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Abstract. We construct a new first-order central-upwind numerical method for solv-
ing systems of hyperbolic equations in conservative form. It applies in multidimen-
sional structured and unstructured meshes. The proposed method is an extension of
the UFORCE method developed by Stecca, Siviglia and Toro [25], in which the upwind
bias for the modification of the staggered mesh is evaluated taking into account the
smallest and largest wave of the entire Riemann fan. The proposed first-order method
is shown to be identical to the Godunov upwind method in applications to a 2×2 linear
hyperbolic system. The method is then extended to non-linear systems and its perfor-
mance is assessed by solving the two-dimensional inviscid shallow water equations.
Extension to second-order accuracy is carried out using an ADER-WENO approach in
the finite volume framework on unstructured meshes. Finally, numerical comparison
with current competing numerical methods enables us to identify the salient features
of the proposed method.
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1 Introduction

1.1 Preliminaries

We consider a general system of non-linear conservation laws in α space dimensions:
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∂tQ+div
(
F(Q)

)
=0 , (1.1)

where F(Q) is the flux tensor.

We assume a conforming tessellation TΩ of the computational domain Ω⊂Rα by ne

elements Ti such that:

TΩ=
ne⋃

i=1

Ti . (1.2)

Each element Ti has n f plane interfaces Sj of size
∣∣Sj

∣∣, with associated outward pointing
face normal vectors ~nj. Element Ti, having size |Ti|, is sub-divided into subvolumes V−

j

generated by connecting the barycentre of Ti with the vertices of Sj. The correspond-
ing adjacent subvolume in the neighbouring element that shares face Sj with element
Ti is denoted as V+

j . Fig. 1 illustrates the above definitions and notation for the two-

dimensional case. Note that the intersection of V−
j and V+

j gives the interface Sj of the

element Ti. With reference to Fig. 1 we distinguish two kinds of elements: primary ele-
ments Ti, at which the solution is sought at each time step, and secondary elements formed
by V−

j

⋃
V+

j , for j=1,2,3.

Finite volume schemes are obtained by integration of the conservation law (1.1) over
a space-time control volume Ti×

[
tn,tn+1

]
, yielding:

Qn+1
i =Qn

i −
∆t

|Ti|

n f

∑
j=1

∫

Sj

F
j+ 1

2

(
Qn

i ,Qn
j

)
·~njd~x , (1.3)

where Qn
i is the cell average at time level n and ∆t= tn+1−tn is the time step. Two dif-

ferent approaches are available for determining F
j+ 1

2

. The first approach is the upwind

approach, represented by Godunov’s method [9] and the second is the centred approach,
typically represented by the Lax-Friedrichs flux and variations of it [18]. For a compre-
hensive presentation of upwind, and also some centred methods, see for example [27]
and references therein.

In this paper we derive a central-upwind method which partially uses upwind infor-
mation, while retaining the simplicity and efficiency of a centred scheme. Kurganov and
Tadmor put forward an analogous idea in their central-upwind approach [17], using an
adaptive staggered mesh. Their scheme is based on a modification of the centred scheme
of Nessyahu and Tadmor [21], where the staggered mesh is fixed. Extensions to mul-
tidimensions of the scheme of Nessyahu and Tadmor [21] has been obtained by Jiang
and Tadmor [13] and by Arminjon and collaborators [1]. Multi-dimensional extensions
of the scheme of Kurganov and Tadmor have been presented in [14] (Cartesian version)
and [16] (unstructured version), while a modified version of the scheme optimised for
treating contact discontinuities, which makes use of partial characteristic decomposition,
has been presented in [15].
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Our scheme is strictly related to the UFORCE central-upwind method developed by
Stecca et al. [25], which is an upwind-biased version of the FORCE scheme for Cartesian
meshes. The present scheme fully exploits the idea of varying adaptively the secondary
mesh size, which was first introduced in the FORCE framework in [25].

For a 2×2 linear system in two and three space dimensions the proposed scheme
reproduces identically the Godunov scheme constructed by solving exactly the Riemann
problems normal to each interface. For non-linear systems the extension is empirical and
makes explicit use of estimates for the largest and smallest wave speeds of the entire
Riemann fan.

1.2 The FORCE scheme on general meshes

We review the construction of the multidimensional FORCE scheme originally proposed
by Toro et al. [29]. The multi-dimensional FORCE flux on unstructured meshes is con-
structed as follows:

1. First, assuming averages in each primary element at time t= tn an intermediate state

for each interface Sj is defined at the half-time level tn+ 1
2 = tn+ 1

2 ∆t by integrating
the conservation law (1.1) over the secondary elements:

Q
n+ 1

2

j+ 1
2

=
Qn

i

∣∣∣V−
j

∣∣∣+Qn
j

∣∣∣V+
j

∣∣∣
∣∣∣V−

j

∣∣∣+
∣∣∣V+

j

∣∣∣
−

1

2

∆t
∣∣Sj

∣∣
∣∣∣V−

j

∣∣∣+
∣∣∣V+

j

∣∣∣

(
F
(

Qn
j

)
−F(Qn

i )
)
·~nj , (1.4)

where
∣∣V−

j

∣∣ and
∣∣V+

j

∣∣ indicate the size of subvolumes V−
j and V+

j , namely their

length in 1D, surface area in 2D and volume in 3D.

2. Then, with initial condition at time tn+ 1
2 given by (1.4), integration of the conser-

vation law (1.1) over the primary elements Ti×
[
tn+ 1

2 ,tn+1
]

yields averages at time

tn+1= tn+∆t, namely:

Qn+1
i =

1

|Ti|

n f

∑
j=1

(
Q

n+ 1
2

j+ 1
2

∣∣∣V−
j

∣∣∣−
1

2
∆t
∣∣Sj

∣∣F
(

Q
n+ 1

2

j+ 1
2

)
·~nj

)
. (1.5)

Eqs. (1.4) and (1.5) constitute a first-order accurate, explicit two-step method for solving
(1.1) on a staggered mesh. Finally, following the FORCE approach [28] the scheme can
now be written as a one-step scheme in conservative form on a non-staggered mesh, with
a corresponding numerical flux. After some algebraic manipulations involving the Gauss
theorem (∑j Sj~nj =~0) and normalizing the face-normal vectors (~n2

j = 1) the scheme (1.4),

(1.5) is recast into the sought one-step form:

Qn+1
i =Qn

i −
∆t

|Ti|

n f

∑
j=1

∣∣Sj

∣∣FFORCE
j+ 1

2

·~nj , (1.6)
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Figure 1: Sketch of the primary and secondary mesh for the FORCE method: 2D triangular case.

where the multidimensional FORCE flux on general meshes FFORCE
j+ 1

2

is given by

FFORCE
j+ 1

2

=
1

2

(
FLW

j+ 1
2

(
Qn

i ,Qn
j

)
+FLF

j+ 1
2

(
Qn

i ,Qn
j

))
. (1.7)

The FORCE flux is then the arithmetic average of two fluxes: a two-point flux of the Lax-
Wendroff type and a two-point flux of the Lax-Friedrichs type. The Lax-Wendroff-type
flux is given by the physical flux F evaluated at the intermediate state obtained from the
first averaging procedure (1.4):

FLW
j+ 1

2

=F
(

QLW
j+ 1

2

)
, (1.8)

QLW
j+ 1

2
=

Qn
i

∣∣∣V−
j

∣∣∣+Qn
j

∣∣∣V+
j

∣∣∣
∣∣∣V−

j

∣∣∣+
∣∣∣V+

j

∣∣∣
−

1

2

∆t
∣∣Sj

∣∣
∣∣∣V−

j

∣∣∣+
∣∣∣V+

j

∣∣∣

(
F
(

Qn
j

)
−F(Qn

i )
)
·~nj , (1.9)

while the Lax-Friedrichs-type flux for general meshes in multiple space dimensions is
given by

FLF
j+ 1

2

=
F
(

Qn
j

)∣∣∣V−
j

∣∣∣+F
(
Qn

i

)∣∣∣V+
j

∣∣∣
∣∣∣V−

j

∣∣∣+
∣∣∣V+

j

∣∣∣
−

∣∣∣V−
j

∣∣∣
∣∣∣V+

j

∣∣∣
∣∣∣V−

j

∣∣∣+
∣∣∣V+

j

∣∣∣
2

∆t
∣∣Sj

∣∣
(

Qn
j −Qn

i

)
~nT

j , (1.10)

where~nT
j denotes the transpose of nj.

It is worth mentioning that different FORCE-type methods suitable to be applied to
non-conservative systems are available [2, 3, 6].
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1.3 The FORCE-α method on general meshes

In this section we generalize the FORCE-α formulation developed by Toro et al. [29] for
Cartesian meshes to general unstructured meshes. This is helpful for deriving the pro-
posed method in the next section. We recall that the secondary mesh cells in the multi-
dimensional FORCE method are composed of two subvolumes V−

j and V+
j having trian-

gular shape in 2D (α= 2) and pyramidal shape in 3D (α= 3). In this paper we indicate
with

∣∣V−
j

∣∣ and
∣∣V+

j

∣∣ the size of these subvolumes, which dimensionally corresponds to

their surface area in 2D and their volume in 3D, given by

∣∣∣V+
j

∣∣∣=
h+j
∣∣Sj

∣∣

α
,

∣∣∣V−
j

∣∣∣=
h−j
∣∣Sj

∣∣

α
, (1.11)

where h+j and h−j are the altitudes of
∣∣V+

j

∣∣ and
∣∣V−

j

∣∣ respectively and
∣∣Sj

∣∣ represents the

area of the triangle base or pyramid base surface (see Fig. 1). Substitution of (1.11) into
the FORCE flux formulae (1.7)-(1.10) gives

FFORCE−α
j+ 1

2

=
1

2

(
FLW−α

j+ 1
2

(
Qn

i ,Qn
j

)
+FLF−α

j+ 1
2

(
Qn

i ,Qn
j

))
, (1.12)

with

FLW−α
j+ 1

2

=F
(

QLW−α
j+ 1

2

)
, (1.13)

QLW−α
j+ 1

2

=
Qn

i h−j +Qn
j h+j

h−j +h+j
−

1

2

α∆t

h−j +h+j

(
F
(

Qn
j

)
−F(Qn

i )
)
·~nj , (1.14)

FLF−α
j+ 1

2

=
F
(

Qn
j

)
h−j +F

(
Qn

i

)
h+j

h−j +h+j
−

h−j h+j

h−j +h+j

2

α∆t

(
Qn

j −Qn
i

)
~nT

j . (1.15)

It is worth mentioning that the above formulation applies to any kind of mesh. The
method requires the knowledge of altitudes h±j , which in the case of triangular and tetra-

hedral meshes are given by

h−j =
α|Ti|

n f

∣∣Sj

∣∣ , h+j =
α
∣∣Tj

∣∣
n f

∣∣Sj

∣∣ , (1.16)

where n f represents the number of cell boundaries (n f =3 on triangular meshes and n f =4
on tetrahedral meshes).

Finally, the FORCE-α flux represents the starting point for the development of a mul-
tidimensional upwind biased FORCE flux to be applied to general meshes. This is the
main purpose of the paper and the object of the next sections.
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2 The UFORCE-δ method

The purpose of this section is to design a monotone FORCE-type method characterised by
reduced numerical dissipation. The sought flux shall be of the centred upwind-biased (or
central-upwind) type and applicable to general meshes in multidimensions. We propose
a modification of the FORCE-α flux (1.10)-(1.12) which consists in varying adaptively the
two secondary subvolumes adjacent to each interface in the primary mesh. The resulting
flux will contain two upwind bias parameters, i.e. δ+j and δ−j , which control the shape of

the secondary mesh at the same time level.

2.1 Derivation of the UFORCE-δ flux

In analogy to the multi-dimensional FORCE scheme, the derivation of the UFORCE-δ
method requires the adoption of a primary mesh for computing cell averages and a stag-
gered secondary mesh used to define numerical fluxes for the conservative form of the
scheme. The primary mesh corresponds to a conforming tessellation (see Fig. 2), while
the secondary mesh is staggered with respect to the primary mesh. Each cell of the sec-
ondary mesh is composed by two subvolumes V−

j and V+
j , the former laying within cell

Ti, the latter laying outside. The intersection of V−
j and V+

j gives the interface Sj (see

Fig. 2, where the two-dimensional triangular case is shown).
In deriving the proposed numerical method we allow the vertex of each subvolume

V−
j to not necessarily join in the barycentre of Ti. Subvolumes V−

j are generated inde-

pendently from each other by connecting the vertices of interface Sj with one point Pj

associated with Sj laying within Ti.
For the proposed scheme we impose that each subvolume V−

j cannot be greater than

the corresponding V−
j in the FORCE method. This condition also ensures that the pri-

mary mesh subvolumes V+
j have smaller size than their counterparts in the FORCE

method. Since the amount of numerical dissipation associated to the averaging pro-
cedure described in (1.4) and (1.5) increases with subvolume size

∣∣V±
j

∣∣, this constraint

guarantees that the proposed method will be less dissipative than FORCE.
Adopting an explicit formulation in terms of α as in (1.11) we obtain

∣∣∣V−
j

∣∣∣=
δ−j h−j

∣∣Sj

∣∣

α
,

∣∣∣V+
j

∣∣∣=
δ+j h+j

∣∣Sj

∣∣

α
, (2.1)

where δ−j and δ+j are the upwind bias parameters associated to Sj which must satisfy the

following conditions
0≤δ−j ≤1, 0≤δ+j ≤1. (2.2)

Once the secondary mesh (2.1) is defined, the derivation of the UFORCE-δ numerical flux
proceeds from equations (1.4) and (1.5), giving the following flux

FUFORCE−δ
j+ 1

2

=
1

2

{
FULW−δ

j+ 1
2

(
Qn

i ,Qn
j

)
+FULF−δ

j+ 1
2

(
Qn

i ,Qn
j

)}
, (2.3)
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Figure 2: Sketch of the primary and secondary mesh for the UFORCE-δ method: 2D triangular case.

with

FULW−δ
j+ 1

2

=F

(
QULW−δ

j+ 1
2

)
, (2.4)

QULW−δ
j+ 1

2

=
1(

δ−j h−j +δ+j h+j +ǫ
)
{(

Qn
i δ−j h−j +Qn

j δ+j h+j

)
−

1

2
α∆t

(
F
(

Qn
j

)
−F(Qn

i )
)
·~nj

}
, (2.5)

FULF−δ
j+ 1

2

=
1(

δ−j h−j +δ+j h+j +ǫ
)
{(

F
(

Qn
j

)
δ−j h−j +F(Qn

i )δ+j h+j

)

−2
δ−j h−j δ+j h+j

α∆t

(
Qn

j −Qn
i

)
~nT

j

}
, (2.6)

where a slight correction in the denominator has been introduced in order to handle the
case of both vanishing δ−j and δ+j . Here ǫ is a small positive real number, e.g. ǫ=10−10.

At this stage the UFORCE-δ flux is expressed as a function of the upwind bias pa-
rameters δ±j , still to be determined. In the next section we shall derive optimal values for

these parameters.

2.2 The optimal upwind bias

Different choices for δ±j in (2.3)-(2.6) give different numerical methods. Here we concen-

trate on an adaptive choice of the upwind bias parameters, i.e. a relationship governing
their variation in space and (if the problem is non-linear) in time.

The purpose of this section is to determine the optimal upwind bias, i.e. the choice of
δ+j and δ−j providing the least dissipative monotone first order flux. To this aim we adopt
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an approach which is analogous to that adopted by Stecca et al. [25]. The steps we follow
are:

• choice of the appropriate linear test problem;

• identification of an existing upwind numerical method to be used as reference;

• evaluation of the optimal upwind bias for the UFORCE-δ method by equating its flux to the
reference method flux for the selected test equation.

For sake of generality, we perform our analysis on a three-dimensional test problem on
an unstructured mesh. In order to evaluate the two bias δ+j and δ−j we make use of the

following linear system:

∂tQ+∂xF(Q)+∂yG(Q)+∂zH(Q)=0 , (2.7)

where Q=[q1,q2]
T is the vector of conserved variables and F(Q), G(Q), H(Q) are the x-,

y-, z- fluxes given by

F(Q)=AxQ , G(Q)=AyQ , H(Q)=AzQ , (2.8)

where Ax, Ay, Az are 2×2 hyperbolic matrices with constant entries. Hyperbolicity of
these matrices ensures that each of them possesses two real eigenvalues. Therefore (2.7)
presents two waves in each space direction that can be used for evaluating the two bias
δ+j and δ−j . Let us consider a cell Ti of the considered unstructured mesh, whose bound-

aries are Sj. Let ~nj be the outward pointing normal unit vector and Tj the neighbour-
ing cell associated to the current boundary and the initial condition (time t = tn, local

time τ = 0) given by piecewise constant data, namely Q(x,y,z∈Ti)=Qn
i = [q1i,q2i]

T and

Q
(

x,y,z∈Tj

)
=Qn

j =
[
q1j,q2j

]T
.

The sought reference method shall be monotone and characterised by minimum nu-
merical dissipation. Stecca et al. [25] prove that the Godunov upwind scheme on struc-
tured meshes in two space dimensions for the linear advection equation is the monotone
scheme with the smallest truncation error among all the five-point schemes. Since the
same proof is not viable on general unstructured meshes, here we assume a straightfor-
ward extension of the result by Stecca et al. [25] and adopt the Godunov upwind method
as reference. The Godunov upwind flux at interface Sj is given by

FGodunov
j+ 1

2

(
Qn

i ,Qn
j

)
=F

j+ 1
2

(
Q
(
n̂=0,τ=0+

))
, (2.9)

where Q(n̂=0,τ=0+) is the solution of a classical one-dimensional Riemann problem
projected orthogonally to cell interface Sj and n̂ denotes a local normal coordinate defined
by~nj with origin at Sj.

In order to obtain identical numerical methods we have to equate the projected fluxes

FUFORCE−δ
j+ 1

2

(
Qn

i ,Qn
j

)
·~nj =FGodunov

j+ 1
2

(
Qn

i ,Qn
j

)
·~nj . (2.10)
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At this stage we apply both numerical fluxes to the system (2.7)-(2.8).
The Godunov upwind numerical flux (2.9) is obtained by solving the following Rie-

mann problem: 



∂tQ+∂n̂ (An̂Q)=0,{
Q(τ=0,n̂)=Qn

i , if n̂<0,

Q(τ=0,n̂)=Qn
j , if n̂>0,

(2.11)

where An̂ is the projected flux Jacobian matrix, defined as

An̂ =

[
a11 a12

a21 a22

]
=
(
Ax,Ay,Az

)
·~nj . (2.12)

Hyperbolicity of all matrices in (2.8) guarantees that the matrix An̂ is itself hyperbolic.

Therefore An̂ possesses two real eigenvalues λ
(1)
n̂ and λ

(2)
n̂ (sorted in increasing order),

defined as:

λ
(1)
n̂ =

1

2
(a11+a22−R) , λ

(2)
n̂ =

1

2
(a11+a22+R) , (2.13)

with R=
√
(a11−a22)

2+4a12a21. The exact solution at cell interface for problem (2.11) is
given by

Q
(
n̂=0,τ=0+

)

=





Qn
i , if λ

(1)
n̂ >0,

Qn
j , if λ

(2)
n̂ <0,

[
R+a11−a22

2R+ q1i+
R−a11+a22

2R+ q1j−
a12
R+

(
q2j−q2i

)

− a21
R+

(
q1j−q1i

)
+ R−a11+a22

2R+ q2i+
R+a11−a22

2R+ q2j

]
, otherwise,

(2.14)

where R+=(R+ǫ) allows to handle the case of two vanishing projected eigenvalues. The
three-dimensional Godunov flux is obtained applying the flux operators (2.8) and (2.14)
into (2.9), from which we obtain:

FGodunov
j+ 1

2

(
Qn

i ,Qn
j

)
·~nj =An̂Q

(
n̂=0,τ=0+

)
. (2.15)

The three-dimensional UFORCE-δ flux for (2.7)-(2.8) is obtained by substitution of (2.8)
into (2.3)-(2.6). The projected UFORCE-δ flux reads

FUFORCE−δ
j+ 1

2

·~nj

=
1

2



An̂−

1(
δ−j h−j +δ+j h+j +ǫ

)


α∆t

2
A2

n̂+
2
(

δ−j h−j δ+j h+j

)

α∆t
I







(

Qn
j −Qn

i

)
, (2.16)

where I is the 2×2 identity matrix.
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Equating the UFORCE-δ flux (2.16) to the Godunov flux (2.15), after algebraic manip-
ulations, two solutions for the optimal upwind bias can be found:

δ−j =

∣∣∣λ(1)
n̂

∣∣∣α∆t

2h−j
, δ+j =

∣∣∣λ(2)
n̂

∣∣∣α∆t

2h+j
, (2.17)

δ−j =

∣∣∣λ(2)
n̂

∣∣∣α∆t

2h−j
, δ+j =

∣∣∣λ(1)
n̂

∣∣∣α∆t

2h+j
. (2.18)

In order to satisfy constraint (2.2), the following condition must hold:

max
(∣∣∣λ(1)

n̂

∣∣∣,
∣∣∣λ(2)

n̂

∣∣∣
)

∆t

2h−j
≤

1

α
, (2.19)

for each hj in the domain. Therefore the time step ∆t will be chosen according to the
following relationship:

∆t=
2

α
CFL min

1≤i≤ne


 min

1≤j≤n f


 h−j

max
(∣∣∣λ(1)

n̂

∣∣∣,
∣∣∣λ(2)

n̂

∣∣∣
)






Ti

, (2.20)

being CFL the Courant-Friedrichs-Lewy coefficient (0<CFL≤1).
It is worth mentioning that for the linear case the two solutions (2.17) and (2.18) are

equivalent giving the same numerical results.
We are now ready to write our UFORCE-δ flux for the considered problem by insert-

ing (2.17) or (2.18) into (2.16):

FUFORCE−δ
j+ 1

2

·~nj

=
1

2



An̂−

1

max
(∣∣∣λ(1)

n̂

∣∣∣+
∣∣∣λ(2)

n̂

∣∣∣+ǫ
)
(

A2
n̂+
∣∣∣λ(1)

n̂

∣∣∣
∣∣∣λ(2)

n̂

∣∣∣I
)



(

Qn
j −Qn

i

)
. (2.21)

Comparing (2.16) and (2.21) we observe that the original cell subvolume altitudes h±j
have been replaced by adaptive subvolumes whose size is controlled by local character-
istic speeds in absolute value. The amount of numerical dissipation, which is related to
the size of secondary subvolumes, is now controlled by local parameters related to the
characteristic speeds. We remark that given the optimal upwind bias (2.17) or (2.18), the
proposed UFORCE-δ method identically reproduces the results of the Godunov upwind
method in applications to the linear system (2.7)-(2.8). In Section 4 we will experimen-
tally prove this statement. In the next section we explain how to extend the proposed
flux to general non-linear hyperbolic systems.
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2.3 Extension to non-linear hyperbolic systems of PDEs

The aim of this section is to find a suitable modification of relationships (2.17) and (2.18)
in order to express the upwind bias as a function of available wave speed estimates for
general non-linear hyperbolic systems.

Let us consider the following three-dimensional hyperbolic system of m equations
and m unknowns, with m≥2:

∂tQ+∂xF(Q)+∂yG(Q)+∂zH(Q)=0 , (2.22)

where F(Q), G(Q) and H(Q) are the flux vectors in the x-, y- and z- direction respec-
tively. The Jacobian matrices of flux vectors F, G, H are defined as:

Ax (Q)=

[
∂F

∂Q

]
, Ay (Q)=

[
∂G

∂Q

]
, Az (Q)=

[
∂H

∂Q

]
. (2.23)

In order to evaluate the flux associated to interface Sj of cell Ti we consider the projected
Jacobian matrix:

An̂ (Q)=
(
Ax (Q),Ay(Q),Az(Q)

)
·~nj . (2.24)

Unlike in the linear case, Jacobians (2.23) are generally data-dependent. Therefore,
given piecewise constant initial data presenting a discontinuity at interface Sj, namely
Q(x,y,z∈Ti) =Qn

i and Q
(

x,y,z∈Tj

)
=Qn

j , we have to consider two projected Jacobian
matrices:

Ain̂ =An̂ (Q
n
i ) , Ajn̂ =An̂

(
Qn

j

)
. (2.25)

Note that the two projected Jacobians (2.25) have been obtained with different data, but
using the same unit vector ~nj (outward pointing from cell Ti). Each of these Jacobian

matrices possesses m real eigenvalues (sorted in increasing order), namely λ
(1)
in̂ ,··· ,λ

(m)
in̂

and λ
(1)
jn̂ ,··· ,λ

(m)
jn̂ respectively.

Compared to the linear case with m=2 we have to address the following questions:

• Which waves should be taken into account when dealing with a system possessing
more than two waves?

• How the wave speed can be estimated in practice in order to use an expression
based on (2.17) or (2.18) for the upwind bias?

Concerning the first question we consider a two-wave approach similar to HLL [11] or
to the central-upwind method developed by Kurganov, Noelle and Petrova (in the fol-
lowing KNP) [14]. Following this approach we conclude that for system possessing more
than two waves we have to consider the smallest and largest characteristic speed of the

entire Riemann fan. In the following we denote these wave speeds as s
(1)
n and s

(m)
n . There-

fore the optimal upwind bias can be written as

δ−j =

∣∣∣s(1)n̂

∣∣∣α∆t

2h−j
, δ+j =

∣∣∣s(m)
n̂

∣∣∣α∆t

2h+j
, (2.26)
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δ−j =

∣∣∣s(m)
n̂

∣∣∣α∆t

2h−j
, δ+j =

∣∣∣s(1)n̂

∣∣∣α∆t

2h+j
. (2.27)

The associated CFL condition reads

∆t=
2

α
CFL min

1≤i≤ne


 min

1≤j≤n f


 h−j

max
(∣∣∣s(1)n̂

∣∣∣,
∣∣∣s(m)

n̂

∣∣∣
)






Ti

, (2.28)

with 0<CFL≤1.
The second question requires more discussion and different approaches are viable.

Hereby we present two possible choices leading to genuinely centred method:

1. The first approach considers the smallest and largest wave speeds of the Riemann
fan, which are obtained using directly the eigenvalues of the projected Jacobian
matrices (2.25) as linearised wave speed estimates, i.e.:

∣∣∣s(1)n̂

∣∣∣=max
(∣∣∣λ(1)

in̂

∣∣∣,
∣∣∣λ(1)

jn̂

∣∣∣
)

,
∣∣∣s(m)

n̂

∣∣∣=max
(∣∣∣λ(m)

in̂

∣∣∣,
∣∣∣λ(m)

jn̂

∣∣∣
)

. (2.29)

The upwind bias is obtained inserting (2.29) into (2.27). Since these eigenvalues
are in any case needed for selecting a time step, no computational effort is added
to the global method. Based on our experience with the two-dimensional inviscid
shallow water equations, in order to avoid spurious oscillations we recommend use
of (2.27). The resulting method is genuinely centred since the system eigenstructure
does not have to be known in details, therefore being very general and suitable to
be applied to systems for which the solution of the Riemann problem is not viable.
Moreover, compared to classical centred methods like FORCE (1.7)-(1.10), it will be
characterised by reduced numerical dissipation.

2. A second approach is based on a one-wave framework, where both wave speeds
are estimated based on the maximum eigenvalue in absolute value:

∣∣∣s(1)n̂

∣∣∣=
∣∣∣s(m)

n̂

∣∣∣=max

(
max

1≤l≤m

(∣∣∣λ(l)
in̂

∣∣∣
)

, max
1≤l≤m

(∣∣∣λ(l)
jn̂

∣∣∣
))

. (2.30)

In this case use of (2.26) or (2.27) leads to identical methods. Use of a one-wave
method is mandatory when dealing with scalar equations, possessing only one
wave (m = 1). In applications to systems of PDEs this choice may be convenient
whether only an estimate of the maximum eigenvalue in absolute value is available.
The resulting one-wave UFORCE-δ method is expected to be more dissipative than
the two-wave UFORCE-δ given by (2.29), but still more accurate than the FORCE
method.

Finally, the UFORCE-δ method (two-wave version) can be summarised:
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• computation of two sets of eigenvalues of the projected Jacobians (2.25) across each boundary

Sj (λ
(1)
in̂ ,··· ,λ

(m)
in̂ and λ

(1)
jn̂ ,··· ,λ

(m)
jn̂ );

• selection of a time step ∆t using (2.28);

• computation of the optimal upwind bias (2.27) using linearised wave speeds (2.29);

• application of the update formula (1.3).

2.4 The UFORCE-δ flux on Cartesian meshes

In this section we derive a Cartesian formulation for the UFORCE-δ flux (2.3)-(2.6). The
formulation here proposed is also suitable for one-dimensional applications. We focus
again on the non-linear system (2.22) and we consider only fluxes in the x-direction, while
the other fluxes can be written in analogous manner. We use a Cartesian-type indexation
of cells: therefore we indicate with Ti the current cell and with Ti+1 its right neighbour
in the x direction. We assume piecewise constant initial data such as Qn

i and Qn
i+1. The

UFORCE-δ flux at interface Si+ 1
2

is given by

FUFORCE−δ
i+ 1

2

=
1

2

{
FULW−δ

i+ 1
2

(
Qn

i ,Qn
i+1

)
+FULF−δ

i+ 1
2

(
Qn

i ,Qn
i+1

)}
, (2.31)

with

FULW−δ
i+ 1

2

=F
(

QULW−δ
i+ 1

2

)
, (2.32)

QULW−δ
i+ 1

2

=
1(

δ−
i+ 1

2

+δ+
i+ 1

2

+ǫ
)
{(

Qn
i δ−

i+ 1
2

+Qn
i+1δ+

i+ 1
2

)
−

α∆t

∆x

(
F
(
Qn

i+1

)
−F(Qn

i )
)}

, (2.33)

FULF−δ
i+ 1

2

=
1(

δ−
i+ 1

2

+δ+
i+ 1

2

+ǫ
)
{(

F
(
Qn

i+1

)
δ−

i+ 1
2

+F(Qn
i )δ+

i+ 1
2

)

−δ−
i+ 1

2

δ+
i+ 1

2

∆x

α∆t

(
Qn

i+1−Qn
i

)}
, (2.34)

where ∆x is mesh spacing in the x direction, assumed as constant. In contrast we remark
that if the mesh is variably-spaced only the general formulation (2.3)-(2.6) holds. Note
that imposing δ± = 1 the FORCE-α method on Cartesian meshes [29] is obtained. The
optimal upwind bias are given by

δ−
i+ 1

2

=

∣∣∣s(m)
x

∣∣∣α∆t

∆x
, δ+

i+ 1
2

=

∣∣∣s(1)x

∣∣∣α∆t

∆x
, (2.35)

where
∣∣s(1)x

∣∣, and
∣∣s(m)

x

∣∣ are the extrema of the Riemann fan in the current x direction,
which can be approximated using both of the strategies already presented for the gen-
eral case. In particular, seeking for a two-wave method, we consider the eigenvalues of
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the Jacobian matrix Ax defined in (2.23). Across the current interface Si+ 1
2

we have two

Jacobians, namely:

Ai=Ax (Q
n
i ) , Ai+1=Ax

(
Qn

i+1

)
, (2.36)

giving rise to two sets of eigenvalues (sorted in increasing order) λ
(1)
i ,··· ,λ

(m)
i and

λ
(1)
i+1,··· ,λ

(m)
i+1. We use these eigenvalues as wave speed estimates in the form

∣∣∣s(1)x

∣∣∣=max
(∣∣∣λ(1)

i

∣∣∣,
∣∣∣λ(1)

i+1

∣∣∣
)

,
∣∣∣s(m)

x

∣∣∣=max
(∣∣∣λ(m)

i

∣∣∣,
∣∣∣λ(m)

i+1

∣∣∣
)

. (2.37)

3 Second-order extension

The first-order UFORCE-δ flux (2.3)-(2.6) can be used as a basic building block for high-
order extension.

The key ingredients for extending a first-order flux to order of accuracy p> 1 in the
Finite Volume framework are the availability of i) a non-oscillatory polynomial recon-
struction of degree p−1 and ii) a temporal evolution technique. Concerning the recon-
struction technique, several different procedures are available. Total Variation Diminish-
ing (TVD) schemes are most frequently used for second-order accuracy (see e.g. [20,33]),
while essentially non-oscillatory (ENO) schemes (see e.g. [4, 10]) or weighted essentially
non-oscillatory (WENO) schemes (see e.g. [7,8,12,19]) are used for accuracy p≥2. More-
over, concerning the temporal evolution of reconstructed polynomials, several different
techniques are available, including the method-of-lines based on Runge-Kutta time step-
ping (see e.g. [24]), the one-step ADER technique based on the semi-analytical Cauchy-
Kowalewski procedure (see e.g. [30, 32]). Recently, the discontinuous Galerkin predictor
has been successfully applied to design fully-numeric Cauchy-Kowalewski free one-step
schemes, see e.g. [5].

In this section we briefly review the one-step ADER-WENO technique used in this pa-
per. For the applications presented in Section 4 we specialise our review on the achieve-
ment of second-order accuracy in the solution of two-dimensional systems having the
form

∂tQ+∂xF(Q)+∂yG(Q)=0 , (3.1)

to be solved on unstructured triangular meshes. We remark however that there is no
theoretical barrier for the implementation of methods based on the UFORCE-δ flux up
to any desired order of accuracy up to three space dimensions using the same standard
techniques (see [7, 8] and references therein for details).

3.1 Nonlinear reconstruction technique

Here we briefly discuss the proposed nonlinear weighted essentially non-oscillatory
(WENO) reconstruction procedure to reconstruct polynomial data within each spatial
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cell at time tn from the given cell averages. We emphasize that the reconstruction proce-
dure is nonlinear and depends strongly on the input data. Thus, the resulting numerical
scheme, even when applied to a completely linear PDE, will be nonlinear and thus it
will not be possible to give a closed expression of the scheme. The reconstruction proce-
dure follows directly from the guidelines given in [7,8] for general unstructured two- and
three-dimensional meshes. Since applications will be carried out in the two-dimensional
case, here we refer only to the case of two-dimensional triangular meshes. The proce-
dure reconstructs entire polynomials, as the original ENO approach proposed by Harten
et al. [10]. However, we formally write our method like a WENO scheme [12, 19] with a
particularly simple choice for the linear weights. For each stencil S s

i =
⋃

Tk [7], we require
integral conservation for the reconstruction polynomial ws

i :

1

|Tk|

∫

Tk

ws
i (~x,tn)d~x=Qn

k , ∀Tk ∈S s
i . (3.2)

The reconstruction equations (3.2) are solved using a constrained least-squares method
in order to guarantee that (3.2) is exactly satisfied at least inside element Ti [7]. This

procedure is performed in a transformed coordinate space ~ξ≡ (ξ,η) in order to avoid ill-
conditioning due to scaling effects. In practice cell Ti of vertices (X1,Y1), (X2,Y2), (X3,Y3)
is mapped into a reference triangle with vertices in (0,0), (1,0), (0,1) by applying the
following transformation:

x=X1+(X2−X1)ξ+(X3−X1)η , y=Y1+(Y2−Y1)ξ+(Y3−Y1)η , (3.3)

whose Jacobian matrix is defined as

J=

[
∂~x

∂~ξ

]
. (3.4)

Therefore polynomials ws
i are naturally expressed in terms of transformed coordinates as

ws
i

(
~ξ,tn

)
. The WENO reconstruction polynomial is obtained by a weighted combination

of the polynomials ws
i

(
~ξ,tn

)
:

wi

(
~ξ,tn

)
=

7

∑
s=1

ωsw
s
i

(
~ξ,tn

)
. (3.5)

It is worth noting that seven stencils are required to be used in (3.5): one centred stencil
(s=1), three forward sector stencils (s=2,3,4) and three reverse sector stencils (s=5,6,7)
[7]. The nonlinear WENO weights ωs are computed as follows

ωs =
ω̃s

∑
7
k=1ω̃k

, ω̃s=
λs

(σs+ǫW)
r , λs =

{
102÷105, if s=1,

1, otherwise,
(3.6)

with the oscillation indicators σs defined in [7], r=4 and ǫW =10−5.
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3.2 Second-order accurate one-step time discretisation

The result of the reconstruction procedure is a non-oscillatory spatial polynomial

wi

(
~ξ,tn

)
defined at time tn inside each spatial element Ti. However, we still need to

compute the temporal evolution of these polynomials inside each space-time element
Ti×

[
tn,tn+1

]
in order to be able to construct our final second-order accurate one-step fi-

nite volume scheme. Second-order accuracy is obtained using the ADER approach [32].
The key idea is to solve high-order Riemann problems at the element boundaries. This
is achieved by using a Taylor series expansion in time, use of the Cauchy-Kowalewski
procedure and solutions of classical Riemann problems for the state variables and their
spatial derivatives. Here, consistently with the reconstruction polynomial procedure, we

apply the ADER technique in the transformed coordinate system ~ξ ≡ (ξ,η). We adopt

the following strategy: we expand the local solution Qi

(
~ξ,t
)

of the PDE in each cell in a

space-time Taylor series with respect to the barycentre element (ξi,ηi)=
(

1
3 , 1

3

)

Qi(ξ,η,t)=Q(ξi,ηi,t
n)+(ξ−ξi)∂ξQ+(η−ηi)∂ηQ+(t−tn)∂tQ+O

(
ξ2,η2,t2

)
. (3.7)

Then we use the Cauchy-Kowalewski procedure in order to substitute time derivatives
with space derivatives in (3.7). To this aim we rewrite the governing PDE system (3.1) in
the transformed coordinate space

∂tQ+∂ξF′(Q)+∂ηG′(Q)=0 , (3.8)

where F′(Q) and G′(Q) are given by

F′(Q)=F(Q)∂xξ+G(Q)∂yξ , G′(Q)=F(Q)∂xη+G(Q)∂yη , (3.9)

being ∂xξ,··· ,∂yη the (constant) entries of the inverse of the transformation Jacobian (3.4).
For second-order accuracy it suffices to obtain the first time derivative by differentiating
(3.8) as follows:

∂tQ=−
(

A′
ξ∂ξQ+A′

η∂ηQ
)

, (3.10)

where A′
ξ and A′

η are the Jacobian matrices of fluxes (3.9) in the transformed space

A′
ξ =

[
∂F′

∂Q

]
, A′

η =

[
∂G′

∂Q

]
. (3.11)

The value of Q(ξi,ηi,t
n) and its spatial derivatives are obtained from the WENO recon-

struction polynomial wi

(
~ξ,tn

)
. For an efficient implementation up to any order of accu-

racy in space and time we refer the reader to [7, 8] and references therein.

3.3 The fully discrete second-order accurate one-step scheme

Once the WENO reconstruction and the Cauchy-Kowalewski procedure have been per-
formed for each cell, our final high-order accurate one-step scheme can be written as
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follows:

Qn+1
i =Qn

i −
∆t

|Ti|

3

∑
j=1

∣∣Sj

∣∣
(

F
j+ 1

2

·~nj

)
, (3.12)

where F
j+ 1

2

is given by

F
j+ 1

2

=
1∣∣∣S′

j

∣∣∣

∫

S′
j

1

∆t

∫ tn+1

tn
FUFORCE−δ

j+ 1
2

(
Qi

(
~ξ,t
)

,Qj

(
~ξ,t
))

dtd~ξ , (3.13)

where S′
j is the counterpart of edge Sj in the transformed coordinate system,

∣∣S′
j

∣∣ repre-

sents its length, FUFORCE−δ
j+ 1

2

is the UFORCE-δ flux given by (2.3)-(2.6) and Qi

(
~ξ,t
)

and

Qj

(
~ξ,t
)

are space-time polynomials in cells Ti and Tj obtained applying the Cauchy-
Kowalewski procedure to the WENO reconstruction polynomials. Space and time in-
tegrals in (3.13) can be approximated using Gaussian quadratures. For second-order ac-
curacy we use a very compact and efficient midpoint quadrature rule both in time and
space, resulting in one single flux evaluation per edge at each integration step. Therefore
in practice we use

F
j+ 1

2

=FUFORCE−δ
j+ 1

2

(
Qi

(
~ξM,tn+ 1

2

)
,Qj

(
~ξM,tn+ 1

2

))
, (3.14)

being tn+ 1
2 = tn+ 1

2 ∆t and ~ξM equal to
(

1
2 ,0
)
,
(

1
2 , 1

2

)
and

(
0, 1

2

)
for first, second and third

edge respectively. For extension to higher order, where quadratures may get computa-
tionally heavy, this approach can be modified using fully-analytical procedures, see [7]
for details.

4 Numerical applications

The purpose of this section is to assess the performance of the proposed UFORCE-δ
method comparing numerical results with both exact and numerical solutions obtained
using well-established centred and upwind finite volume methods.

4.1 Applications to the two-dimensional inviscid shallow water equations

Here we apply the UFORCE-δ method (2.3)-(2.6) to well-established test problems for the
two-dimensional non-linear inviscid shallow water equations augmented by an equation
for a passive scalar. The system written in conservative form reads:

∂tQ+∂xF(Q)+∂yG(Q)=0 , (4.1)
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where the vector of conserved variables Q and the fluxes along the x and y direction
F(Q), G(Q) are given by

Q=




D
Du
Dv
DC


 , F(Q)=




Du

Du2+ 1
2 gD2

Duv
DuC


 , G(Q)=




Dv
Duv

Dv2+ 1
2 gD2

DvC


 . (4.2)

Here u(x,y,t) and v(x,y,t) are the x- and y-components of velocity, D(x,y,t) is water
depth, C(x,y,t) is the passive scalar concentration and g=9.81ms−2 is the acceleration due
to gravity. Jacobian matrices of fluxes F(Q) and G(Q) have three distinct eigenvalues,
namely




λ
(1)
x

λ
(2)
x

λ
(3)
x


=




u−a
u

u+a


 ,




λ
(1)
y

λ
(2)
y

λ
(3)
y


=




v−a
v

v+a


 , (4.3)

where a=
√

gD is celerity. Given a unit vector~nj, the projected Jacobian matrix, defined
by (2.24), has three distinct real eigenvalues, namely




λ
(1)
n̂

λ
(2)
n̂

λ
(3)
n̂


=




un̂−a
un̂

un̂+a


 , (4.4)

where un̂ = (u,v)·~nj is the velocity projection. λ
(2)
n̂ has multiplicity 2. The equation for

transport of a passive scalar has been introduced in order to analyse the performance of
our method in presence of contact waves, which usually poses difficulties to all centred
methods.

Four test problems have been chosen in order to assess the behaviour of the UFORCE-
δ method. Two of them (the collapse of a circular dam and the propagation of a passive
scalar discontinuity) have been solved using first-order accurate methods on Cartesian
meshes, while the latter two tests (namely the advection of a potential vortex and the
collapse of a circular dam solved on a variably-spaced grid) have been performed on
triangular unstructured meshes using second-order extension of methods.

4.1.1 Collapse of a circular dam

This test case consists of the instantaneous breaking of a cylindrical tank initially filled
with 2.5 meter deep water at rest. When the water column is released, the shock wave
results in a dramatic increase of water depth in the lower depth region, propagating in
the radial direction. The wave generated by the breaking of the tank propagates into still
water with an initial depth of 0.5m.
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We solve (4.1), (4.2) together with initial conditions




D(x,y,0)=2.5m, if x2+y2≤R2 ,

D(x,y,0)=0.5m, if x2+y2>R2 ,

u(x,y,0)=v(x,y,0)=0, ∀x,y ,

(4.5)

being R=2.5m the tank radius. With this test we aim to assess the ability of the UFORCE-
δ method in reproducing shock and rarefaction waves. Shock waves are discontinuous

waves associated with the genuinely non-linear fields λ
(1),(3)
x =u±a, λ

(1),(3)
y =v±a. These

waves require correct speed of propagation, sharp resolution of the transition zone and
absence of spurious oscillations around the shock. Rarefaction waves are smooth waves
and numerical methods should be able to resolve these features accurately, especially
their heads and tails, which contain discontinuities in space derivatives.

Numerical solutions have been obtained using a coarse mesh of 101×101 cells in the
square computational domain [−20,20]×[−20,20]m with transmissive boundary condi-
tions. Time step has been selected using the following CFL condition:

∆t=
CFL

2
min

(
min

i,j

∆x

(|u|+a)i,j

,min
i,j

∆y

(|v|+a)i,j

)
, (4.6)

which comes from (2.28) with the eigenvalues given by (4.3). Results obtained with
the proposed method, which uses information from the largest and smallest wave of
the Riemann fan (two-wave method), have been compared with those obtained using
one centred method (the FORCE method), two central-upwind methods (the UFORCE
method [25] and the KNP method [14]) and two purely upwind methods. Among up-
wind methods we used the Godunov method coupled with an exact Riemann solver
(Godunov-exact) and the Godunov method coupled with the HLL approximated Rie-
mann solver (Godunov-HLL). These methods can be classified considering the number
of waves which are taken in account for the flux evaluation. Thus, we have one zero-wave
method (FORCE), one one-wave method (UFORCE), three two-wave methods (HLL,
KNP, UFORCE-δ), one complete method (Godunov-exact). This comparison has been
carried out with the first order version of the above mentioned numerical methods.

We provide an accurate reference solution, which was obtained by turning the prob-
lem (4.1, 4.2, 4.5) into a one-dimensional problem in the radial direction (see [26] for
details):

∂t

[
D

Dur

]
+∂r

[
Dur

Du2
r +

1
2 gD2

]
=−

1

r

[
Dur

Du2
r

]
, (4.7)

where r is the radial coordinate and ur (r,t) the radial velocity. The initial conditions (4.5)
in the radial coordinate system read:





D(r,0)=2.5m, if r≤R ,

D(r,0)=0.5m, if r>R ,

u(r,0)=0, ∀r .

(4.8)
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Figure 3: Collapse of a circular dam. Numerical results for water depth D of six numerical methods (symbols)
are compared with the reference radial solution (full line) at time t=1.4s. The numerical solution profiles are
sliced on the x-axis. The mesh used is 101×101 cells and CFL is set to 0.2 (top panel) and 0.9 (bottom panel).

The reference solution is obtained solving numerically system (4.7), (4.8) on a fine mesh
of 1000 cells using the WAF method in conjunction with the HLLC approximate Riemann
solver [26]. The CFL number is set to 0.9 and the limiter used is SUPERBEE [23].

Results for water depth D(x,y,t) are displayed in Fig. 3 at time t=1.4s and in Fig. 4 at
time t=3.5s. Here, the numerical solution (symbols) are presented in terms of slices along
the x-axis (y=0) and compared with the reference radial solution (full line). Each figure
presents the results obtained setting CFL=0.9 (top panel) and CFL=0.2 (bottom panel).
From both Figs. 3 and 4 the Godunov-exact method, based on exact evaluation of all the
three waves, is found to be the least dissipative among all method and to have a con-
sistent performance at low and high CFL numbers. In contrast, accuracy of the FORCE
centred method significantly depends on the CFL number. While the solution obtained
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Figure 4: Collapse of a circular dam. Numerical results for water depth D of six numerical methods (symbols)
are compared with the reference radial solution (full line) at time t=3.5s. The numerical solution profiles are
sliced on the x-axis. The mesh used is 101×101 cells and CFL is set to 0.2 (top panel) and 0.9 (bottom panel).

with FORCE at CFL= 0.2 is excessively smoothed and smeared both in the shock and
in the rarefaction zones, for larger values of the CFL number the behavioural differences
among centred and upwind methods tend to disappear. However even at CFL = 0.9
FORCE fails in the accurate description of inflections in the free-surface profile (Fig. 4
around x=0). The one-wave UFORCE method increases significantly the accuracy of the
solution especially at low CFL numbers, but still the solution is slightly more diffused
than that of two-wave solvers like HLL and KNP (see Fig. 3 at x=±3). These two-wave
methods give indistinguishable results.

The results of the proposed UFORCE-δ method are significantly more accurate than
those of KNP and HLL for both values of the CFL number. The UFORCE-δ solution
profile is always bounded between that of Godunov-exact and that of KNP and HLL.
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We speculate that improved accuracy compared to HLL and KNP is due to improved
resolution of contact waves, i.e. the shear wave in this case. This feature of UFORCE-δ is
proved in the next section.

4.1.2 Propagation of a passive scalar discontinuity

The aim of this test is to assess the accuracy of the UFORCE-δ method when dealing
with contact waves. The flow field results from the collapse of a dam initially placed
at x = 0. Across the wall the water depth D initially exhibits a discontinuity, being 1m
on the left side of the domain and 0.5m on the other side. Also the concentration field
C is discontinuous across the dam, while water is initially at rest all over the domain.
The dam removal causes the propagation of a rarefaction wave orthogonally to the dam
towards the left side of the domain and of a shock wave on the other side. This shock
wave travels faster than the water particles. An intermediate wave for the concentration
discontinuity, passively transported at a speed equal to water velocity, is also produced.

We solve (4.1), (4.2) with initial conditions





{
D(x,y,0)=1m,
C(x,y,0)=1,

if x≤0,

{
D(x,y,0)=0.5m,
C(x,y,0)=0,

if x>0,

u(x,y,0)=v(x,y,0)=0, ∀ x,y .
(4.9)

We use a Cartesian mesh of 100×100 cells in the square computational domain [−25,25]×
[−25,25] with transmissive boundary conditions. The solution is computed at time t=5s.

The exact solution for this problem can be computed by solving a one-dimensional
dam-break problem in the x-direction using an exact Riemann solver. The exact solution
contains a left rarefaction, a right-facing shock wave and a contact discontinuity in the
middle, across which the concentration C varies discontinuously (see [31] for an accurate
description). We focus our attention on the contact discontinuity and discuss the results
in terms of C. In general, computation of contact waves, associated with the linearly de-

generate fields (λ
(2)
x = u,λ

(2)
y = v) is very challenging. One main difficulty is to preserve

sharpness in the resolution of these waves in time evolution problems. Upwind meth-
ods are distinctly better than centred methods on this task; however, only the upwind
methods based on complete Riemann solvers (in our case, Godunov-exact) explicitly in-
clude the contact wave in the flux computation. In contrast, schemes based on the HLL
Riemann solver behave like centred methods for linear fields (see [27]). Similarly, refined
centred schemes like UFORCE, UFORCE-δ and KNP do not include any upwind bias
related to linear fields.

We compare the results of the first-order version of the proposed method with the
first-order version of the same six numerical methods used in the previous section. Re-
sults for this test, obtained with CFL=0.2 and CFL=0.9, are displayed in Fig. 5 (top and
bottom panel respectively). The solution for variable C is represented in terms of slices
along the x-axis. As expected, for both values of the CFL number, the Godunov-exact
method gives rise to the sharpest resolution of this wave, outperforming all the other
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Figure 5: Propagation of a passive scalar discontinuity. Numerical results for concentration C of six numerical
methods (symbols) are compared with the exact solution (full line) at time t = 5s. The numerical solution
profiles are along on x-axis. The mesh used is 100×100 cells and CFL is set to 0.2 (top profile) and 0.9 (bottom
profile).

methods, while HLL and KNP are found to perform in analogous manner. These two-
wave methods perform consistently over the entire range of CFL numbers considered,
but the solution profile is always found to be more smeared than that of Godunov-exact.
In contrast, the behaviour of the genuinely centred FORCE method is deeply influenced
by the CFL number: at CFL=0.2 the solution is affected by excessive dissipation, while
at CFL=0.9 the solution is found to be slightly more accurate than that of KNP and HLL.
The one-wave UFORCE method represents a significant improvement with respect to
the FORCE method for low values of the CFL parameter, while the improvement in ac-
curacy over FORCE vanishes at high CFL numbers. Finally, let us focus on the proposed
UFORCE-δ method. From Fig. 5 it is clear that the solution obtained using UFORCE-δ is
affected by small values of numerical dissipation and outperforms the results obtained
using all the other methods except the Godunov-exact method, as it was expected.
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4.1.3 Vortex advection: assessment of second-order accuracy

In the present test, originally proposed by Ricchiuto and Bollermann [22], we examine
the case of a vortex travelling at mean velocity U∞=(u∞,v∞) while maintaining its prop-
erties (water surface level and velocity field). Since an exact solution of this problem is
available, we use this test case for assessing the second-order convergence of our ADER-
WENO UFORCE-δ method.

In order to derive the exact solution we apply the following decomposition to flow
field

U=U′+U∞ , (4.10)

where U′ in cylindrical coordinates reads:

U′=
(
u′

r,u
′
θ

)
=
(
0,u′

θ

)
(4.11)

being u′
r and u′

θ relative radial and tangential velocity respectively. Then, the first equa-
tion in (4.1)-(4.2) becomes

∂tD+U∞ ·∇D=0, (4.12)

which admits the following exact solution:

D(x,y,t)=D0(~γ) , (4.13)

being ~γ=(x−u∞t,y−v∞t) and D0(x,y) the initial condition for water depth distribution.
Substituting (4.10), (4.11) into the second and third equation in (4.1)-(4.2) we obtain

∂tU
′+(U∞ ·∇)U′+

(
U′ ·∇

)
U′+g∇D0(~γ)=0 , (4.14)

which admits an exact solution of the form

U′(x,y,t)=U′
0(~γ) , (4.15)

by which initial conditions are advected over the spatial domain, as in the case of the
linear advection equation. Appropriate initial conditions for the velocity field are

U′
0(rc)=

{
Γ(1+cos(ωrc))(yc−y,x−xc), if ωrc ≤π ,

(0,0), otherwise,
(4.16)

being Γ the vortex intensity, (xc,yc) the coordinates of the vortex centre at initial time,
rc is the distance to the vortex core and ω the angular wave frequency determining the
vortex width. Integration of (4.14) along the radial direction yields the initial conditions
for the water surface profile

D0(rc)=D∞+

{
1
g

(
Γ
ω

)2
(φ(ωrc)−φ(π)), if ωrc≤π ,

0, otherwise,
(4.17)
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Table 1: Vortex advection: convergence rate study for the second-order ADER-WENO UFORCE-δ method for
variable D. N denotes the reciprocal of mesh length, N0=10.

N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)
2 1.101E+00 1.69 3.645E-02 1.51 1.086E-01 1.63
4 2.679E-01 2.04 7.748E-03 2.23 2.143E-02 2.34
8 5.114E-02 2.39 1.747E-03 2.15 4.243E-03 2.34

16 1.355E-02 1.92 4.388E-04 1.99 9.965E-04 2.09

Table 2: Vortex advection: convergence rate study for the second-order ADER-WENO FORCE method for
variable D. N denotes the reciprocal of mesh length, N0=10.

N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)
2 2.669E+00 0.67 6.893E-02 0.84 2.456E-01 0.76
4 5.332E-01 2.32 1.643E-02 2.07 5.275E-02 2.22
8 1.336E-01 2.00 3.484E-03 2.24 1.083E-02 2.28

16 3.021E-02 2.14 7.976E-04 2.13 2.290E-03 2.24

Table 3: Vortex advection: convergence rate study for the second-order ADER-WENO HLL method for variable
D. N denotes the reciprocal of mesh length, N0 =10.

N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)
2 1.301E+00 1.51 4.118E-02 1.43 1.292E-01 1.45
4 2.831E-01 2.20 8.399E-03 2.29 2.428E-02 2.41
8 5.644E-02 2.33 1.837E-03 2.19 4.648E-03 2.39

16 1.356E-02 2.06 4.455E-04 2.04 1.033E-03 2.17

where φ(a)=2cos(a)+2asin(a)+ 1
8 cos(2a)+ 1

4 sin(2a)+ 3
4 a2 and D∞ is water depth outside

the vortex.
Following [22], the parameters used in computations are: Γ=15, ω=4π, U∞ =(6,0),

D∞=5, g=1. We solve the problem in the rectangular computational domain [0,1]×[0,2]
with weak far field conditions prescribed at the four boundaries. The initial position of
vortex centre is (xc,yc)=

(
1
2 , 1

2

)
. Having set output time equal to t= 1

6 s, the vortex centre

is expected to be located at
(

3
2 , 1

2

)
at the end of computations.

We use a sequence of regularly-refined triangular meshes characterised by N (recip-
rocal of mesh length) equal to 10, 20, 40, 80, 160. The CFL condition (2.28) is applied,
using projected eigenvalues (4.4), α= 2 and CFL= 0.9. We solve the problem using the
second-order ADER-WENO method together with the FORCE, UFORCE-δ and HLL flux.

In Table 1 we present error norms and resulting order of accuracy for the ADER-
WENO UFORCE-δ method for variable D. Expected second-order accuracy is achieved
in each norm. Moreover, in Tables 2 and 3 we present the error norms and order of accu-
racy obtained using the ADER-WENO method together with the FORCE and HLL flux
respectively. Comparing the norms in Tables 1 and 2 we assess the great improvement of
UFORCE-δ over FORCE (the norms of UFORCE-δ are about half of these of FORCE) and
comparing the norms in Tables 1 and 3 we observe a slight but significant improvement
with respect to HLL.
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Figure 6: Vortex advection. Solution profiles are sliced along the x-axis. a) Numerical results for water depth
D of the second-order ADER-WENO UFORCE-δ method obtained with different grid resolution (grey lines)
are compared with the exact solution (black line) at time t= 1/6s. N denotes the reciprocal of mesh length.
b) Numerical results for water depth D obtained using the second-order ADER-WENO method with FORCE,
UFORCE-δ and HLL numerical fluxes are compared with the exact solution (black line) at time t=1/6s on the
same coarse mesh (N=20).

In Fig. 6(a) we show the convergence of the proposed UFORCE-δ to the exact solution.
Solution profiles are sliced along the x- axis at y= 1

2 . We observe that the numerical profile
obtained with N = 160 is almost indistinguishable from the exact solution. In Fig. 6(b)
we compare the results of UFORCE-δ to those of HLL and FORCE obtained on the same
coarse mesh (N=20). The UFORCE-δ method in this condition is seen to be more accurate
than FORCE and HLL.

4.1.4 Collapse of a circular dam on a variably-spaced grid

As it was shown in the tests performed on Cartesian meshes, an attractive feature of the
UFORCE-δ method compared to FORCE relies on its ability to perform consistently in
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Figure 7: Collapse of a circular dam on a variably-spaced grid: variably-spaced mesh of 34753 triangles. Mesh
length ranges from 2.08 on the left boundary to 0.15 on the right boundary.

the full range of stable CFL numbers. This fact has important consequences in practical
applications when the shallow water equations are solved over irregular domains where
a wide range of CFL numbers from small to large is generated. In order to highlight this
behaviour we solve again the problem defined by (4.1), (4.2), (4.5) in the square computa-
tional domain [−25,25]×[−25,25]. We use an irregular triangular mesh of 34753 cells as
depicted in Fig. 7, whose length ranges from 2.08 on the left boundary to 0.15 on the right
boundary, and impose transmissive boundary conditions. The solution is computed at
time t=4.7 s setting CFL=0.9.

The solution of this problem is expected to exhibit an outer facing shock, a circular
rarefaction following the shock and an inner shock which has been formed by the over-
expansion of flow caused by the reflection of the interior rarefaction from the centre of
the dam (see [26] for an accurate description). The exact reproduction of the complicated
wave pattern in the shock reflection would be challenging itself even on a fine regularly
spaced grid.

However, in this test case, due to irregular grid spacing we provide an additional
difficulty to numerical methods. In fact, being the test problem symmetrical along the
x-axis (x=0), the CFL condition (2.28) is enforced where h−j reaches its minimum value,

that is, within the fine grid side of the domain. Being the time step ∆t common to all the
cells in the domain, in the coarse mesh side low local values of the CFL number will be
found, causing a poor performance of numerical methods in terms of accuracy. Thus, in
this test case, preserving symmetry along the y-axis is the challenge.

The results for water depth D obtained using the second-order ADER-WENO method
in conjunction with the FORCE and UFORCE-δ flux are presented in Fig. 8 in terms of
slices along the x-axis. The numerical profiles are compared to a refined reference solu-
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Figure 8: Collapse of a circular dam on a variably-spaced grid. Numerical results for water depth D of the
second-order ADER-WENO FORCE and UFORCE-δ numerical methods are compared with the reference radial
solution at time t=4.7s. The numerical solution profiles are sliced on the x-axis. The mesh used is depicted in
Fig. 7.
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Figure 9: Collapse of a circular dam on a variably-spaced grid. Numerical results for water depth D of the
second-order ADER-WENO FORCE and UFORCE-δ methods are presented in terms of contourplots at time
t=4.7s. a) ADER-WENO FORCE method. b) ADER-WENO UFORCE-δ method.

tion obtained solving (4.7)-(4.8) as explained in Section 4.1.1. It is seen that the UFORCE-δ
method solves the left-facing shock (x=−18) with a higher degree of accuracy compared
to FORCE method, while the right-facing shock (x=18) is solved almost to the same accu-
racy by both methods. This behaviour gives rise to a more symmetric solution. Moreover,
the influence of the upwind bias is dominant in the rarefaction zones (x=±3), and in the
central reflected shock (x=0) where UFORCE-δ outperforms FORCE.

The results of the UFORCE-δ and FORCE methods are then presented in Fig. 9 in
terms of contourplots. Comparing Fig. 9(a) (FORCE) with Fig. 9(b) (UFORCE-δ) the same
conclusion as for Fig. 8 about resolution of the left-facing shock and overall degree of
symmetry can be drawn.
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4.2 Applications to a three-dimensional linear systems

The aim of this section is twofold: first to demonstrate that the proposed UFORCE-δ
method is identical to the Godunov upwind method in the linear case; second that the
formulation developed in this paper applies to three-dimensional unstructured meshes.
In order to prove the above statements we solve the three-dimensional linear system
(2.7)-(2.8) where matrices (2.8) are set to

Ax =

[
10 6
2 −1

]
, Ay =Az=

[
0 0
0 0

]
, (4.18)

where Ax has eigenvalues [
λ
(1)
x

λ
(2)
x

]
=

[
−2
11

]
. (4.19)

Initial condition is represented by a discontinuity located at x = 0 for both conserved
variables q1 and q2, namely:

{
q1=1,
q2=1,

if x<0,

{
q1=−1,
q2=−1,

otherwise. (4.20)

The system is solved in the domain [−50,50]×[−2.5,2.5]×[−2.5,2.5] on a tetrahedral
mesh composed of 15000 cells (see Fig. 10) and solutions are displayed at the final time
3s. Stability is imposed enforcing the CFL condition (2.20) with α = 3 and CFL = 0.9.
Numerical results have been obtained applying the first-order version of the proposed
numerical method. In Fig. 11 we compare the results of the UFORCE-δ method and the
Godunov upwind method (2.9), (2.14) together with the exact solution. Numerical pro-
files in Fig. 11 have been obtained slicing the numerical solution parallel to the x-axis at

Figure 10: Applications to the linear system (2.7)-(2.8): three-dimensional unstructured tetrahedral mesh of
15000 cells.
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Figure 11: Applications to the linear system (2.7)-(2.8): the solution obtained using two numerical methods
(Godunov upwind and UFORCE-δ) is compared to the exact solution at t=3s. Numerical solution profiles are
sliced along the x-axis at y= z=0.

y= z=0, while the exact solution has been obtained using a one-dimensional exact Rie-
mann solver. In this case we have verified that the results of the UFORCE-δ method and
of the Godunov upwind method are identical (see Fig. 11 for a visual confirmation).

5 Conclusions

An upwind-biased version of the multi-dimensional FORCE flux on unstructured meshes
for solving hyperbolic systems of PDEs in conservation-law form has been presented.
The proposed first order UFORCE-δ method is genuinely centred since the use of Rie-
mann solvers either exact or approximate is not required. To be implemented, the
method requires only knowledge of the eigenvalues evaluated at current time tn which
are needed in any case for selecting the time step for time integration. We demonstrate
that for the linear case UFORCE-δ is identical to the Godunov upwind method and then
we extend the validity of our method to non-linear hyperbolic systems of PDEs. Second-
order accuracy in space and time has been obtained in the framework of finite volume
methods using an ADER-WENO approach.

Numerical performance of our method has been assessed by solving the two-
dimensional shallow water equations on structured and unstructured meshes. Four dif-
ferent test problem have been solved and the numerical results have been compared with
those obtained using three different centred methods and two upwind methods. It is
shown that the UFORCE-δ method outperforms all the centred methods we tested. More-
over the accuracy of the solution for small Courant numbers and intermediate waves
associated with linearly degenerate fields (contact discontinuities, shear waves and ma-
terial interfaces) is improved and comparable accuracy to that of upwind methods used
in conjunction with the HLL Riemann solver is achieved.

Finally, the main features of the proposed method are simplicity (due to its centred
nature), accuracy compared to classical centred methods, generality of the formulation
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since it applies to structured and unstructured meshes in one, two or three space dimen-
sions.

Future developments of UFORCE-δ will concern the extension to non-conservative
hyperbolic systems of PDEs in the path-conservative framework.
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