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Abstract. In this paper, a novel approach for quantifying the parametric uncertainty
associated with a stochastic problem output is presented. As with Monte-Carlo and
stochastic collocation methods, only point-wise evaluations of the stochastic output
response surface are required allowing the use of legacy deterministic codes and pre-
cluding the need for any dedicated stochastic code to solve the uncertain problem of
interest. The new approach differs from these standard methods in that it is based
on ideas directly linked to the recently developed compressed sensing theory. The
technique allows the retrieval of the modes that contribute most significantly to the
approximation of the solution using a minimal amount of information. The genera-
tion of this information, via many solver calls, is almost always the bottle-neck of an
uncertainty quantification procedure. If the stochastic model output has a reasonably
compressible representation in the retained approximation basis, the proposed method
makes the best use of the available information and retrieves the dominant modes. Un-
certainty quantification of the solution of both a 2-D and 8-D stochastic Shallow Wa-
ter problem is used to demonstrate the significant performance improvement of the
new method, requiring up to several orders of magnitude fewer solver calls than the
usual sparse grid-based Polynomial Chaos (Smolyak scheme) to achieve comparable
approximation accuracy.

AMS subject classifications: 60-08, 35J35, 35Q30

Key words: Uncertainty quantification, compressed sensing, collocation technique, stochastic
spectral decomposition, Smolyak sparse approximation, stochastic collocation.

∗Corresponding author. Email addresses: mathelin@limsi.fr (L. Mathelin), gallivan@math.fsu.edu

(K. A. Gallivan)

http://www.global-sci.com/ 919 c©2012 Global-Science Press



920 L. Mathelin and K. A. Gallivan / Commun. Comput. Phys., 12 (2012), pp. 919-954

1 Introduction

Uncertainty quantification has become a major concern for a wide range of communi-
ties. Indeed, in addition to providing accurate results, many simulation codes are now
also expected to account for uncertainty in some of the intrinsic parameters of the prob-
lem and to provide confidence intervals and statistics of the outputs. Two basic types
of uncertainty can be distinguished. Aleatory uncertainty may arise from the intrinsic
variability of a physical quantity, e.g., radioactive disintegration. The second type of un-
certainty, referred to as the epistemic uncertainty, arises from a lack of knowledge of the
considered quantity. In contrast to the aleatory uncertainty, the epistemic uncertainty
may be reduced with additional knowledge on the quantity. The uncertain parameters
may be initial or boundary conditions, geometric settings, constitutive material physical
properties, etc., and their variability is suitably modeled using random variables. Spe-
cific methods must be used to infer the resulting uncertainty of the simulation outputs
and provide statistical information such as mean, variance, quantiles, correlations, sta-
tistical moments or probability density functions of some quantities of interest, usually a
functional of the simulation outputs. The probabilistic approach is a natural framework
to achieve these objectives. While the original uncertain problem is sometimes of infinite
dimension, reasonably accurate modeling often allows approximating the uncertainty
sources with a finite set of real-valued random variables, for instance using a spectral de-
composition technique, opening a route for a tractable computational solution method.

Indisputably, the most widely used approach to quantify the uncertainty associated
with the solution of an uncertain problem is the Monte-Carlo approach. The probabilistic
space is sampled and the associated deterministic problem is solved. From the collec-
tion of solutions arising from the NMC samples, statistical information is derived. Sev-
eral specific features explain the success of the Monte-Carlo approach. The main one is
that the method relies only on the solution of deterministic problems, each solved for
a given set of deterministic input parameters, avoiding the need for a dedicated uncer-
tainty quantification-oriented code and allowing the use of legacy, well-validated and
certified, deterministic codes that are used as a black-box. Further, the samples being
drawn independently, it is embarrassingly straightforward to carry the NMC simulations
in parallel. The method is very general and robust and does not rely on assumptions
on the solution. This robustness and simplicity come with a price that is most appar-

ent in the poor O
(

N−1/2
MC

)
convergence rate. Although numerous variants of the origi-

nal Monte-Carlo method have been proposed, modifying the functional evaluated (Im-
portance Sampling) or the way independent samples are generated (quasi-Monte-Carlo,
Stratified Sampling, etc.), the convergence rate remains unchanged, with only the asso-
ciated constant improved. This low convergence rate leads to requiring an unacceptably
large number of simulations to compute reasonably converged statistics, precluding the
use of Monte-Carlo methods in cases the deterministic simulation computational time is

large. However, in contrast with other methods, the O
(

N−1/2
MC

)
convergence rate is in-

sensitive to the stochastic dimension of the uncertainty sources, making the Monte-Carlo
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approach the method of choice for uncertain problems involving a very large number of
independent uncertainty sources. Therefore, unless the uncertain problem of interest in-
volves uncertainty sources of very large stochastic dimensions, the Monte-Carlo method
is not usually suitable in practice and alternative uncertainty quantification methods are
more appropriate.

Among these alternative approaches to approximate finite variance quantities of in-
terest such as those considered in this paper, the spectral stochastic method approximates
on a suitable functional expansion basis. This approach dates back to the pioneering work
of Wiener [47] but has emerged as a widely used tool since the book of Ghanem & Spanos
was published [24]. Since we restrict ourselves to second order random variables, i.e., fi-
nite variance, it is suitable to consider the L2-space associated with the random variables.
The Polynomial Chaos approach exploits any regularity of the solution and consists of de-
riving a functional representation of a quantity of interest on a stochastic basis spanned
by Hermite polynomial functionals. These polynomials are orthogonal w.r.t. the mea-
sure associated with a Gaussian random variable and span the stochastic space of finite
variance random variables, thus defining a complete basis in the stochastic space. The ap-
proximation was proved to converge for any finite variance random variable [7]. An ex-
tension to bases generated by other polynomial functionals has been proposed by [50,51].
For instance, Legendre polynomials, associated with uniformly distributed random vari-
ables, can be used. In [42], a generalization to bases spanned by functionals associated
with random variables of arbitrary measure was proposed. Improvements to the method
have taken advantage of the flexibility in choosing trial functionals to approximate the
stochastic solution. In particular, several approaches have relied on refinement of the ap-
proximation by varying the support and/or the polynomial order of localized bases, in
direct relation with the well-known hp-spectral scheme in the deterministic discretization
framework, see for instance [46]. Following similar ideas, Wiener-Haar wavelets [27] and
Multi-Resolution schemes [28] have been used while [32] have employed an a posteriori
error analysis strategy to adaptively refine the approximation in the stochastic space.

Beyond the choice of the trial functions, two classes of methods may be distinguished
in the (generalized) Polynomial Chaos approach by the way the deterministic coefficients
of the resulting expansion are evaluated. Basically, they may be computed through a
direct evaluation, using techniques such as projection, regression or interpolation, or
through a Galerkin procedure. In the Galerkin approach, the residual of the model equa-
tion is required to lie in a space orthogonal to the trial basis space. The problem then
takes the form of a Pξ-coupled-equation problem, Pξ being the number of unknown coef-
ficients in the stochastic spectral expansion. This approach relies on solid mathematical
grounds and error estimators as well as proofs of well-posedness exist. However, the
coupled character of the resulting problem may constitute a limitation for problems that
are large at the deterministic level and requiring a large number Pξ of stochastic modes
for an acceptable approximation. Further, deterministic codes may not be used as such
and need be deeply reworked for this formulation, hence the term “intrusive” to refer to
the approach.
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Alternatively, the coefficients may be evaluated by directly computing the integrals
involved in their definition. Typical numerical techniques to achieve this are based either
on fully tensorized or sparse quadrature rules. As with the Monte-Carlo approach, this
allows the use of deterministic solvers only and does not involve coupled problems. Fur-
ther, aliasing effects are avoided and only the approximation error is present. However,
these nice properties are somewhat counterbalanced by the large number of evaluation
points required to compute the solution expansion coefficients due to the so-called curse
of dimensionality, even when sparse quadrature rules such as the Smolyak scheme [35,39]
are employed. Just as for the Galerkin flavor of the Polynomial Chaos method, different
strategies have been proposed to take advantage of anisotropy of the solution, if any.
To this end, anisotropic sparse grid schemes have been proposed and shown to poten-
tially significantly reduce the number of required deterministic solver calls [23,34]. How-
ever, these approaches rely either on a priori estimates which are only known in a limited
number of specific cases, or on a posteriori estimates evaluated through an incremental
trial-and-error sequence. Such an incremental procedure sequentially enriches the ap-
proximation space along the directions most contributing to the decrease of the error but
constitutes a bottom-up technique, where the solution is approximated on a basis whose
spectrum usually sequentially grows from low towards higher frequencies. If the solu-
tion is essentially monochromatic at a high frequency, these solution techniques lead to
an unnecessarily large number of evaluation points, significantly increasing the overall
computational time.

In this paper, it is proposed that an approximation arising from any inherent com-
pressibility of the solution in the trial basis can be used as the foundation for an effective
and efficient method for uncertainty quantification. Relying on the hypothesis that the
unknown stochastic solution is reasonably compressible, a method is presented, heavily
relying on the compressed sensing theory [11, 15], that determines the most significant
modes for the approximation and discards the others. The resulting required number of
solver calls can be significantly reduced compared to the usual sparse grid techniques.

During the final preparation of this manuscript, the authors came to know about the
very recent work by Doostan & Owhadi where similar ideas are developed. Both works
were presented at the 2010 SIAM Annual Meeting [17] (and an article submitted to J.
Comput. Phys.) and [30].

The paper is organized as follows. In Section 2, the stochastic framework is defined
and some relevant issues emphasized. The core theoretical ingredients of the compressed
sensing (CS) methodology are given in Section 3 and application of conceptually similar
ideas to the uncertainty quantification (UQ) framework is discussed and presented in
Section 4. Then, the resulting UQ method is demonstrated on a test case based on a Shal-
low Water problem. Section 5 briefly presents the problem together with the solution
method. Results are shown in Section 6 and are discussed for a 2-D and a 8-D stochas-
tic problem formulation, in particular in terms of approximation accuracy for a given
number of solver calls. Concluding remarks close the paper in Section 7.
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2 Quantifying the parametric uncertainty

2.1 Stochastic problem framework

The essence of the parametric uncertainty propagation and quantification issue is to infer
the statistics of the solution u(θ) of a mathematical model from those of its associated
uncertain input parameters D(θ). The problem is conveniently treated in a probabilistic
framework. Specifically, defining a probability space (Θ,BΘ,µΘ), where Θ is the space
of elementary events θ, BΘ ⊂ 2Θ an associated σ-algebra defined on Θ and µΘ a proba-
bility measure, the problem can conceptually be expressed in the form of the following
equation which holds µΘ-almost surely:

F (u(θ);D(θ))=0, µΘ−a.e., (2.1)

where, without loss of generality, the mathematical model F is deterministic and all in-
volved uncertainty sources have been gathered in the set of input parameters D(θ).

The original problem is conveniently modeled in terms of random variables in a finite
dimensional image probability space (Ξ,BΞ,µΞ), where ξ(θ)∈Ξ⊂R

Nξ is a vector-valued
random variable, BΞ and µΞ the associated σ-algebra and probability measure of the
image probabilistic space respectively. The problem may be reformulated as:

F (u(ξ(θ));D(ξ(θ)))=0, µΞ−a.e.. (2.2)

The problem then takes the form of approximating the real-valued functional u(ξ(θ))
of interest. Let us consider the problem involving finite variance (i.e. second order) real-
valued random quantities. This naturally leads us to introduce the corresponding func-
tional space VΞ ≡ L2(Ξ,µΞ):

L2(Ξ,µΞ)≡
{

v : Ξ∋ξ(θ) 7→v(ξ(θ)) ,
∫

Ξ
v2(s)dµΞ(s)<+∞

}
. (2.3)

Let 〈·,·〉L2(Ξ,µΞ)
be the natural inner product associated with the stochastic space:

〈
v,v′

〉
L2(Ξ,µΞ)

≡
∫

Ξ
v(s)v′ (s)dµΞ(s), ∀

{
v,v′

}
∈L2(Ξ,µΞ), (2.4)

and VΞ is thus a Hilbert space so that tools from the approximation theory may be used.
In particular, the quantity of interest u may be decomposed as:

u(ξ(θ))≈ ∑
α∈J

Xα ψα(ξ(θ)), (2.5)

where ψα (ξ(θ)) belongs to a complete set of orthogonal functions defining an Hilbertian
basis:

〈ψα,ψα′〉L2(Ξ,µΞ)
= 〈ψα,ψα〉L2(Ξ,µΞ)

δαα′ , ∀{α,α′}∈J ×J , (2.6)

〈u,ψα′〉L2(Ξ,µΞ)
=0, ∀u∈L2(Ξ,µΞ), ∀α′∈J ⇒ u≡0, (2.7)
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with δαα′ the Kronecker delta, αT ≡
(
α1,··· ,αNξ

)
and J the set of the N

Nξ -valued multi-

indexes α such that |α|≤No, |α|≡∑
Nξ

n=1αn. Its cardinality is |J |=Pξ . The set {ψα} is then
a family of Nξ-D orthogonal polynomials of total degree ≤No.

To derive an approximated description of the solution, one is left with the unknowns
Xα, α∈J , to estimate. As briefly mentioned in Section 1, a Galerkin technique may be
utilized to derive a set of Pξ, possibly non-linear, coupled equations to be solved for Xα.
These equations are of the form:

〈
F
(

∑
α∈J

Xα ψα(ξ(θ)); ∑
α′′∈J

Dα′′ ψα′′ (ξ(θ))

)
,ψα′

〉

L2(Ξ,µΞ)

=0, ∀ψα′ ∈Vξ , α′∈J , (2.8)

with Dα′′ the set of coefficients of the approximation of the input parameters D in {Ψα′′}.
This approach allows us to rely on solid, demonstrated, mathematical results. In

particular, both a priori and a posteriori approximation error results are available [14, 22,
32]. However, it often leads to large, non-linear, systems of equations whose solution
method may be a challenge. Further, it necessitates dedicated codes, precluding the direct
use of any legacy, well validated and certified, code solving the deterministic problem at
hand.

Alternative approaches directly estimate the unknown coefficients Xα: from Eq. (2.5)
and making use of the basis functions orthonormality:

Xα= 〈u,ψα〉L2(Ξ,µΞ)
, ∀ψα∈Vξ , α∈J , (2.9)

where, without loss of generality, the basis functions are hereafter normalized:
〈ψα,ψα′〉L2(Ξ,µΞ)

= δαα′ . Since u is not known in closed form, the integral involved in the

projection is conveniently estimated through a discrete quadrature strategy:

Xα =
∫

Ξ
u(s)ψα(s)dµΞ(s)

≈ ∑
q∈Nq

u
(

ξ(q)
)

ψα

(
ξ(q)
)

w(q), (2.10)

whereNq is the set of quadrature points ξ(q)∈Ξ and w(q)∈R their associated weights. This
approach only requires the evaluation of the model output u at the quadrature points,
which is provided by the deterministic solver. However, while appealing, this approach
suffers from the lack of rigorous error estimator and from the curse of dimensionality
which leads to an intractable number of necessary quadrature points when the stochastic
dimension and/or the approximation order increases. While sparse grid schemes may
help in reducing the number of required points w.r.t. fully tensorized quadrature rules,
the unfavorable scaling with the dimension and the order precludes the use of this so-
called non-intrusive spectral projection (NISP) approach for large-scale problems requiring

a large computational time to evaluate u for a given point ξ(q).
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2.2 Motivation for a sparse approach

Let us examine the problem defined by Eq. (2.10) more closely and consider a sparse
grid scheme to evaluate the high-dimensional integral. Classical quadrature rules are
known to exactly integrate a polynomial integrand up to a certain maximum degree.
For instance, assuming u is a No-total degree polynomial and that the test function ψα is
also a No-total degree polynomial, Table 1 shows the maximum No that leads to an exact
integration in a 2-D (Nξ =2) space using a Smolyak quadrature scheme of varying levels
lS [36, 39].

Table 1: Correspondence between Smolyak quadrature rule level lS, number of evaluation points Nq= |Nq| and
maximum polynomial total degree No. 2-D space: Nξ =2.

lS 1 2 3 4 5 6 7 8 9 10 11 12
Nq 5 9 17 33 33 65 97 97 161 161 161 257
No 1 2 3 5 5 6 8 8 11 11 11 12

As expected, the higher the polynomial order of the integrand, the more evaluation
points required to compute the exact projection. This has connections with the celebrated
Shannon-Nyquist theorem. However, the key is to note that this constitutes a worst-case
scenario. For a given Smolyak level lS, the projection computation defined by Eq. (2.10) is
exact for every polynomial, provided its total order is lower or equal to No. For instance,
if one is interested in a projection of u, assumed a given monomial of degree No, over
a specific mode ψα of order No, properties of the monomial, e.g., (anti-)symmetry, may
be exploited to prevent unnecessary solution evaluations. There is thus no need for as
many points as expected from Table 1 and fewer evaluation points are sufficient to get
the exact projection. In a more general framework, if the output at hand has some specific
properties (monomial, symmetry, sparsity, ···), they can be exploited to limit the amount
of information one needs to approximate it within a particular basis.

The concepts underlying this remark are at the root of the present work. Indeed,
most model outputs u of practical interest are not white signals and can be considered
to have some degree of sparsity in the orthogonal basis used in the approximation. As a
result, the amount of relevant information one must capture to adequately approximate
a signal, or model output, is actually often lower than what would be expected from
considerations based simply on the cardinality of the trial basis.

A natural desire arises to use a number of evaluation points sufficient to estimate the
most significant modes of the approximation, and only them. For a sparse output in the
given trial basis, this could translate mathematically in looking for the minimal set of
modes J ⋆⊆J such that the approximation matches the output at the evaluation points
when Nq is sufficiently large:

J ⋆≡argmin
J

|J |, s.t. u
(

ξ(q)
)
= ∑

α∈J
Xα ψα

(
ξ(q)
)

, ∀q∈Nq. (2.11)
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The minimal set condition may be conveniently reformulated as a requirement on the

vector of coefficients X ≡ (Xα,|α|≤No)
T ∈R

Pξ :

X
⋆≡argmin

X

‖X‖0, s.t. u
(

ξ(q)
)
=Ψ

(
ξ(q)
)

X , ∀q∈Nq, (2.12)

with Ψ≡(ψα,|α|≤No) the retained trial basis and ‖·‖0 the “L0-norm”, ‖X‖0≡{k : Xk 6=0}.
Thanks to the L0-norm, the above constrained optimization problem tends to determine
an approximation with as few non-zero terms as possible in the vector of coefficients X .

Formulated as such, this UQ-problem is related to concepts which have been exten-
sively studied in the signal processing community, see, for example, [43] or [13], and we
will build upon some of their results to place the proposed uncertainty quantification
approach in a Compressed Sensing framework.

3 The compressed sensing approach

3.1 From L0 to L1

Finding the sparsest, yet accurate, approximation of a signal u from a formulation simi-
lar to Eq. (2.12) has been a subject of interest for decades. Greedy algorithms have been
proposed to build-up a K-sparse solution, e.g., Matching Pursuit [29]. However, prob-
lem (2.12) relies on a non-convex objective function and the underlying optimization
problem is NP-hard, requiring exhaustive searches (in fact combinatorial) over all subsets
of X . Such an approach would suffer from the curse of dimensionality and is not thought
to be a computationally tractable route. Fortunately, some recent results have shown
that the L0-norm can be replaced by the (convex) L1-norm in Eq. (2.12), the solution of
which then still tends to separate the most significant elements of X from those that are
negligible: significant modes are strengthened while the others tend to be discarded and
their magnitude set close to zero. An example of a method relying on this approach is a
reformulation of the well known LASSO [44].

3.2 Core principles

In the last few years, so-called Compressed Sensing theory [9–11, 13, 15], has attracted
growing interest. It basically builds upon the convexified L1-norm version of Eq. (2.12)
and considers the projection of the constraint onto the set of measurement functions.
Under appropriate choices, the sparsest X giving rise to the observations is retrieved
through a computationally tractable algorithm. In a nutshell, the core principles are as
follows. Let us consider the redundant dictionary formed by both a {ψα} and {φm} set
of functions and suppose a discrete signal f ∈R

N is sparse in {ψα} while it is dense in
{φm}.
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The Compressed Sensing (CS) theory considers the projection of the residual f − f̂ ,

f̂ ≡ΨX , onto M randomly chosen elements of the measurement basis {φm}. Letting

ym ≡〈φm, f 〉, ŷm ≡
〈

φm, f̂
〉
= 〈φm,ΨX〉, ∀m∈J Φ, (3.1)

with J Φ⊆{1,··· ,N}⊂N, |J Φ|=M, the CS solution is given by

X
⋆=argmin

X∈RN

‖X‖1 , s.t. Y =AX, (3.2)

where Y ≡ (y1 ··· yM)T, A ≡ ΦΨ ∈ R
M×N and φm the m-th row of Φ. In this form, the

problem is called basis pursuit and may be efficiently solved by reformulating it as a linear
program.

Usually, the N unknowns {X1,··· ,XN} call for M ≥ N point evaluations. However,
if the signal is sparse in the orthonormal trial basis Ψ, the exact signal can be recovered
with far fewer evaluation points, M< N, hence the term Compressed Sensing to refer to
this technique.

Remark 3.1. The set {ψα} needs not define a basis and it is sufficient it defines a frame
for the Compressed Sensing results to apply [15]. In particular, a redundant dictionary
approach is handled well in the CS framework. This is of interest since it is a popular
choice to approximate a signal using an overcomplete set of functions as it may provide
both sparser and more accurate representations, taking advantage of a large dictionary
of approximating functions.

3.3 Recovery

The conditions under which the problem formulated in Eq. (3.2) exactly recovers a K-
sparse signal have been the subject of numerous papers in the last few years. A popular
set of results rely on the so-called Restricted Isometry Property (RIP) that essentially mea-
sures the degree of orthonormality of the columns of all submatrices AT built from |T|
randomly selected columns of A. The K-RIP constant δK is defined as the smallest quan-
tity such as the following holds:

(1−δK)‖v‖2
2≤‖AT v‖2

2≤ (1+δK)‖v‖2
2 , (3.3)

for all subsets T⊆{1,··· ,N}, |T|≤K, and vectors v∈R
|T|. This essentially indicates how

much every set of |T| arbitrarily chosen columns of A behaves as an orthonormal basis.
If

δ2K <
3

4+
√

6
≃0.465, or δK <0.307, (3.4)

holds, the solution of problem (3.2) recovers any sparse signal provided its support is
such that |T|≤K [5, 21].
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The recovery property of the algorithm stated in Eq. (3.2) may alternatively be char-
acterized using the concept of coherence of the sensing matrix A defined as the maximal
magnitude of the off-diagonal entries of the Gram matrix AT A when A is unit-normed,
see [6, 8, 16]. More generally, letting

µ(A)≡ max
1≤i 6=j≤N

∣∣AT
i Aj

∣∣
‖Ai‖

∥∥Aj

∥∥ , (3.5)

it guarantees recovery of K-sparse signals provided the following holds [16]: †

K≤ 1+µ(A)

4µ(A)
. (3.6)

3.4 Robustness

In practice, since the approximation basis is truncated to a finite number of functions,
the approximation Ŷ ≈ Y may not be exact. Further, the measurement vector Y may
be subjected to noise. These factors lead the relaxation of the equality in Eq. (3.2) and
reformulate the problem under the well-known Basis Pursuit Denoising form:

X
⋆=argmin

X∈RN

‖X‖1 , s.t. ‖Y−AX‖2≤ǫ, (3.7)

with ǫ the approximation residual norm.

Further, the signal is rarely exactly sparse but only compressible in the retained ap-
proximation basis and it is crucial to have insights about the robustness of the recovery
procedure in this framework. The CS theory provides results for this formulation: as-
sume that δK <0.307, then the solution X

⋆ to Eq. (3.7) satisfies [5]: ‡

‖X−X
⋆‖2≤

1

0.307−δK

(
ǫ+

‖X−XK‖1√
K

)
, (3.8)

where XK is the K-term approximation of the signal X obtained by retaining the K most
significant modes, i.e., it is the K-mode sparsest representation if one was given full
knowledge about the unknown signal X by an oracle. This result shows that the L1-
problem solution allows recovery of the K most significant entries, in the L2-sense, of the
unknown signal X from only M measurements and establishes the compressed sensing
technique as both a tractable and robust solution method. In particular, it shows that the
signal recovery error is simply proportional to the measurement noise ǫ and to the tail of
the signal, ‖X−XK‖1.

†A similar, albeit tighter, result holds for the L0-norm version of the problem: K≤ 1+µ(A)
2µ(A)

.

‡More precisely, ‖X−X
⋆‖2 ≤ 2

√
2
√

1+δK

1−C0 δK

(
ǫ+

‖X−XK‖1√
K

)
with C0=1+ 23

2
√

26
.
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4 Towards a CS-uncertainty quantification framework

4.1 Formulation

In this section, we build upon the compressed-sensing philosophy to define a tractable
approach to assess the uncertainty associated with the solution of problems involving
parametric uncertainty.

To characterize the unknown response surface of the quantity of interest u, we rely on
a linear information operator I : U 7→R

M which acts on a class of objects U. It provides
the only piece of information one can access about the signal u∈VΞ ⊆U:

Iu≡ (≪I1,u≫···≪IM,u≫)T , (4.1)

with Im, 1≤m≤M, the sampling kernels and ≪Im,·≫ a linear functional.

Approximating the unknown response surface, hereafter also termed signal, in a basis
{ψα}, see Eq. (2.5), and upon application of the operator I , one writes:

Iu(ξ(θ))≈I ∑
α∈J

Xα ψα(ξ(θ))

⇔ Iu(ξ)≈ ∑
α∈J

XαIψα(ξ). (4.2)

Stated this way, the uncertainty quantification problem reduces to the recovering the
R

Pξ -vector X , Pξ= |J |, from a limited number M of measurements. In particular, if u has
a reasonably compressible representation in the {ψα} basis, it is expected that X may be
recovered with M≪Pξ.

As mentioned above, given a particular choice of {ψα}, the trial basis on which the
signal is approximated, the choice of I is critical in order to maximize the recovery prop-
erty of the resulting sensing matrix A, see criteria in Eq. (3.4). However, we must also
consider an important computational issue: the evaluation of the measurement vector
Iu involves the unknown quantity u over its whole support, see Eq. (4.1), while the out-
put of the model is not known over the entire space. Hence, one would like to retain
the nice properties of the collocation-like UQ techniques where information on the solu-
tion is only required for a given number of realizations of the stochastic germ ξ. Then,
deterministic codes can be used as such as their output is a point-wise quantity in the
stochastic domain. For sake of computational efficiency, it would also be desirable that
the information operator be such that it only involves point-wise information from u.
The Dirac distribution is used to represent it mathematically and one possible choice is
to consider the information operator as a series of random linear convolutions with M
Dirac distributions δm. The resulting operator then requires only M point-wise evalua-
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tions uq≡u
(
ξ(q)
)

of u,
{

ξ(1),··· ,ξ(M)} being chosen at random in Ξ: §

≪Im,u≫≡
M

∑
q=1

γ
(q)
m

∫

R
Nξ

δ
ξ(q)

(−s)1Ξ

[
u(s) pξ (s)

]
ds,

=
M

∑
q=1

γ
(q)
m pξ

(
ξ(q)
)

uq, 1≤m≤M, (4.3)

so that one may rewrite
Iu=Φu≡Y , (4.4)

with pξ the density probability of ξ, Φ a R
M×M-matrix, Φm,l = γ

(l)
m pξ

(
ξ(l)big), γ

(l)
m ∈

N (0,1), 1≤ l,m≤M, and u=(u1 ··· uM)T.

Without loss of generality, the variables γ
(l)
m may be substituted with the Kronecker

delta, δml. Any element of Φ can then be written Φml ≡ pξ

(
ξ(m))δml, so that Φ is diagonal.

Further, in the example treated in Section 6, the stochastic space Ξ is bounded and the
probability density pξ is uniform. It results that Φ is then simply within a multiplicative
constant of the identity matrix.

Similarly as above:

≪Im,û≫≡
M

∑
q=1

γ
(q)
m

∫

R
Nξ

δ
ξ(q)

(−s)1Ξ

[

∑
α∈J

Xα ψα(s) pξ (s)

]
ds, (4.5)

leading to
I û=ΦΨX ≡ Ŷ , (4.6)

with Ψ∈R
M×Pξ , Ψl,k ≡ψk

(
ξ(l)
)
.

Letting A≡ΦΨ∈R
M×Pξ , the problem may then be reformulated in a form where one

looks for the sparsest approximation vector X
⋆ such that the L2-norm error between the

observations Y and the reconstructed solution Ŷ ≡AX is below ǫ:

X
⋆≡argmin

X∈R
Pξ

‖X‖1, s.t. ‖Y−AX‖2≤ǫ, (4.7)

where the noise level ǫ characterizes the contribution of both the measurement noise
when probing uq, if any, and the energy of û⊤ /∈V (Pξ)

Ξ with V (Pξ)
Ξ ⊂VΞ the space spanned

by {ψα}, α∈J .
At first glance, one may think that choosing the sampling kernels such that Imu=≪

ψm,u≫, m∈ [1,Pξ ], may be a good strategy, reminiscent of a Galerkin approach in vari-
ational methods where one tries to reduce the norm of the residual in the same space
span{φm} as the space span{ψα} in which the unknown signal is approximated. The

§with a slight abuse of notation with the indicator function 1Ξ.
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resulting formulation has close connections with the standard least-squares interpola-
tion. This choice is actually a bad one and results in very poor performance as it requires
M≥Pξ, in general, and achieves a near-unit RIP constant. Letting ≪ f ,g≫=〈 f ,g〉L2(Ξ,µΞ)

,

the kernel of the sensing matrix is then of dimension Pξ−M so that many sparse signals
cannot be recovered unless M≥Pξ, a far looser condition than that motivating the present
work, M≪Pξ.

We are now in a position of characterizing the solution u from its approximation ΨX .
We assume the solution vector exhibits a decaying spectrum so that the uncertainty quan-
tification problem is amenable to a form such that the CS tools and results apply.

4.2 Recovery property

Given that computational efficiency has determined our choice of I , it is desirable to
assess the adequacy and performance of the resulting pair {Φ,Ψ} of measurement and
representation functions. As is discussed in more detail in Section 5.4, the approxima-
tion basis {ψα} consists of normalized 8-D Legendre polynomials while measurements
are based on Dirac distributions. The entries of the resulting sensing matrix are then

Al,k = ψk

(
ξ(l)
)
. The recovery property of the sensing matrix A is first investigated in

terms of its Restricted Isometry Property (RIP) constant, see Eq. (3.3). The definition of
the RIP is symmetric in the sense that it involves both a lower and upper bound. How-
ever, while the largest eigenvalue of AT

T AT has an impact on the stability of the recovery
algorithm, the smallest eigenvalue is of critical importance in the sense that it allows us
to distinguish any two K-sparse vectors X and X

′ from their measurement by A and
guarantees that no K-sparse vectors X 6=X

′ exist such that AX = AX
′ [4]. The focus will

therefore be put on the lower inequality and we now define the RIP constant as

δK ≡min
δK≥0

δK, s.t. (1−δK)‖X‖2
2≤‖AX‖2

2 , ∀K-sparse vectors X (4.8)

and derive an estimate for our choice of sensing matrix A. The RIP constant achieved
by a matrix whose elements are sampled from a zero-mean, 1/M-variance, Gaussian
distribution is also plotted for comparison. This particular sensing matrix is known to be
near-optimal in the sense that it allows the best recovery probability with a given number
of measurements among all choices of measurement/approximation pairs and thus de-
fines a lower bound to the RIP constant. The evaluation of the RIP constant of a matrix is
not trivial. Since δK is directly related to the smallest (and largest) eigenvalues of AT

T AT,

|T| ≤ K, it involves computing the minimal (and maximal) eigenvalues of all
(

Pξ K
)T

sub-matrices AT
T AT. This problem is combinatorial in nature and cannot be computed in

polynomial time. For the size of matrices considered in this work, the exact numerical
computation of the RIP constant is intractable. However, to gain preliminary insights

into the efficiency of the present approach, an estimate δ̂ of the RIP constant is evalu-
ated from over three million randomly selected submatrices AT, both for the retained
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measurement/approximation pair and for a Gaussian random matrix. Since not all sub-
matrices AT can be tested, this estimate only constitutes a lower bound of the actual RIP
constant.

 0.1

 1

 1  10  100

δ 2
K

K

RIP threshold
Gauss - M = 129
Gauss - M = 609

Gauss - M = 2177
Gauss - M = 6657

Gauss - M = 12870
PC - M = 129
PC - M = 609

PC - M = 2177
PC - M = 6657

PC - M = 12870

Figure 1: Indication δ̂ of the recovery property for various sizes M of the measurement ensemble as a function of
the signal sparsity K. The present measurement/approximation pair, labelled ‘PC’, is compared with the refer-

ence Gaussian sensing matrix, labelled ‘Gauss’. The recovery threshold 3/(4+
√

6), see Eq. (3.4), is also plotted
for completeness (solid horizontal line). When K grows, the number of submatrices AT grows exponentially so
that the indicator of the RIP is not expected to be relevant enough and is thus not plotted.

As may be appreciated from Fig. 1, when the number K of non-zero elements of the

signal X increases for a given number of measurements M, δ̂2K increases to a point where
the RIP criterion is not met, i.e., δ2K ≥3/(4+

√
6), consistent with the fact that more mea-

surements are necessary to recover a vector when its sparsity decreases (K increases).
As expected from its proven optimality with an overwhelming probability, the Gaussian
sensing matrix exhibits better recovery properties than our current pair. For example,
it would require about five times less measurements to perfectly recover any 64-sparse
signals.

As seen in Section 3.3, the recovery of the unknown coefficient vector X from M mea-
surements may alternatively be guaranteed using the incoherence of the resulting matrix
A. Both the RIP- and the incoherence-based approaches provide upper bounds on the car-
dinality of the signal one can recover and constitute sufficient conditions. However, these
bounds hold with an overwhelming probability for any K-sparse signal and hence do not
do justice to the recovery ability of the method in practice. As an illustration of this ob-
servation, the indicator of the RIP constant plotted in Fig. 1 show that the recovery using
M= 2177 measurements is not guaranteed for a signal which cardinality exceeds about
10 using point-wise samples of the response surface. Since the RIP constant is bounded
from below by this indicator, the actual situation may appear even worse. However, re-
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sults presented in Section 6 will show that this bounds is far too pessimistic and that the
present technique performs very well in practice. Hence, instead of estimating bounds
of limited practical interest, one may instead rely on a k-fold cross-validation approach
to evaluate the number M of required measurements to recover the signal within a given
accuracy. An approximation of the response surface is then determined using M mea-
surement points and its accuracy is evaluated in terms of the L2-norm of the residual
computed on a different set of M/k points. The procedure is repeated k times so that
each set of M/k points alternatively serves for the approximation and the residual norm
estimation. M is subsequently increased whenever the resulting average residual norm
is deemed too large.

4.3 Improving the recovery

In the situation where the sample points can be chosen at will, i.e., the unknown response
surface can be probed at any point within the domain of interest, an opportunity for im-
proving the efficiency of the present approach arises in the form of a design of experi-
ment. Indeed, once the approximation basis {ψα} is chosen, the set of sampling points
is the only degree of freedom one has within the NISP framework to improve on the
recovery of the unknown output. By carefully choosing the information operator {I},
and hence the associated set of samples, the efficiency of the recovery can be favorably
affected and the RIP improved in the sense that criteria stated in Eq. (3.4) are met for a
larger K (less compressible signal).

In recent work, [37, 38] investigate the recovery properties of a strategy based on an
approximation basis generated by a system of polynomials {ψα} orthonormal with re-
spect to a density pξ(ξ) satisfying (in 1-D)

(
1−ξ2

)1/4
pξ(ξ)

1/2 |ψα(ξ)|≤ c1, ∀α∈N,ξ∈ [−1,1]. (4.9)

Within this framework, theoretical results are proven for a CS strategy relying on the
orthonormal system {ψα} and point-wise samples drawn independently according to a

Chebyshev probability measure, dν(ξ) = π−1
(
1−ξ2

)−1/2
dξ. In particular, it is shown

that, provided
M≥ c2 δ−2c2

∞ K log3(K) log(Pξ), (4.10)

then, with probability at least 1−Pξ
−c3 log3(K), the associated sensing matrix Ã≡ΦΨ, with

Φ a diagonal R
M×M matrix with entries

Φl,l ∼
(
1−(ξ(l))2

)1/4
pξ

(
ξ(l)
)
/
√

M and Ψl,k ≡ψk

(
ξ(l)
)
, (4.11)

obeys the RIP with constant δK ≤ δ, with c2 (depending only on pξ) and c3 well-behaved
constants and c∞ such that

sup
k∈[1,Pξ ]

‖ψk‖∞ = sup
k∈[1,Pξ ]

sup
ξ∈[−1,1]

|ψk(ξ)|≤ c∞. (4.12)
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Further, if M≥ c2K log4(Pξ), consider the following L1-minimization problem (in the
1-D case, Nξ =1)

X
⋆≡argmin

X∈R
Pξ

‖X‖1, s.t.
∥∥∥Ỹ− ÃX

∥∥∥
2
≤ǫ, (4.13)

where Ỹ ≡ΦY . The solution X
⋆ of this problem satisfies

‖X−X
⋆‖2≤ c3 ǫ+c4

‖X−XK‖1√
K

, (4.14)

with probability exceeding 1−Pξ
−c5 log3(Pξ). This L1-minimization problem is similar to

that in Eq. (4.7). The above results constitute a theoretical basis for a provably efficient
point-wise orthonormal polynomials-based CS technique and support the approach sug-
gested in this paper. However, a good sample set in the sense of the RIP (or equivalently
the mutual coherence) is not necessarily the most pertinent. Indeed, rather than extra
precision on the coefficient vector X , as guaranteed by a good RIP, one is often interested
in retrieving a good approximation of the signal u. From this perspective, a good set is
one that minimizes the error in the signal recovery, say:

{
ξ(q)

⋆
}
=argmin

{ξ(q)}
‖u−û‖L2(Ξ,µΞ)

. (4.15)

One thereby favors good recovery of u to the detriment of finely distinguishing be-
tween two, weakly contributing, coefficients of X . Of course, problem (4.15) cannot be
solved since u is not known. Observe now that the CS-UQ technique proposed in this
paper, Eq. (4.7), leads to finding the minimal L1-norm vector X so that the reconstructed

signal û is close to u at a given set of points
{

ξ(q)
}

:

0≤
M

∑
q=1

[∣∣∣u
(

ξ(q)
)
−û
(

ξ(q)
)∣∣∣

2
pξ

(
ξ(q)
)2
]
≤ǫ2≪

M

∑
q=1

[∣∣∣u
(

ξ(q)
)∣∣∣

2
pξ

(
ξ(q)
)2
]

. (4.16)

To achieve good recovery of u in terms of L2-norm as stated in Eq. (4.15),
{

ξ(q)
}

could be chosen so that the L2-norm is well-approximated by the M-term sum, Eq. (4.16).
One is then left with finding a set of points so that a Nξ-dimensional integral is well-
approximated with a finite sum of integrand evaluations. While deriving the optimal set
of points is difficult in general, provably good candidates exist such as low-discrepancy
sequences. Among those, a Sobol sequence [40, 41], presents interesting properties in
filling the R

Nξ -space at hand and was used in this work.

The efficiency of the NISP CS-UQ technique based on a set of samples issued from
both a low-discrepancy Sobol sequence and from a Chebyshev probability measure will
be investigated in Section 6.3.4.
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Remark 4.1. While not used in this work, the recovery could also be improved by split-
ting the step of finding the subset of dominant modes from that of evaluating their co-
efficients. Once the solution X

⋆ of Eq. (4.7) has been determined, the subset {ψ⋆} of
dominant modes is identified. Letting K⋆≤ M be its cardinality, one can then reuse the
available information from the measurements, Y , to evaluate the coefficients X⋆ of the
K⋆-best term approximation: X⋆= A†

⋆Y , A⋆≡ΦΨ⋆ ∈R
M×K⋆ with A† the Moore-Penrose

pseudo-inverse of A. This second step then concentrates the information from the ob-
servations in order to recover the coefficients X⋆, de facto discarding those not belonging
to {ψ⋆} found negligible at the first step. Focusing the information on the set of modes
found to be dominant then provides superior performance. A similar procedure was
proposed in [8].

4.4 Solution method

4.4.1 Formulation of the optimization problem

As seen above, the problem takes the form of an inequality constrained optimization
problem which is solved for X∈R

Pξ . A great deal of work has been devoted to solving this
class of problem or closely related formulations such as an alternative convex constrained
version:

X
⋆≡argmin

X

‖Y−AX‖2, s.t. ‖X‖1≤ǫX , (4.17)

or a (convex) unconstrained optimization:

X
⋆≡argmin

X

‖X‖1+τ ‖Y−AX‖2, (4.18)

where τ is a non-negative real parameter.
In the present work, the formulation (4.18) is used together with a memory-limited

second-order quasi-Newton approach [25]. The maximum size of the problem consid-
ered below is about Pξ≃105 and the optimization step computational time remains much
lower than that required to generate the M deterministic solver outputs, even though the
deterministic code calls were performed in parallel. Alternative approaches are available
to solve Eq. (4.18) such as projected gradient techniques [20, 45], Interior Points methods
(IP) [48], or iterative-shrinkage techniques, see [52]. With very large scale problems in
mind, where both Pξ and M are large, the dense matrix A∈R

M×Pξ is not stored and one
only computes the R

M-vector resulting from AX . Further, while not used here, as the
CPU cost essentially comes from this matrix-vector multiplication AX, and since X is
compressible, one may make use of sparse multiplication techniques to lower the com-
putational burden.

4.4.2 Choosing τ

As also used for determining the required number of measurements, see Section 4.2, a
cross-validation technique is used to determine the balance between reconstructed sig-
nal norm ‖X‖1 and the approximation error ‖Y−AX‖2 due to the presence of noise and
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Figure 2: Example of Pareto front. M=2177.

the incompleteness of the approximation basis {ψα}. For a given M, the Pareto front is
explored by varying τ in Eq. (4.18). A weakly penalized observation constraints (low
τ) would lead to an approximation lying on a too low-dimensional subspace; on the
contrary, a large τ may lead to overfitting on the available observations. An example
of the Pareto front is given in Fig. 2. The retained τ⋆ is estimated with a k-fold cross-
validation technique as that which minimizes the mean reconstruction error over the k
folds: τ⋆=argminτ ∑

k
l=1

∥∥u
(l)−Ψ(l)

X
∥∥

2
with u

(l) the l-th set of samplings independent of
that used in Y =Φu, k= 3 being retained in this work. In practice, the reconstruction is
rather robust with respect to τ: variations around τ⋆ have little effect on the reconstruc-
tion error. The optimal τ is determined within a finite set {τ} as the one leading to the
lowest reconstruction error on the k folds. The procedure is as follows. Randomly split
the available M observations in k bins, disregard one bin and solve the CS problem with
the remaining measurements for a given τ and evaluate the reconstruction error with the
observations of the left-out bin. Repeat this k−1 additional times leaving out a different
bin each time and average the resulting k reconstruction errors. Repeat over different val-
ues of τ. τ⋆ is the one leading to the lowest average reconstruction error. As mentioned
earlier, solving (even several times) the compressed-sensing problem is inexpensive rel-
ative to probing the response surface and this k-fold cross-validation technique does not
significantly contribute to the overall CPU cost. Alternative cross-validation techniques
such as the Leave-One-Out or the .632+ bootstrap method [19] may lead to lower variance
error estimation but are deemed too costly.

4.4.3 Modified L1-norm

Since the L1-norm is not smooth, a modified L1-norm was used to ease the optimization
procedure. For a real-valued quantity f , the smoothed L1-norm is taken as [3]:

‖ f‖1=

{ | f |−1/2ǫs , if | f |≥ǫs, f ∈R,

f 2/2ǫs , otherwise,
(4.19)
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with ǫs ≪ 1 a non-negative smoothing parameter taken as 10−7 Xmax with Xmax the esti-
mated maximum magnitude coefficient.

As mentioned above, shifting from a L0- to a L1-formulation makes the resulting prob-
lem convex and computationally tractable at the expense of a factor 2 in the sparsity
bound. From a most efficient recovery perspective, an ad-hoc weight is then introduced
in the definition to mimic a L0-norm:

‖X‖1−→‖W X‖1 , (4.20)

where W is a diagonal matrix which elements are Wk =
1

|Xk |+εW
, 1≤ k≤ Pξ , εW > 0. The

iterative scheme suggested in [12] is used and the W matrix is updated as a new solu-
tion estimate X is available. In this work, εW =10−7 maxk |Xk| was retained as a sparsity
threshold.

5 Model problem

5.1 General motivation

To investigate the efficiency and effectiveness of the method presented above, it is applied
to the simulation of an underwater seismic event. Uncertainty is assumed in the location,
intensity and physical extent of the event as well as in the ocean depth field. The quantity
of interest is the maximum height of the resulting ocean surface perturbation at a specific
location next to the shore within a given time window after the event has occurred. The
length of the time window is related to the time necessary for the seaquake detection,
broadcast of the alert and evacuation of the population located close to the shore.

5.2 Governing equations

The shallow water flow is described by the following set of equations

Dvx

Dt
= f vy−g

∂h

∂x
−bvx+Svx , (5.1)

Dvy

Dt
=− f vx−g

∂h

∂y
−bvy+Svy , (5.2)

∂h

∂t
=−∂(vx (H+h))

∂x
− ∂
(
vy (H+h)

)

∂y
+Sh, (5.3)

where it is implicitly assumed that the fluid density and the free surface pressure are
constant. Here, f is the term corresponding to the Coriolis force, b the viscous drag

coefficient, v≡
(
vx vy

)T
the fluid velocity vector, h the deviation of the ocean surface from

its position at rest, g the gravity constant and H the ocean depth field. Svx , Svy and Sh are
the source terms reflecting the effect of the unknown displacement field. Without loss of
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generality, it is assumed that the source field acts on the h variable solely
(
Svx =0, Svy =0

)

and that the drag and the Coriolis forces can be neglected, f =0, b=0. No-slip boundary
conditions are prescribed along the edge Γ of the domain Ωx.

5.3 Discretization in the deterministic space

Consider a partition of the 2-D physical domain Ωx into a set of Nb = Nx×Ny non-

overlapping spectral elements (SE) with respective support Ωl
x for l=1,··· ,Nb:

Ωx=
Nb⋃

l=1

Ωl
x. (5.4)

The continuous Galerkin spectral elements approximation of the solution over the
element Ωl

x for vx (·,t)∈Vx is given by:

vl
x

(
x∈Ωl

x,t;θ
)
=

Px

∑
i=1

Py

∑
j=1

vl
x i,j(t;θ)Li(x)Lj(y), (5.5)

where Li are the physical space basis functions, Px and Py the spectral orders and V l
x is a

suitable Hilbert space of Ωl
x.

The unknowns are interpolated with Legendre cardinal functions collocated at the
Gauss-Lobatto points. The surface height hl ∈V l

h is discretized with a lower order poly-
nomial to avoid spurious pressure modes to occur (QN−QN−2 scheme), see [26].

Integrating the divergence term by parts in the governing equations (5.1)-(5.3), yields
the variational form of the shallow water equations (SWE) The pressure (since h acts
as the pressure) gradient term ∇h in the momentum equation, Eqs. (5.1)-(5.2), and the
divergence term in the continuity equation, Eq. (5.3), ∇·(hv) drive the gravity waves
and are integrated implicitly in time. The gravity terms are thus discretized with a Crank-
Nicholson time scheme while the remaining terms are treated with a semi-implicit third
order Adams-Bashforth scheme. Rearranging, the discretized SWE may be put in the
following form:

κ Mv vx+
1

2
gGvx h=B, (5.6)

κ Mv vy+
1

2
gGvy h=C, (5.7)

− 1

2

(
Evx vx+Evy vy

)
+κ Mh =D, (5.8)

with κ≡1/∆t, ∆t the retained time step. Mv and Mh are the mass matrices for the velocity
and pressure respectively. The matrices Gvx and Gvy are the discrete gradient operators
along x and y for the velocity vector while Evx and Evy are the discrete gradient operators
for the pressure along x and y. The matrices B, C and D appearing on the right sides of the
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equations contain the explicit terms together with the sources. Rearranging the system
(5.6)-(5.8), a Schur complement formulation is derived and the problem is solved with
a matrix-free conjugate gradient method taking advantage of a Schwarz preconditioner.
More details about a similar formulation may be found in [18].

5.4 Approximation basis and discretization in the stochastic space

There is no general rule of thumb to choose the approximation basis but a decent strategy
is to choose a basis of functions that mimic as much as possible the expected behavior of
the quantity of interest, so that the number of modes or functions required to approxi-
mate it to a certain accuracy is as low as possible. If the response surface is expected to
be smooth, with a low frequency dominant spectrum, a polynomial basis is likely to be a
good choice, i.e., the set of ordered coefficients of the approximation would exhibit a rea-
sonably large decay rate. On the other hand, if the response surface is expected to exhibit
a wide-spectrum behavior, a good idea may be to approximate it with compact support
functions such as wavelets. In most cases, the resulting approximation coefficients will
again exhibit some degree of sparsity. The choice of basis, therefore, is based on experi-
ence with the use of sparsity and UQ ideas for particular equations arising from a variety
of applications. As the literature discussing this experience increases, it will be possible
to identify classes of equations and associated physical phenomena that lend themselves
to sparsity exploiting UQ techniques.

The uncertain output of the model is expected to be reasonably smooth, and a Poly-
nomial Chaos spectral expansion is used to approximate it. Without loss of generality,

we rely on uniform random iid variables ξ=
(
ξ1 ···ξNξ

)T
associated with normalized Leg-

endre polynomials [1], ψk(ξ), k=1,··· ,Pξ, on the stochastic space L2(Ξ,µΞ), Ξ=[−1,1]Nξ .

These polynomials form an orthonormal basis under the measure µΞ:

∫

Ξ
ψi(s)ψj(s)dµΞ(s)≡

〈
ψi,ψj

〉
L2(Ξ,µΞ)

=δij, ∀{i, j}∈
{

1,··· ,Pξ

}
, (5.9)

and u(ξ) is approximated by:

u(ξ)≈ û(ξ)=
Pξ

∑
k=1

Xk ψk (ξ). (5.10)

5.5 Models of the uncertain quantities

The uncertain depth field H(x) is modeled as a NH-term expansion of the form:

H
(

x, ξ̂(θ)
)
=H(x)+

NH

∑
i=1

√
λi ξ̂i (θ) ϕH

i (x), (5.11)
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with ξ̂ ≡
(
ξ̂1 ··· ξ̂NH

)T
, and ξ̂i, i= 1,··· ,NH, iid uniform random variables. The expansion

modes ϕH
i (x) are eigenvectors of the auto-correlation operator based on the following

kernel:

C
(

x,x′
)
≡exp

(
− 1

lC

[(
x−x

′)T(
x−x

′)]1/2
)

, (5.12)

with λi the associated eigenvalues and lC the correlation length. The physical domain

extent is x∈
[
0,106

]2
and the correlation length is taken as lC =2×105.

The location of the seaquake source Sh is also unknown by nature. While insights may
be gained from past seaquakes and geological considerations, the precise description of
the sea bottom displacement field during a seismic event cannot be predicted and it is
conveniently modeled as a random field indexed by Ξ×T, with T the time domain. The
source model is of the form:

Sh

(
x,t, ξ̃

)
≡ASh

(t)N (x;xSh
,σSh

), (5.13a)

ASh
(t)=

t2

1+t4
e−20t, (5.13b)

where the temporal envelope ASh
(t) is assumed known. The source physical extent

N (x;xSh
,σSh

) is assumed isotropic and Gaussian-shaped while its location xSh
, physical

extent σSh
and strength AN are random:

xSh

(
ξ̃
)
≡
((

0.5+0.1ξ̃1

)
xSh

ySh

)T
, (5.14a)

N (x;xSh
,σSh

)=AN
(

ξ̃2

)
exp

[
− 1

σ2
Sh

(
ξ̃3

) (x−xSh
)T (x−xSh

)

]
, (5.14b)

with
(

xSh
ySh

)T
a reference source location. The amplitude and variance of the source

express as

AN
(

ξ̃2

)
=1.01+ ξ̃2, (5.15a)

σ2
Sh

(
ξ̃3

)
=5103

(
1.25+ ξ̃3

)
. (5.15b)

6 Results

6.1 Solution method

Salient results of the SWE UQ problem are presented in this section. First, a low-
dimensional stochastic solution is investigated both with the proposed CS-like approach
and a sparse grid-based (Smolyak scheme) NISP Polynomial Chaos technique. This low
dimensional problem allows relatively high polynomial orders for the approximation of
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the solution. In a second step, a higher dimensional problem is considered, arising from
a more realistic modeling involving additional sources of uncertainty. For this particular
case study, both a sparse grid-based Polynomial Chaos (PC) approach and a Stochastic
Collocation (SC) approach are considered, together with their CS counterparts (CS-PC
and CS-SC). In the PC method, the required coefficients in Eq. (2.10) are approximated
using discrete quadrature. The SC method essentially consists of approximating the out-
put response surface by interpolating Lagrange polynomials and no integrals need be
evaluated to determine its coefficients. Both the CS-based PC and CS-based SC use the
CS-like approach but they differ in their respective measurement matrices, A, due to the
use of different trial bases {ψα}.

Throughout the section, the sensing matrix A is never explicitly formed and only its
action on a vector X is evaluated, Ŷ =AX.

6.2 Low dimensional problem

In this section, a 1-term series expansion is considered for the approximation of the ocean
depth stochastic field, NH=1, Eq. (5.11). Further, it is assumed that there is no uncertainty
in the source field extent σSh

and intensity AN . The problem expresses in terms of ξT =
(
ξ̂

T
ξ̃

T)
which here reduces to ξT =

(
ξ̂1 ξ̃1

)
=(ξ1 ξ2) so that the problem then lies in a 2-D

stochastic domain.
Since a major concern of any computational method is the balance between accuracy

of the solution and required computational effort, let us first examine the error in the
solution as more measurements M are considered. The reconstruction error is defined as:

ε̃2
ex ≡‖u(x

⋆,t⋆,ξ)−û(x
⋆,t⋆,ξ)‖2

L2(Ξ,µΞ)
, (6.1)

where u is the exact stochastic quantity of interest evaluated at a specific time t⋆ and
specific location x

⋆. û is the solution obtained from the uncertainty quantification using
either the Smolyak scheme-based PC or the CS-like PC strategy.

In the sequel, since the exact solution u is not known, a NMC-sample Monte-Carlo
approximation is considered instead, with NMC = 1.2×106 sufficiently large so that the

norm ‖·‖2
L2(Ξ,µΞ)

may be reasonably approximated by its Monte-Carlo estimation:

ε̃2
ex ≃ ε̃2≡ 1

NMC

NMC

∑
q=1

(
u
(

x
⋆,t⋆,ξ(q)

)
−

Pξ

∑
k=1

Xk (x
⋆,t⋆)ψk

(
ξ(q)
))2

, (6.2)

where the ξ(q) are sampled according to the µΞ measure.
Finally, the relative error norm is defined as:

ε2≡ ε̃2×
[

1

NMC

NMC

∑
q=1

(
u
(

x
⋆,t⋆,ξ(q)

))2
]−1

. (6.3)
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The evolution of the approximation error ε is investigated in terms of the number
of deterministic solver calls M. The number of solver calls corresponds to the required
number of points for the different levels of the Smolyak rule. For a given level lS of
the Smolyak quadrature, the quadrature is exact for a polynomial integrand of a given
total order. One wants the integration to be exact if the model output was a polynomial
of the same order as the test function. Under this view, the correspondence between the
Smolyak level, lS, number of evaluation points, M, and maximum achievable Polynomial
Chaos order is provided in Table 2.

Table 2: Correspondence between Smolyak level lS, number of evaluation points M=|Nq|, maximum Polynomial
Chaos order No and related number of stochastic modes Pξ. 2-D stochastic space.

lS 1 2 3 4 5 6 7 8 9 10 11 12
M 5 9 17 33 33 65 97 97 161 161 161 257
No 1 2 3 5 5 6 8 8 11 11 11 12
Pξ 3 6 10 15 21 28 36 45 55 66 78 91

It should be noted that, while the performance of the two approaches (standard PC
and CS-PC) is evaluated for a similar number of evaluation points, those points are
not the same for the two methods: the Smolyak-based PC approach relies on points is-
sued from a partially tensorized 1-dimensional Gauss-Patterson quadrature (nested) rule
while the points for the CS-like strategy are sampled at random in [−1,1]2 following a
uniform joint-probability law.

Remark 6.1. While the approximation basis can grow (increasing No and Pξ) when M in-
creases for the PC approach as the Smolyak scheme allows to exactly integrate integrands
of growing order, see Table 2, in the CS-PC approach, the approximation basis is fixed for
all M, No =12, Pξ =91.

The evolution of the approximation error ε as a function of the number of determin-
istic solver calls M is plotted in Fig. 3, with No = 12, Pξ = 91. The error norm is seen
to decrease as M increases, both approaches roughly achieving a 2-order of magnitude
error reduction from a 1-point to a 257-point evaluation. The CS-like approach is seen
to perform no better than Smolyak-based PC when the number of evaluation points is
low. This poor behavior when a limited number of points is available results from the
recovery properties as it was seen that a minimum of points was necessary for the RIP
constant to drop sufficiently low to achieve recovery of a signal with given sparsity.

Conversely, when the number of evaluation points becomes sufficiently large, the
error norm from the CS-like strategy drops dramatically, achieving a more accurate ap-
proximation than Smolyak-PC beyond M ≃ 40 evaluation points. A remarkable result
is that a 65-point CS-like approach achieves almost the same accuracy as a 161-point
Smolyak strategy. It must be emphasized that this is achieved without requiring any
prior knowledge of the solution, nor making use of a trial-and-error refinement strat-
egy. The underlying compressibility in the solution representation in the given trial basis
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Figure 3: Convergence analysis of the CS-like (CS-PC) and the Smolyak quadrature (PC) solution strategies in
terms of the relative error norm ε.

is intrinsically captured by the procedure which makes the best use of the available M
points information in a non-adaptive way. The global behavior is consistent with what
was expected from Section 3: relatively poor performance compared to the Smolyak-PC
approach for a low number of available measurements but a better convergence rate once
the ensemble of solution evaluations gets sufficiently large. It is interesting to note that,
when M = 257, the Smolyak level is lS = 12 so that the two methods use the same trial
basis (Pξ = 91) and their performances are seen to be roughly similar while they rely on
the solution of different problems.

The “exact” response surface is plotted in Fig. 4 both from extensive Monte-Carlo
simulations and from using the CS-PC approach. The agreement is satisfying but the
“exact” response surface (Monte-Carlo) is seen to exhibit a slope discontinuity near ξ2 ≃
0.55: the solution is not smooth in the stochastic domain and is then poorly approximated
with polynomials. This is responsible for the rather slow convergence of the L2-error
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Figure 4: Exact (left, extensive MC-based simulations) and CS-like approximation (right) of the response surface
of the stochastic problem output. No =12, Pξ =91.
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Figure 5: 257-evaluation point solution approximation spectrum for the PC and CS-PC strategies. No = 12,
Pξ =91.

observed in Fig. 3. A plot similar to that from the CS-PC strategy is obtained with the
standard PC (not shown).

To appreciate the recovery of the coefficients vector X , its spectrum from both the
Smolyak- and the CS-like approach with M = 257 is plotted in Fig. 5. As expected, the
major contribution to the solution arises from a small set of modes while a significant part
of the spectrum exhibits a much weaker magnitude. Interestingly, the CS-like spectrum
closely matches that of the Smolyak-based solution for the most significant modes, say
those with magnitude larger than 10−7. No such match is achieved for the lower mag-
nitude modes and the CS-like solution exhibits more vanishing or negligible modes, in
particular in the upper part of the spectrum. This is a clear demonstration of the philos-
ophy of the CS-like approach: concentrate on a few modes that contribute most to the
solution approximation and discard or ignore the others unless additional information is
provided.

6.3 Higher dimensional stochastic problem

6.3.1 Settings

We now consider a more realistic case where additional sources of uncertainty are
present, calling for a higher dimensional Polynomial Chaos basis for a good approxi-
mation of the stochastic output and inducing a large computational cost for evaluating
the solution at the resulting large number of necessary sampling points.

The problem of interest is basically the same as in the previous section but the sources
of uncertainty are more precisely modeled, giving rise to additional stochastic dimen-
sions that must be taken into account. In particular, the depth field is now modeled with
a NH=5-mode expansion instead of NH=1 as previously considered. This allows not-so-
small contributing eigenmodes of the correlation kernel to be taken into account. Further,
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the seaquake source model is also improved with respect to its intensity AN as well as its
width σSh

which are now modeled as uncertain quantities in addition to the location xSh

as previously considered. This leads to a source model lying in a 3-dimensional stochastic

space: ξ̃∈Ω
Ξ̃
⊂R

3. The resulting uncertain problem therefore is an 8-D stochastic prob-

lem: ξT =
(
ξ̂

T
ξ̃

T)∈Ξ⊂R
8. This moderately large dimensionality framework is routinely

encountered in practice and thus constitutes a test case of stronger practical interest than
the previous 2-D case which only serves as a didactic example.

The correspondence between the Smolyak scheme level and the maximum polyno-
mial order that can correspondingly be considered for the output and the test function,
within the assumption that the output is a polynomial of the same order as the test func-
tion, is given in Table 3. For a polynomial approximation order No = 8, the required
number of quadrature points is M= |Nq|=97153 and will result in a large computational
burden for evaluating the corresponding model outputs.

Table 3: Correspondence between Smolyak level lS, number of evaluation points M=|Nq|, maximum Polynomial
Chaos order No and related number of stochastic modes Pξ. 8-D stochastic space.

lS 1 2 3 4 5 6 7 8
M 17 129 609 2177 6657 17921 43137 97153
No 1 2 3 4 5 6 7 8
Pξ 9 45 165 495 1287 3003 6435 12870

6.3.2 Convergence properties

As mentioned in Section 4.4.2, the compromise between overfitting and mismatch with
the measurements is essentially driven by the τ parameter and its value is adjusted
through a cross-validation approach whenever new observations become available. This
step takes advantage of warm-start capabilities of the optimization technique and results
in an efficient procedure. An illustration of the evolution of the cross-validation error

εCV ≡∑
l

1

card
(

u(l)
)
∥∥∥u

(l)−Ψ(l)
X

∥∥∥
2

(6.4)

is given in Fig. 6 for various values of τ. The retained PC approximation basis is of order
No=8, leading to Pξ=12870 modes. When τ is low, the constraint of matching the obser-
vations Y is weak and a very sparse coefficient vector X is promoted, leading to a large
cross-validation error. On the contrary, when τ is large, the recovery algorithm tends to
match the measurements disregarding the resulting sparsity of X , leading to overfitting
and a large cross-validation error as well. There thus exists a compromise τ⋆ between
these two extremes leading to a minimal εCV and the model output approximation is
then given by the solution of Eq. (4.18) with τ=τ⋆.

A similar investigation of the approximation convergence as for the two-dimensional
case is now carried-out. As before, the error norm of the approximation is monitored
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Figure 6: Evolution of the cross-validation error εCV when τ varies. 8-dimensional case, M= 17921, No = 8,
Pξ =12870.

when the number of the available measurements varies, Fig. 7. Beyond a minimal num-
ber of solution evaluation points, M&30, the CS-like PC approach is again seen to achieve
a better approximation of the stochastic solution than the Smolyak-based PC. In this case,
the CS-like approach requires about 103 points to approximate the solution within a 10−4

relative error L2-norm while the sparse grid technique needs 105 points to reach the same
accuracy, roughly achieving a two order of magnitude improvement in terms of com-
putational burden. Note that the physical location x

⋆ ∈Ωx used in the definition of the
output, see Eq. (6.1), is different in the 8-D case from the 2-D case. The location consid-
ered in the 8-D case leads to a smoother response surface, hence a higher convergence
rate of the polynomial approximations.

Remark 6.2. The number of samples M reported in the plots corresponds to that used to
form the sensing matrix A and the measurement vector Y . The actual cost of the CS-UQ
method also includes the additional samples used for the cross-validation step. With the
3-fold cross-validation strategy used here, the actual cost is then 33 % higher than M.

In addition to the comparison with the Smolyak scheme-based PC, it is of interest
to appreciate the performance of the present CS strategy with a least-squares regression
whose resulting approximation error is also plotted in Fig. 7. The regression problem
admits a unique solution whenever M≥Pξ (otherwise the Fisher information matrix is not
invertible) so the plot is given for M≥12870. The approximation error is seen to be large
when the number of measurements is only a little larger than the number of unknowns.
When M further increases, the approximation gets much better and eventually gives a
similar accuracy as the CS approach when M approaches 105. Hence, the L2-regression
approach cannot provide a solution with less than M measurements and, when a solution
can be determined (M ≥ Pξ), its accuracy is quite poor unless M gets really large. This
observation illustrates the remark made in Section 4.1 about the poor recovery property
of choosing I such that Imu=≪ u,ψm ≫.

To complete the picture, an alternative trial basis is also considered here: the so-called
Stochastic Collocation (SC) approach [2, 31, 49], essentially consists of approximating the
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response surface with a linear combination of point values belonging to a given set S .
More specifically, the stochastic output is approximated under the form

u(ξ)≈ ∑
q∈S

u
(

ξ(q)
)

ψ̂q(ξ), (6.5)

where the functions ψ̂q are typically taken as Lagrange polynomials. Instead of a full
tensorization of one-dimensional Lagrange polynomials that would require a prohibitive

number of evaluation points ξ(q), the stochastic collocation approach makes use of suc-
cessive partial tensorizations based on the Smolyak scheme points, here chosen to be
nested. It results in linear combinations of hierarchical approximations involving a rea-
sonable number of evaluation points. For a detailed presentation of the method, one can
refer to [49] and [34].

Since the SC method is essentially an interpolation technique, it does not involve a
projection step and, for a given number of point-wise evaluations of the response surface,
it allows for approximating the output with a higher polynomial order as compared with
the Smolyak-Polynomial Chaos, which is usually used within the assumption that the
output surface to approximate is of the same polynomial order, No, as the retained trial
basis. The SC approach is not affected by such a hypothesis. In the present case, it allows
for polynomials of total order 14 as opposed to 8 for the Polynomial Chaos approach.

The hierarchical stochastic collocation method used builds up an approximation by
successively adding details to the approximation at the preceding level, see for instance
[23]. The SC-based CS approach used here then tends to select the dominant terms in this
normalized hierarchical Lagrange basis.

In Fig. 7, the stochastic collocation approach is seen, in particular, to provide a bet-
ter approximation than PC for a given number of evaluations M thanks to the higher
affordable polynomial order. For a large M, the higher polynomial approximation leads
to a dramatic improvement in the approximation quality as the resulting error norm is
about 30 times lower with SC than with PC. The CS-counterpart of the stochastic colloca-
tion (CS-SC) again achieves a significant improvement over the regular SC approach for
M&100, reaching up to an order of magnitude improvement in the approximation error
for a given evaluation cost (∝ M). Just as with the PC approach, the approximation accu-
racy of the regular and the CS-like stochastic collocation approaches are similar when M
is maximum, i.e., the SC-approach can use the trial basis with maximum order.

For M&2000, the approximation error is seen to reach a plateau and further measure-
ments essentially do not improve the recovery accuracy. This comes from the fact that
the identified coefficient vector X is already very close to

(
〈u,ψ1〉L2(Ξ,µΞ)

,··· ,
〈

u,ψPξ

〉
L2(Ξ,µΞ)

)T

for M≃2000. (6.6)

To further improve the approximation, an enhanced trial basis {ψα} would be necessary,
for instance, increasing the polynomial order No. However, the recovery property of
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the sensing matrix A deteriorates as the cardinality Pξ of the approximation basis grows
(albeit slowly, not shown). In a nutshell, the maximum correlation of a set S of vectors
defining a frame in a given R

K increases when |S| increases. One should then exercise
moderation when choosing the trial basis and refrain from using an unnecessary large
one.

6.3.3 Solution spectrum

The spectrum of the approximation coefficient vector X, sorted by magnitude, is plotted
in Fig. 8 both for the Smolyak-scheme-based approximation (with M = 97153) and the
present CS-PC approach with various M. While none is ground truth in the sense they
all are approximations, their sorted spectra are however seen to exhibit a decay which
rate is essentially bounded from above by k−1, therefore a posteriori giving confidence
that the CS results apply, see Section 3.4. As an illustration of the strongly compressible
character of the signal in the {ψα} basis, the top two decades of the sorted spectrum only
involves about 20 modes.

While the approximations derived from all the cases plotted in the figure allow accu-
rate retrieval of the dominant modes, the M= 129 CS-PC spectrum is seen to “diverge”
from the other spectra for k&7. Similarly, the M=609 CS-PC spectrum diverges for k&23.
This is a clear illustration of the CS-UQ approach: focus all the available information, no
matter how little, to retrieve the most significant modes and disregard the others. While
using a set of M=97153 points, the Smolyak-scheme approximation spectrum is seen to
diverge for k&58 from the M= 17921 CS-PC case, taken here as the reference thanks to
its approximation accuracy, see Fig. 7. This difference clearly indicates that the signal to
approximate is not a No-th order polynomial and that its projection in the {ψα} basis is
only approximately evaluated by the quadrature, Eq. (2.10).

As already mentioned, the evaluation points ξ(q) are not the same for the Smolyak
scheme and the CS approach. This brings considerable flexibility in the applicability of
the CS-UQ method as it can be applied to situations where one has little control on how
the realizations of the uncertain parameters are sampled: as long as the output evalua-
tions at one’s disposal are such that the resulting recovery properties defined in Eqs. (3.4),
(3.6) are satisfied, the CS results are valid. This is a distinguishing feature compared to the
standard PC or SC approach where evaluation points are a priori defined. Further, it also
brings flexibility in the number of points: while the Smolyak-based approach is restricted
to a given set of points for each level, cf. Table 3, the CS-based UQ can accommodate with
any number of points and improves the recovery whenever M increases.

6.3.4 Improved recovery

When the unknown response surface is probed with a numerical solver, one often has
the ability of choosing the set of samples. In this last section, the focus is on the alterna-
tive sets of samples discussed in Section 4.3. The accuracy of the reconstructed surface
based on five independent sets of points chosen uniformly at random, as considered so
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far in this work, and the set resulting from a Sobol sequence are compared in terms of ap-
proximation residual L2-norm. Further, since the Legendre polynomials generating the
approximation basis considered in this work belong to the, partially tensorized, Jacobi

polynomials family, P
(α,β)
No

(ξ) with α= β= 0, theoretical results presented in Section 4.3
apply and provide a framework with provable recovery performance. Three sets of sam-
ples drawn according to the Chebyshev probability measure on [−1,1]8 are considered.

Fig. 9 gathers recovery results for different size M of the sets. As already discussed
in previous sections, the recovery is poor for low M but strongly improves when the
number of available observations increases. When M gets large enough, M& 4000, the
recovery saturates (in the sense that no better approximation can be derived in the re-
tained approximation basis) and both the uniform and Chebyshev measure-based sam-
pling strategies lead to an excellent recovery. They are seen to exhibit a similar behavior
and achieve comparable recovery accuracy for a given M. However, they rely on a ran-
dom sampling and their performances are subjected to a large variability and hence low
reliability. For instance, for M=500, the L2-norm of the residual with samples drawn uni-
formly at random varies from 3×10−4 to more than 1×10−3 for the five sets considered
here.

Similarly to the uniform and Chebyshev, the Sobol sampling scheme achieves poor
recovery when the number of observations is low. However, when M gets larger, in ad-
dition to the direct improvement due to the larger set of available observations, the 8-D
integral underlying in the residual L2-norm is better approximated with the finite sum,
see Eq. (4.16), and the Sobol sequence strategy almost always exhibits a better accuracy
in the approximation than that achieved by the randomly sampled points. Again, when
M becomes large enough, all strategies achieve excellent recovery. There thus exists a
range of sample set size within which the response surface recovery can be improved
by carefully chosen samples over a naive random sampling strategy. This range pre-
cisely corresponds to the range of interest where the resulting approximation is already
decently accurate while not requiring a prohibitive number of response surface probings.

Beyond its brute recovery performance, the crucial point is that a low-discrepancy
sequence such as Sobol relies on a deterministic set so that its good recovery properties
are not subjected to variability, in contrast to both the uniform- and Chebyshev-measure
sampling. Further, it is important to note that these nice properties come at no additional
cost for a given M since the L1-minimization problem remains of the same size, simply
relying on a different set of samples.

7 Closing discussion

In this paper, we proposed a novel technique for quantifying the uncertainty associated
with the solution of a mathematical model involving stochastic parameters. This ap-
proach makes use of a deterministic solver and allows for the direct reuse of any existing
legacy code that is run with different sets of input parameters. It heavily relies on con-
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cepts borrowed from the technique of compressed sensing and essentially consists of
retrieving the most significant modes of the approximated solution from a minimal num-
ber of code calls. Since solving the deterministic problem is almost always the bottle-neck
of any uncertainty quantification method, reducing the number of required calls to the
solver is the route to higher computational efficiency. Rigorous results exist in the liter-
ature that prove that this methodology succeeds, with an overwhelming probability, in
deriving a good approximation of the solution, provided it has a compressible enough
representation in the trial basis considered. The core principles of this approach have
been shown to immediately apply to the stochastic framework and ways of achieving
good recovery performance were proposed.

The methodology was applied to the uncertainty quantification of an uncertain Shal-
low Water problem. The response surface of the uncertain surface height at a specific
time and location was approximated with Polynomial Chaos. The proposed approach
was shown to perform well, both in a 2-D and 8-D stochastic framework as compared
to the usual sparse grid projection technique (Smolyak cubature). In particular, the pro-
posed approach achieves up to several orders of magnitude improvement in the approx-
imation error L2-norm over the Smolyak scheme PC for a comparable CPU cost. It was
also shown to compare favorably to a hierarchical Stochastic Collocation strategy on the
8-D problem. In fact, this non-adaptive approach takes advantage of the weak dependence
of the solution on certain modes of the representation basis and uses every bit of avail-
able information to estimate the dominant modes, and only them. This philosophy is at
the root of the method’s efficiency. Of course, its performance is case-dependent and the
present approach should be further evaluated on multiple applications.

As further support of the above conclusions, a companion study made use of a sim-
ilar CS-based technique to approximate an unknown response surface from point-wise
evaluations [33]. The response surface lies in a hypercube embedded in R

9 and consists
of the manifold solution of an optimal control problem in fluid mechanics. While clearly
different from the present context, conclusions are similar and the CS-based approach
allows for a dramatic improvement in the number of evaluations required for a given
accuracy compared to a Smolyak scheme cubature.

The benefit of carefully chosen samples over a naive sampling strategy was also
shown. A low-discrepancy Sobol sequence was compared to samples drawn from a
uniform and a Chebyshev probability measure. The Sobol sequence achieves perfor-
mances often at least as good as the random sampling while being deterministic. This,
sample-wise, zero-variability brings reliability to the recovery procedure and, based on
the present results, an information operator associated to a low discrepancy Sobol se-
quence is the suggested strategy, whenever possible.

Another key to the method’s efficiency is that it allows the use of a large approxima-
tion basis even when very little information is available, while more standard methods,
like PC, are limited in the sense that the number of available constraints strongly drives
the basis one can rigorously use to generate an approximation. In the 8-D example we
considered, about 600 deterministic solves where sufficient to lead to good accuracy in
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the CS-PC case with a No = 8-basis while a Smolyak-scheme approach was then reason-
ably limited to an approximation in a No =3-basis.

With the CS-UQ approach, one may then want to enhance the trial basis by incor-
porating as many modes as possible. In particular, in addition to the usual Polynomial
Chaos, compact support and/or non-smooth functions may also be included to improve
the approximation when the solution is poorly represented by polynomials, e.g., when it
exhibits discontinuities in the stochastic space. To some extent, the mild, about log4(Pξ

)
,

dependence of the RIP constant or the mutual coherence of the sensing matrix on the
size Pξ of the trial basis seems to encourage such an approach while moderation should
however be exercised. In addition to an over-complete dictionary, specific reconstruction
properties may be desirable such as minimal total variation of the approximated solution
for noisy and/or discontinuous response surface. Finally, the conclusions drawn in this
work rely on a specific UQ configuration (8-D uncertain Shallow Water Equations). Sup-
plementary testing with different application problems are desirable to assess their uni-
versality. Further, a detailed theoretical analysis of the performance of low-discrepancy
sequences for CS-based UQ should be carried-out to reveal crucial properties and help
designing better sampling strategies. These developments are the subject of ongoing ef-
forts.
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