2,3
1
2





(−1+ζ1)dζ2∧dζ3+ζ2dζ3∧dζ1+ζ3dζ1∧dζ2

(−2+ζ1)dζ2∧dζ3+(−1+ζ2)dζ3∧dζ1+ζ3dζ1∧dζ2

σ2,1





1
2 dζ2∧dζ3+ζ2dζ3∧dζ1+

1
2 (1−2ζ1−2ζ3)dζ1∧dζ2

1
2 (−1+2ζ1)dζ3∧dζ1+

1
2 (1−2ζ1)dζ1∧dζ2




1
2 (1−2ζ1+2ζ2)dζ2∧dζ3+(2ζ2)dζ3∧dζ1+

1
2 (1−2ζ2−2ζ3)dζ1∧dζ2

−ζ1dζ2∧dζ3+
1
2 (−1+2ζ2)dζ3∧dζ1+

1
2 (1−2ζ2)dζ1∧dζ2




1
4 (1−2ζ1+ζ2+ζ1ζ2)dζ2∧dζ3+

1
4

(
2ζ2+ζ2

2

)
dζ3∧dζ1+

1
4 (−1+2ζ1+2ζ2−4ζ1ζ2−3ζ2ζ3)dζ1∧dζ2

1
4

(
−2ζ1+ζ2

1

)
dζ2∧dζ3+

1
4 (−1+ζ1+ζ1ζ2)dζ3∧dζ1+

1
4 (−1+2ζ1+2ζ2−4ζ1ζ2+2ζ3−3ζ1ζ3)dζ1∧dζ2

2 σ2,3





2
3 (1−ζ1)dζ2∧dζ3+

4
3 ζ2dζ3∧dζ1−

2
3 ζ3dζ1∧dζ2

1
3 (1−2ζ1−3ζ2)dζ2∧dζ3+

1
3 (−1+1ζ2)dζ3∧dζ1+

1
3 (1ζ3)dζ1∧dζ2




(−1+1ζ1+1ζ3)dζ2∧dζ3+(−1ζ2)dζ3∧dζ1

1
2 (−1+2ζ1+1ζ2+2ζ3)dζ2∧dζ3+

1
2 (1−1ζ2)dζ3∧dζ1+

1
2 (−1ζ3)dζ1∧dζ2

σ3 ω
σ3
1 =2





(1−ζ1−ζ3)dζ2∧dζ3+ζ2dζ3∧dζ1

−ζ1dζ2∧dζ3+(−1+ζ2+ζ3)dζ3∧dζ1

ω
σ3
2 = 7

384 ω
σ3
1 + 1

8





(
−2ζ1+2ζ2

1−ζ3

)
dζ2∧dζ3+(−2ζ2+2ζ1ζ2)dζ3∧dζ1+(ζ3+2ζ1ζ3)dζ1∧dζ2(

−2ζ1+2ζ2
1

)
dζ2∧dζ3+(−2ζ1+2ζ1ζ2+ζ3)dζ3∧dζ1+(−ζ3+2ζ1ζ3)dζ1∧dζ2

ω
σ3
3 = 29

384 ω
σ3
1 − 907

1596 ω
σ3
2 + 1

8





(−2ζ2+2ζ1ζ2−ζ3)dζ2∧dζ3+
(
−4ζ2+2ζ2

2

)
dζ3∧dζ1+(ζ3+2ζ2ζ3)dζ1∧dζ2

(2ζ1ζ2)dζ2∧dζ3+
(
−2ζ2+2ζ2

2+ζ3

)
dζ3∧dζ1+(−ζ3+2ζ2ζ3)dζ1∧dζ2

ω
σ3
4 = 1049

3419 ω
σ3
2 + 2382

13067 ω
σ3
3 + 1

4

(
ζ1ζ3dζ2∧dζ3+ζ2ζ3dζ3∧dζ1+

(
−ζ3+ζ2

3

)
dζ1∧dζ2

)
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Figure 7: Condition number vs order for single element mass matrices (a), (b), quasi-stiffness matrices (c), (d)
and composite matrices (e), (f) for B and C-type 2-form bases on prisms.

comparatively poor conditioning. In practice, however, typical meshes would contain
very few such elements (at the interface between tetrahedra and hexahedra, for instance)
and it is possible that the poor conditioning of prisms and pyramids would have limited
overall effect.

5 Conclusion

A procedure for the systematic construction of hierarchical conforming bases on a range
of element types is demonstrated based on an ab initio preservation of the underlying
cohomology. This process supports not only the most common simplicial element types,
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Figure 8: Condition number vs order for single element mass matrices, quasi-stiffness matrices and composite
matrices for 1-form bases ((a), (b), (c )) and 2-form bases ((d), (e), (f)) on pyramid.

but is generalized to hexahedra, prisms and importantly pyramids. This generalization is
effected by recourse to basic ideas from algebraic topology (differential forms, homology,
cohomology, etc) and as such extends the fundamental theoretical framework established
by the work of Hiptmair [16–18] and Arnold et al. [4].

These bases can be classify as type B or C according to Graglia et al [15] for tetrahe-
dra and prisms, depending on the choice of polynomial space parameters k0,k2 and k3

and type B for hexahedra and pyramids. The resulting bases are tabulated for a range of
orders. The condition number for mass, quasi-stiffness and composite matrices is com-
puted and where appropriate, compared with alternatives. It is seen that the condition
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number grows exponentially or better in all cases. Furthermore, tetrahedral and hexahe-
dra exhibit consistently better conditioning than prisms or pyramids.
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