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Abstract. This study shows a new way to implement terrain-following σ-coordinate
in a numerical model, which does not lead to the well-known ”pressure gradient force
(PGF)” problem. First, the causes of the PGF problem are analyzed with existing meth-
ods that are categorized into two different types based on the causes. Then, the new
method that bypasses the PGF problem all together is proposed. By comparing these
three methods and analyzing the expression of the scalar gradient in a curvilinear coor-
dinate system, this study finds out that only when using the covariant scalar equations
of σ-coordinate will the PGF computational form have one term in each momentum
component equation, thereby avoiding the PGF problem completely. A convenient
way of implementing the covariant scalar equations of σ-coordinate in a numerical at-
mospheric model is illustrated, which is to set corresponding parameters in the scalar
equations of the Cartesian coordinate. Finally, two idealized experiments manifest that
the PGF calculated with the new method is more accurate than using the classic one.
This method can be used for oceanic models as well, and needs to be tested in both the
atmospheric and oceanic models.
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1 Introduction

A terrain-following σ-coordinate is preferred in both atmospheric and oceanic models,
due to its benefit of implementing boundary conditions, the concept of which was initi-
ated by Phillips [1]. There are, however, some disadvantages associated with σ-coordinate,
among which the most concerned one is the computational error associated with pressure
gradient force (PGF), resulted from the computational form of PGF in σ-coordinate that
has more than one term [2,3]. The PGF problem was first pointed out by Smagorinsky et
al. [4].

As horizontal resolutions of numerical models increase, the PGF problem becomes
more critical [5, 6]. A common view is that the PGF problem is caused by using σ-
coordinate, and a number of methods have been designed to overcome this problem
mostly via adjusting model parameters or constructing different algorithms for PGF terms.
Corby et al. [7] was the first to design a finite difference scheme for PGF, and Gary [8]
proposed to subtract reference state of density profile before calculating PGF. Qian and
Zhong [9] introduced a general difference scheme for PGF focusing on the coordinate
transformation near terrain. More complicated methods were subsequently proposed,
such as the Jacobian method by Blumberg and Mellor [10] and the high-order schemes
by McCalpin [11]. More recently, a recurrent computational methods of PGF based on
hydrostatic equilibrium was proposed by Yang and Qian [12], a linear programming pro-
cedure was proposed by Sikirić et al. [13], and a perfectly balanced method for estimating
PGF was suggested by Berntsen [14]. Note that all these existing methods are designed
to alleviate the errors to an acceptable level, after the PGF computational form has al-
ready had more than one term. As few researches about how the problem started at the
first place has been done, we try to adopt a completely new approach here, with which
we obtain a set of equations in σ-coordinate that has only one term in the computational
form of the PGF. In another word, we bypass the PGF problem all together.

In this study, we first explain why the PGF computational form in σ-coordinate has
more than one term by means of classifying the existing methods using σ-coordinate and
analyzing the expression of the scalar gradient in a curvilinear coordinate system. Based
on these analyses, we elucidate that using the covariant scalar equations of σ-coordinate
in a numerical model can avoid the PGF problem all together, while the simple form of
boundary conditions is preserved. Finally, via two idealized experiments, we validate
that the new method can calculate the PGF more precisely.

2 Analysis of the PGF problem

Many scholars have analyzed the PGF problem in σ-coordinate, and concluded that the
source of the problem is the computational form of PGF being expanded into two parts.
The same problem can be caused by two different ways, as we show in the later part
through classifying the existing methods.
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Figure 1: A schematic of two different ways of obtaining scalar equations in numerical models.

2.1 Methods of using σ-coordinate

To use σ-coordinate in a numerical model is basically to choose a set of equations. The
methods of obtaining the scalar equations in a numerical model can be classified into
two types (Fig. 1): the first type is to transform the scalar equations from one coordinate
system to another, and the other type is to expand vector equations to scalar equations of
the same coordinate. Specifically, the first type is to use coordinate transformation rela-
tions, called the chain rule, to obtain the relations of spatial partial derivatives between
two different coordinates. As a result, the scalar equations of one coordinate system are
transformed to another. The other type is to expand vector equations into scalar equa-
tions according to the basis vectors of some coordinate, and then to obtain the scalar
equations of the same coordinate.

Most numerical models use the first type to obtain basis scalar equations, including
the Regional Atmospheric Modeling System (RAMS), the Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS) and the Weather Research and Forecasting mod-
eling system in meteorology and the Princeton Ocean Model, the semi-spectral primi-
tive equation model, the s-coordinate Rutgers University model and the Regional Ocean
Modeling System in oceanography [10, 15–20]. More precisely, using the chain rule of
spatial partial derivatives from the Cartesian coordinate to the σ-coordinate, the scalar
equations in the σ-coordinate (the transformed equations) are obtained.

Gal-Chen and Somerville [21] used the second type to obtain scalar equations, when
they designed the height-based terrain-following σz-coordinate. Expanding the atmo-
spheric vector equations according to the covariant basis vectors of the σz-coordinate,
they obtained the contravariant scalar equations of the σz-coordinate (the expanded equa-
tions). Xue et al. [22] used a set of modified equations based on Gal-Chen and Somerville’s
method in their Advanced Regional Prediction System (ARPS).

2.2 Computational errors of the PGF

The computational errors of the PGF in both existing methods are derived from the same
computational forms of the PGF,
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which are no longer one term on the right hand side (RHS) of the equation. While these
terms are typically opposite in sign near the upslope and downslope of steep topography,
their causes are different in the two types. In the basis equations of most numerical
models obtained by the first type, because of the sum of the two terms in the chain rule
of spatial partial derivatives,
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where F is a scalar, the PGF computational forms in the transformed equations are al-
tered from one term to two. However, in the contravariant scalar equations obtained
by Gal-Chen and Somerville [21] using the second type, the PGF computational forms
in the expanded equations are due to the expression of scalar gradient in a curvilinear
coordinate system, which will be analyzed later.

Since the PGF is calculated through pressure gradient (e.g., −1/ρ·∇p), when adopt-
ing the second type to implement σ-coordinate in a numerical model, the forms of PGF
in the expanded equations depend on the expression of a scalar gradient in a curvilinear
coordinate. This expression is given by Wang and Xiong [23] as follows,

∇φ=
∂φ

∂xi
ii=

∂φ

∂qj

∂qj

∂xi
ii =

∂φ

∂qj
ej =gij ∂φ

∂qj
ei, (2.1)

where i and j sum from 1 to 3, φ is a scalar, ii are the basis vectors of the Cartesian coor-
dinate, ej and ei are the contravariant and covariant basis vectors of a curvilinear coordi-
nate, respectively, and gijis the contravariant metric tensor. Explicitly, the terms

∂φ

∂q j e
j and

gij ∂φ

∂q j ei in Eq. (2.1) manifest that using covariant basis vectors, ei, the expression of ∇φ is

a sum of three terms in each direction of ei(e1, e2 and e3); whereas using contravariant
basis vectors, ej, in each of its directions (e1, e2 and e3) the expression of ∇φ is only one
term. In particular, if every row of gij(g1j, g2j and g3j) has only one non-zero element, the
expression of ∇φ can be one term while using the covariant basis vectors. Unfortunately,
the contravariant metric tensor gij of σz-coordinate does not conform, which is exactly
the reason why the PGF computational forms have more than one term in Gal-Chen and
Somerville’s equations.

The above analysis indicates that it is not the σ-coordinate but the way it is imple-
mented that causes the well-known PGF problem. Therefore, to tackle the PGF problem
we need to search for a new way to implement σ-coordinate.
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3 A new method

The scalar gradient in σ-coordinate is one term in each direction when using the con-
travariant basis vectors to expand the vector equations. The result is one single term in
the computational form of the PGF, namely the covariant scalar equations of σ-coordinate.

3.1 Covariant scalar equations in σ-coordinate

Since σ-coordinate is a non-orthogonal coordinate, the covariant and contravariant scalar
equations of such a coordinate are always solved by the tensor method in fluid dynamics.
Zdundowski and Bott [24] solved the covariant scalar equations of σ-coordinate in this
way with normalized definitions of σ-coordinate, whereas their method was complex
and their equations were not the common expressions in numerical modeling. We solve
the covariant scalar equations in a simpler way, by using the conventional method for
solving equations in a spherical coordinate, which belongs to the second type of method.
For simplicity, we assume there is no friction. The classic expressions of σ-coordinate de-
fined by Gal-Chen and Somerville [21] used by many numerical models (such as RAMS,
COAMPS, and ARPS) are used in the following computation as an example. Their defi-
nitions are as follows,

x′= x, (3.1)

y′=y, (3.2)

σ=H
z−h

H−h
, (3.3)

where x′, y′, and σ are coordinates of the σ-coordinate, H is the top of the atmosphere in
a model and h=h(x,y) represents the terrain.

Expanding each term in the vector equations according to the contravariant basis vec-
tors ei of σ-coordinate, we can obtain momentum, mass and heat equations in their co-
variant scalar forms of the σ-coordinate, respectively. First, we expand the vector form of
momentum equations,

∂v

∂t
+(v·∇)v=−1

ρ
∇p−2Ω×v+g. (3.4)

The left hand side (LHS) of Eq. (3.4) is transformed into

∂v
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=
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∂t
ei+vi

∂ei

∂t
=

∂vi

∂t
ei,

and

(v·∇)v=
1

2
∇(v·v)−v×(∇×v)
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while the RHS of Eq. (3.4) is transformed as follows,
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and g= gie
i. Second, we expand the vector form of mass equation,

∂ρ
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+∇·(ρv)=0. (3.5)

Only the second term on the LHS of Eq. (3.5) changes to
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Third, the vector form of heat equation is given by
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The second term on the LHS of Eq. (3.6) changes to
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Now, the covariant equations in σ-coordinate can be solved. The momentum equa-
tions are
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or in an explicit form for each direction of ei as follows,
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The mass equation is written as
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and the equation of state,

p=ρRT. (3.13)

In Eqs. (3.7)-(3.13), m, n and i sum from 1 to 3, qi is the new σ-coordinate, superscript
represents contravariant variables, and subscript is for covariant variables. Variables gmn
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Table 1: Comparison of three methods to implement σ-coordinate in numerical models.

Method Coordinate of Computational
type description scaler equations forms of PGF
first type - using the chain rule

from the Cartesian
coordinate to
σ-coordinate

- the Cartesian
coordinate

- sum of two terms in
horizontal and vertical
momentum equations

second type - using the covariant
basis vectors of
σ-coordinate to obtain
the contravariant scalar
equations

- the
non-orthogonal
curvilinear
σ-coordinate

- sum of two terms in
horizontal momentum
equations; sum of
three terms in vertical
momentum equation

- using the
contravariant basis
vectors of σ-coordinate
to obtain the covariant
scalar equations

- the
non-orthogonal
curvilinear
σ-coordinate

- one term in
horizontal and vertical
momentum equations

Table 2: Main characteristics of covariant equations in σ-coordinate and their causes.

Main characteristics Causes

- the computational form of PGF is one term
in each momentum equation

- using contravariant basis vectors ej

-
√

g and curvature term in every momentum
equation

- non-orthogonal and curvilinear characteris-
tics of σ-coordinate

- a gravity term gi in every momentum equa-
tion

- contravariant basis vectors e3 is not vertical

- vectors should be decomposed according to
basis vector ei or ej

- using the second type to obtain the scalar
equations in σ-coordinate

and

√
g=

√

|gmn|=
H−h

H
.

The first term on the RHS of each of the Eq. (3.8)-(3.10) is the PGF expression, which is
one single term in each equation. Actually, unlike the equations obtained by the first type
method, the Eqs. (3.8)-(3.13) are expressed in the non-orthogonal curvilinear σ-coordinate
and the contravariant basis vectors ensure the simple forms of PGF. Comparing the three
methods of implementing σ-coordinate in numerical models (Table 1) allows us to eluci-
date that only by using contravariant basis vectors of σ-coordinate to expand atmospheric
vector equations into the covariant scalar equations will the expression of the PGF result
in one single term in each of the three momentum equations.

Characteristics of the covariant equations in σ-coordinate are summarized in Table 2.
Concerning the third characteristic, the negative horizontal PGF (HPGF) which is oppo-
site in sign with the components of gravity in Eqs. (3.8) and (3.9) may bring new compu-
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tational errors, however the HPGF is much less than the corresponding components of
gravity thereby avoiding the potential problem. With regard to the fourth characteristic,
decomposing a vector in σ-coordinate is the same matter as knowing a certain vector’s
components in the Cartesian coordinate to obtain its components in σ-coordinate. So, let
the expressions of a vector A in the Cartesian coordinate and σ-coordinate be

A= ai+bj+ck, (3.14)

A=α′e1+β′e2+γ′e3, (3.15)

A=αe1+βe2+γe3, (3.16)

respectively. Then, we substitute the expressions of covariant and contravariant basis
vectors of σz-coordinate,
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in Eqs. (3.15) and (3.16) to obtain
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Comparing (3.14) to (3.17) and (3.18), we can solve
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Then, the expressions of vector A in σz-coordinate become
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e2+

(

c
H−h

H

)

e3. (3.20)

Note that the two horizontal contravariant components of vector A in σz-coordinate are
the same as those in the Cartesian coordinate, but the others are different.
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3.2 Using covariant equations of σ-coordinate in a numerical model

Based on the characteristics of the covariant scalar equations listed in Table 2, we can
conveniently implement the equations in a numerical model by setting corresponding
parameters in the scalar equations of the Cartesian coordinate.

Define the parameters λ11, λ12, λ13 and λ2 as

λ11=−1

2
vmvn ∂gmn

∂q1
, λ12=−1

2
vmvn ∂gmn

∂q2
,

λ13=−1

2
vmvn ∂gmn

∂q3
, λ2=

√
g.

Then Eqs. (3.8)-(3.13) can be re-written as

∂v1

∂t
+v1 ∂v1

∂q1
+v2 ∂v1

∂q2
+v3 ∂v1

∂q3
+λ11=−1

ρ

∂p

∂q1
−2λ2

(

Ω
2v3−Ω

3v2
)

+g1, (3.21)

∂v2

∂t
+v1 ∂v2

∂q1
+v2 ∂v2

∂q2
+v3 ∂v2

∂q3
+λ12=−1

ρ

∂p

∂q2
+2λ2

(

Ω
1v3−Ω

3v1
)

+g2, (3.22)

∂v3

∂t
+v1 ∂v3

∂q1
+v2 ∂v3

∂q2
+v3 ∂v3

∂q3
+λ13=−1

ρ

∂p

∂q3
−2λ2

(

Ω
1v2−Ω

2v1
)

+g3, (3.23)

∂ρ

∂t
+

1

λ2

∂

∂qi

(

λ2ρvi
)

=0, (3.24)

∂T

∂t
+vi ∂T

∂qi
− RT

Cpp

dp

dt
=

Q

Cp
, (3.25)

p=ρRT, (3.26)

where the expressions of Ω
i and gi (i= 1, 2, and 3) are solved in the attached appendix.

Through defining different values of these four parameters in σz-coordinate and the Carte-
sian coordinate (Table 3), we can obtain the equations in these two coordinates respec-
tively. In another word, the equations can be directly transformed from the Cartesian

Table 3: Values of the four parameters in the Cartesian coordinate and σz-coordinate.

Different parameters Values

in Cartesian coordinate in σz-coordinate

λ1i (represent λ11=0 λ11=−1

2
vmvn ∂gmn

∂q1

curvature terms λ12=0 λ12=−1

2
vmvn ∂gmn

∂q2

−1

2
vmvn ∂gnm

∂qi
) λ13=0 λ13=−1

2
vmvn ∂gmn

∂q3

λ2 (represent
√

g) λ2=1 λ2 =
H−h

H
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coordinate to σz-coordinate in a unified framework, and vice versa. Note that in or-
der to satisfy the boundary condition of vertical velocity, the covariant velocities should
be transformed into their contravariant forms, as vi = vmgmi given by Zdundowski and
Bott [24].

Actually, those terms converted to the four parameters are all related to the coordinate
definitions of σ-coordinate, and so will automatically change their values in the horizon-
tal as defined in Table 3. However, there are some additional advantages of such a def-
inition besides the convenience: 1) identifying the terms related to coordinate systems,
2) representing the effects of terrain, and 3) profiting in using the σ-z hybrid coordinate
in the vertical via defining those four parameters as in Table 3 respectively for the upper
and lower areas of a fixed transition level.

4 Idealized experiments of calculating the PGF

In order to find out whether the new method could calculate the PGF more accurately, the
experiments upon two kinds of idealized pressure fields in the vertical are carried out.
The one is without horizontal gradient, and the other is with both horizontal and vertical
gradient. Considering to calculate the PGF in the x-direction as an example, the space
discretization of the PGF terms in the classic and new methods upon leapfrog scheme in
the horizontal and forward scheme in the vertical are listed as follows respectively, in the
classic method,

∂pi,k

∂x
=

pi+1,k−pi−1,k

2∆x
− pi,k+1−pi,k

∆z
·
(

∂z

∂x

)

σ

, (4.1)

in the new method,
(

∂pi,k

∂x

)

σ

=
pi+1,k−pi−1,k

2∆x
. (4.2)

The classic definitions of σ-coordinate, Eqs. (3.1)-(3.3), are still used in the two experi-
ments. The bell-shaped terrain is adopted, the definition of which is given by,

h(x)=H · a2

(x−h0)
2+a2

,

where H is the maximum height of the terrain, a is the half-width, and h0 is the middle
point of the terrain. Here, we choose H=4 km, a=5 km, and h0 =50 km. Domain of the
experiments is 37 km in the vertical and 100 km in the horizontal. We choose ∆x=5000m
and ∆z=3700m obtaining 21 grids in the horizontal and 10 levels in the vertical.

4.1 No horizontal PGF experiment

Because of the different ”horizontal directions” in the classic and the new methods, we
designed two pressure fields with their definitions given by, in the classic method,

p= p0 ·e(−
z
λ), (4.3)
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in the new method,

p= p0 ·e(−
σ
λ). (4.4)

where p0 is the surface pressure and λ is the scale height of atmosphere. Via Eqs. (4.3)-
(4.4), we obtain

(

∂p

∂x

)

z

=0, (4.5)

(

∂p

∂x

)

σ

=0. (4.6)

The Eqs. (4.5)-(4.6) manifest that there are no horizontal PGF in both methods. In another
word, the analytic values of PGF in both methods are zero.

Here, we choose p0 = 1015.0 hPa and λ= 8 km in Eqs. (4.3)-(4.4), so as to obtain the
pressure on the top height is 10 hPa which is common in many numerical models. The
pressure fields given by Eqs. (4.3)-(4.4) are similar to that of the real atmosphere (Fig. 2).

We calculate the PGF by Eqs. (4.1)-(4.2) to solve the numerical value of PGF (PGFn) in
both methods respectively. The PGFn subtracted from the analytic value of PGF (PGFa)
on every grids are the absolute error (AE) illustrated in Fig. 3. In the whole domain, AE in
the new method (Fig. 3(b)) is reduced by more than five orders of magnitude compared
with the AE obtained by the classic method (Fig. 3(a)), and the maximal AE in the new
method is practically zero. Moreover, unlike the AE pattern in the classic method which
has symmetrical maxima on the slope of terrain, the AE pattern of the new method ex-
hibits little correlation with terrain, indicating that the PGF calculated by the new method
is almost independent of the terrain.

4.2 With horizontal PGF experiment

We designed a pressure field with non-zero horizontal PGF in both methods, whose def-
inition is given by

p= p0 ·e(−H z−h
H−h · 1

λ ), (4.7)

Here, we choose H = 300 m in the function h=h(x)and the pressure field is illustrated in
Fig. 4.

First, using the Eq. (4.7), we solve the analytic PGF (∂p/∂x)z and (∂p/∂x)σrespectively,
in the classic method,

(

∂p

∂x

)

z

=−p0 ·e(−H z−h
H−h · 1

λ) · H

λ
· z−H

(H−h)2

dh

dx
, (4.8)

in the new method,

(

∂p

∂x

)

σ

=−p0 ·e(−H z−h
H−h · 1

λ) · H

λ
·

(

∂z
∂x

)

σ
(H−h)+ dh

dx (z−H)

(H−h)2
. (4.9)
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Figure 2: Two pressure fields in the no PGF experiment. The pressure scale (color bar at bottom of figure) is
in units of hPa.

Figure 3: The absolute error of PGF in the classic and new methods. The negative contours are dashed and
the spacing intervals of contours in the left and right figure are 0.0008 hPa and 2×10−9 hPa respectively. The
pressure scale (color bar at bottom of figure) is in units of hPa.

Figure 4: As in Fig. 2 but the pressure field in the experiment of with horizontal PGF.
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The analytic PGF obtained by Eqs. (4.8)-(4.9) are illustrated in Figs. 5(a) and 5(b) respec-
tively. Their spatial patterns are similar which have symmetrical maxima on the slope of
terrain, but opposite in sign; the PGFa in new method is more than an order of magnitude
compared with that in the classic method.

Figs. 5(c) and 5(d) illustrate the numerical PGF calculated by both methods respec-
tively. The PGFn pattern in the new method is more consistent with its PGFa pattern than
using the classic method. Specifically, the PGFn pattern of the new method (Fig. 5(d)) re-
main as the PGFa pattern showed in Fig. 5(b), while the PGFn pattern obtained with
the classic method splits into four centers (Fig. 5(c)) even with its main centers (near 8th
and 12th grids in x-direction) having the opposite sign compared with PGFa showed in
Fig. 5(a).

Second, we calculate the absolute error and the relative error (RE) in both methods
(Fig. 6). Although, the maximal AE in the new method is larger than that in the classic
method, it exhibits smaller spatial extent than the AE in the classic method (Figs. 6(a)
and 6(b)). Furthermore, in the whole domain, the RE of the new method is reduced by
an order of magnitude compared with that in the classic method, particularly near the
terrain (Figs. 6(c) and 6(d)).

Finally, we calculate the root mean square of AE and RE (RMSE-a and RMSE-r) in
the two methods (Table 4). Because the PGFa in the new method is more than an order
of magnitude compared with that in the classic method (Fig. 6(a) and 6(b)), the RE is
more reasonable for the comparison. The RMSE-r of the new method is reduced by an
order of magnitude compared with the result obtained by the classic method, although
the RMSE-a of the new method is larger than it in the classic method.

Table 4: The root mean square of AE and RE of PGF in the two methods.

Method to calculate Root mean square

the PGF Absolute error Relative error

Classic method 0.69×10−3 3.30

New method 1.03×10−3 0.17

5 Summary

The methods of using σ-coordinate in a numerical model are analyzed to illustrate the
causes of the well-known PGF problem. Specifically, the PGF problem in σ-coordinate
is classified into two types according to their causes. Using the first type to implement
σ-coordinate, the PGF problem is caused by the expressions of spatial partial derivative
transformations, whose forms are a sum of two terms. Using the second type, the form
of scalar gradient expressed by the covariant basis vectors of σ-coordinate is the cause.
Note that these two types of PGF problem based on different causes are not the same as
”SEFK” and ”SESK” proposed by Mellor et al. [25], which were based on different phe-
nomena. In conclusion, the PGF computational error in σ-coordinate is not the result of
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Figure 5: As in Fig. 3 but the analytic and the numerical PGF calculated by the two methods. And the spacing
intervals of contours in the left and right figure are 0.0004 hPa and 0.004 hPa respectively.

Figure 6: The absolute error and the relative error of PGF in the two methods. The negative contours are
dashed. The spacing intervals of contours in (a) and (b) are both 0.001 hPa, while those in (c) and (d) are 1
and 0.1 respectively. The pressure scale (color bar in the middle of figure) is in units of hPa and the color bar
at the bottom shows the scale for the relative error.
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using σ-coordinate itself, but that of the methods implementing it in a numerical model.
The idealized experiments manifest that the PGF expressed in one term can significantly
induce less error than the classic sigma method which has the PGF in two terms. Our new
way of implementing covariant scalar equations in σ-coordinate via Eqs. (3.21)-(3.26) is
not the same as those in previous studies, but convenient with additional advantages.

As in the covariant equations of σ-coordinate solved by Gal-Chen and Somerville [21]
and the frequently used equations of spherical coordinate, the curvature terms are in-
cluded in our Eqs. (3.21)-(3.23) due to the characteristics of covariant metric tensor gmn of
σ-coordinate when using the second type to obtain the covariant equations. These curva-
ture terms may potentially cause numerical problems of a different kind, which needs to
be investigated via future numerical experiments. While considering friction in a model,
one more parameter defined as the four ones in Table 3 will be required. Incidentally,
if the contravariant metric tensor gmn of a certain terrain-following coordinate conforms
to the rule mentioned earlier, namely only one non-zero element in each row of gmn,
the PGF computational form will be one term, whether using the covariant basis vectors
or the contravariant ones of that coordinate. Therefore, we can choose the covariant or
contravariant scalar equations of the coordinate based on some specific requirements.

Since the PGF problem exists in both atmospheric and oceanic models using σ-coordin-
ate, our new method should also apply to numerical ocean models, potentially represent-
ing the dynamic effects of terrain more precisely and therefore simulating more realistic
circulations in these models. Moreover, the new method proposed in this paper is only
theoretical so far, and needs to be validated by more idealized and real-case experiments.
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Appendix

The Ω
i and gi in Eqs. (3.21)-(3.23) can be solved via the Eqs. (3.19)-(3.20) respectively. The

expressions of vector Ω and g in the Cartesian coordinate are

Ω=Ωcos ϕj+Ωsinϕk,

g=−gk.
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Substitute the corresponding components of Ω and g into Eqs. (3.19)-(3.20) respectively,
we can obtain

Ω
1=0, Ω

2=Ωcosϕ, Ω
3=

Ωsinϕ−Ωcosϕ
(

1− σ
H

)

∂h
∂y

H−h
H

;

g1=−g
H−z

H−h

∂h

∂x
, g2 =−g

H−z

H−h

∂h

∂y
, g3 =−g

H−h

H
.
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