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Abstract. There is a growing trend within energy and environmental simulation to
consider tightly coupled solutions to multiphysics problems. This can be seen in nu-
clear reactor analysis where analysts are interested in coupled flow, heat transfer and
neutronics, and in nuclear fuel performance simulation where analysts are interested
in thermomechanics with contact coupled to species transport and chemistry. In en-
ergy and environmental applications, energy extraction involves geomechanics, flow
through porous media and fractured formations, adding heat transport for enhanced
oil recovery and geothermal applications, and adding reactive transport in the case of
applications modeling the underground flow of contaminants. These more ambitious
simulations usually motivate some level of parallel computing. Many of the physics
coupling efforts to date utilize simple code coupling or first-order operator splitting,
often referred to as loose coupling. While these approaches can produce answers, they
usually leave questions of accuracy and stability unanswered. Additionally, the differ-
ent physics often reside on distinct meshes and data are coupled via simple interpola-
tion, again leaving open questions of stability and accuracy.
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This paper is the first part of a two part sequence on multiphysics algorithms and
software. Part I examines the importance of accurate time and space integration and
that the degree of coupling used for the solution should match the requirements of the
simulation. It then discusses the preconditioned Jacobian-free Newton Krylov solu-
tion algorithm that is used for both multiphysics and multiscale solutions. Part II [1]
presents the software framework; the Multiphysics Object Oriented Simulation Envi-
ronment (MOOSE) and discusses applications based on it.

AMS subject classifications: 65M12, 65M60, 65Y05, 65Z05, 65H10

Key words: Multiphysics simulation, Jacobian-free Newton Krylov, finite element applications,
physics-based preconditioning.

1 Introduction

The use of multiphysics simulation is growing rapidly with the interest in more realis-
tic and higher fidelity analysis of energy and environmental systems. This increase in
activity is typically attributed to increasing computer power, but in truth, advanced nu-
merical methods are playing an equal role. The phrase “multiphysics simulation” is used
to describe analyses which include disparate physical phenomena. Examples of multi-
physics problems in the nuclear energy field include coupling fluid flow, heat transfer
and neutron kinetics for reactor dynamics, coupling fluid flow and structural dynamics
to consider fluid-structure interactions for nuclear fuel rod fretting, and coupling non-
linear thermomechanics with contact, fission product behavior, and species transport to
study fuel performance. In energy and environmental applications, one encounters prob-
lems involving most of the above physics; energy extraction involves geomechanics, flow
through porous media and fractured formations, adding heat transport for enhanced oil
recovery and geothermal applications, and adding reactive transport in the case of ap-
plications modeling the underground flow of contaminants. In addition to multiphysics
coupling, most of these problems also have multiscale issues to resolve.

Important in higher fidelity multiphysics simulation are considerations of time inte-
gration and spatial discretization of the coupled system. It is popular to employ first-
order operator splitting, or even explicit coupling of different codes, to perform the time
integration. While this approach can produce results, it can also produce significant time
integration error [2] and stability issues [3].

This paper (Part I of a two part sequence) discusses a modern multiphysics algo-
rithm, the Jacobian-Free Newton-Krylov method (JFNK) combined with physics based
preconditioning [4]. This approach can typically compete well with operator splitting,
while significantly reducing time integration error and stability concerns. The first part
of this presentation describes the JFNK methodology and its use in both a multiphysics
and multiscale setting. Part II [1] describes an evolving software framework MOOSE [5]
which utilizes this algorithmic basis and enables rapid development of multiphysics en-
gineering analysis tools.
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2 Multiphysics methods

The solution of multiphysics problems can be straightforward, or extremely involved,
depending on the degree of which the physical properties are interdependent. If the
processes being modeled are only weakly dependent on each other, operator splitting
(solving for the state of each phenomena in turn, holding all others fixed) can be both
stable and accurate, particularly if iteration is used to converge the composite system.
However, if the processes are highly interdependent, it may not be straightforward to
achieve convergence of the overall system due to the dependencies. Multiphysics simu-
lation is often considered to obtain more accurate or higher fidelity solutions to systems
traditionally analyzed by “single physics” approaches, where the most dominant effect
is modeled while other effects are held to nominal values. Unfortunately, the utility of
a multiphysics approach also depends on its efficacy over older approaches, and this ef-
ficacy depends on accurate time and spatial integration of the composite multiphysics
system.

2.1 Time integration error

Time integration accuracy is usually one of the goals when one considers multiphysics
simulation. In a coupled system, the time evolution of each phenomena affects the time
evolution of the others, perhaps to a great degree. Failure to incorporate an effective time
integration scheme that considers both the order of integration of each phenomena and
the coupling between them, results in temporal integration error. An analysis [2,6,7] can
be performed of the time discretization method under consideration for the multiphysics
problem at hand to understand the basic nature of multiphysics time integration error.
Frequently this error can be significant, especially if many time steps are considered. Ad-
ditionally, the type of splitting and linearization employed can produce new time step
constraints for nonlinear stability. Iteration on sources and temperature dependent coef-
ficients within a time step can help minimize these errors and stability issues.

A nuclear engineering model problem will be the first multiphysics problem exam-
ined in this paper. The following example is derived from [7] and seeks to motivate the
need to perform accurate time integration and to study issues that may impact accu-
racy of coupled multiphysics problems. Considering thermal conduction coupled to a
one group diffusion model of neutron kinetics, ignoring delayed neutrons, leads to the
equations

1

v

∂φ

∂t
+Σa(T)φ−νΣ f (T)φ=0, (2.1)

∂T

∂t
−e f Σ f (T)φ+S=0. (2.2)

In this greatly simplified homogeneous picture of a reactor, nuclear fission generates heat,
and this heat is removed from the system through a thermal sink term S. Here, T is the
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material temperature and e f is the fission to heat conversion factor. This model problem
is a nonlinear PDE system with multiple time and space scales. Without loss of generality,
spatial discretization issues are ignored in this discussion.

The implicit first-order backward Euler (BE1) temporal discretization of (2.1) can be
written as

1

v

φn+1−φn

∆t
+Σa(T

n+1)φn+1−νΣ f (T
n+1)φn+1=0. (2.3)

Similarly, an implicit second order backward difference (BDF2) discretization can be writ-
ten as:

1

v

3
2 φn+1−2φn+ 1

2 φn−1

∆t
+Σa(T

n+1)φn+1−νΣ f (T
n+1)φn+1=0. (2.4)

Use of (2.3) does not necessarily result in an accurate solution to (2.1), due to temporal
discretization error. Indeed, the statement (2.3) describes a modified problem. The modified
problem can be explored by performing modified equation analysis [2, 8]. To analyse the
behavior of the modified problem, one writes Taylor series expansions of φn and φn−1

about tn+1:

φn =φn+1−∆t
∂φ

∂t

∣

∣

∣

∣

n+1

+
∆t2

2

∂2φ

∂t2

∣

∣

∣

∣

n+1

−∆t3

6

∂3φ

∂t3

∣

∣

∣

∣

n+1

+O(∆t4), (2.5)

φn−1=φn+1−2∆t
∂φ

∂t

∣

∣

∣

∣

n+1

+
(2∆t)2

2

∂2φ

∂t2

∣

∣

∣

∣

n+1

− (2∆t)3

6

∂3φ

∂t3

∣

∣

∣

∣

n+1

+O(∆t4). (2.6)

Substituting (2.5) into (2.3) and collecting the terms of the source PDE that correspond to
time tn+1 on the left hand side, one obtains

[

1

v

∂φ

∂t
+Σaφ−νΣ f φ

]n+1

=
∆t

2v

∂2φ

∂t2
+O(∆t2). (2.7)

Similarly, substituting (2.5) and (2.6) into (2.4) yields

[

1

v

∂φ

∂t
+Σaφ−νΣ f φ

]n+1

=
∆t2

3v

∂3φ

∂t3
+O(∆t3). (2.8)

Note that modified equation analysis isolates terms that illustrate the temporal truncation
error on the right hand side of the above expressions. Not surprisingly, we have shown
that the first-order backward Euler approach has a first-order temporal error term, with
a coefficient proportional to the second time derivative of the flux φ. The second order
discretization is indeed second order in time, with a coefficient proportional to the third
time derivative of φ. To stress an obvious but sobering point, for each time step taken
using the above expressions an error results that is the magnitude of the right hand side
of these equations; the error is reduced with smaller ∆t. This error either accumulates or
cancels as time steps are taken during the evolution of the problem. To further explore
the temporal error behavior of a particular problem requires a numerical study.
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It is our opinion that modern multiphysics simulations should be second-order accu-
rate in time, or better†. An implicitly coupled solution strategy results when either (2.3) or
(2.4) is combined with an implicit in time discretized version of (2.2). This approach will
require nonlinear iteration within a time step. Use of operator splitting (often achieved
by coupling two separate codes together) avoids the need for subiteration, as S, Σ f , and
Σa are usually lagged (evaluated using data from the previous time step). When coupling
existing codes to execute a time step, sources are evaluated with an explicit dependence
of variables from the other code, to simplify data exchange between codes. Such a time
discretization strategy might look like

1

v

φn+1−φn

∆t
+Σa(T

n)φn+1−νΣ f (T
n)φn+1=0, (2.9)

Tn+1−Tn

∆t
−e f Σ f (T

n)φn+Sn=0. (2.10)

To summarize, the spectrum of possible multiphysics coupling strategies for this example
are:

1. Use of first order time integration, explicitly coupling two monophysics codes; the
first solving (2.9) and the second solving (2.10). Data is exchanged between the
codes at the end of each timestep. Note that solving (2.9) and (2.10) in a split fashion
within the same code is equivalent.

2. Use of second order time integration employing separate codes that exchange in-
formation at the end of each time step (e.g., BDF2 versions of (2.9) and (2.10)).

3. Use of first order time integration but employ an implicitly coupled (simultaneous)
solution of this example using (2.3) and appropriately discretized versions of (2.2).
Note that (2.3) requires the solution of (2.2), Tn+1. This is achieved by employing
nonlinear iteration within each time step.

4. Use of second order time integration and an implicitly coupled solution of (2.4)
and appropriately discretized versions of (2.2) (again employing nonlinear iteration
within each time step).

The next example describes a simplified two-dimensional boiling water reactor (BWR)
control rod ejection transient [9] to numerically study these four options. The problem
consists of time-dependent two-group neutron diffusion and two-group delayed neutron
precursor equations, (29) and (30) in [7], with the following adiabatic heat-up for temper-
ature,

dT

dt
= e f ∑

g

νΣ f gφg. (2.11)

†This is no panacea; it is possible to accumulate appreciable temporal error even with high order time inte-
gration if care is not taken.
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The control rod ejection event and Doppler feedback are modeled as:

ΣCR1(t)=ΣCR1 [1−0.06068184t] , (2.12)

Σa2(~r,t)=Σa2(~r,0)
[

1+α1

(√
T−

√

T0

)]

. (2.13)

Fig. 1 shows a plot of synthetic reactor power density vs. time. All cases were run with
fixed time step size of 2×10−3s. The reference solution was computed using BDF2 em-
ploying the implicitly coupled method with the time step size of 1×10−4s. As expected,
first-order time integration (the two curves labeled BE1) can introduce significant nu-
merical dissipation, independent of if the problem is solved in an implicitly or explicitly
coupled manner. In this example, the power peak occurred 1.2×10−2s earlier than the
reference solution, and the peak power density was somewhat less. Note that the BDF2
implicit coupled result is very close to the reference solution (this result differs from the
reference solution by employing a factor of 20 larger time step).

The first order explicitly coupled result produces an error in time, again the power
peak occurred 1.2×10−2s earlier than the reference solution. However, in this case the ob-
served peak amplitude was greater. Lastly, the second order explicit solution was timely,
but roughly 20% high in peak amplitude. To summarize this example, explicit coupling
results in a 20% misprediction of the peak amplitude (high), and first order time integra-
tion yields a ≈ 15ms misprediction of the peak amplitude in time (early). Please see [7]
for a more thorough study of time integration error inherent in this coupled problem.

These results show that the methodology used to couple the physics is as important as
higher order time integration. Indeed, with the explicitly coupled results, one would be
hard pressed to argue that the second order result is “more accurate” than the first order
result. Note however, when the coupling error is removed in the monolithic solution, the
second order result is indeed clearly better than the first order result. Most importantly,
the second order implicitly coupled result is quite accurate in predicting the reference
solution which is the ultimate goal.

As a second example, in multi-component reactive transport systems interactions be-
tween multiple species result in nonlinear systems of governing equations for coupled
fluid flow, solute transport, and chemical reaction processes. Popular subsurface reac-
tive transport simulators, such as TOUGHREACT [10] and STOMP [11], often adopt an
operator splitting approach that solves the transport equations and batch chemistry se-
quentially within a single time step. Iteration between transport and batch chemistry
within calculation steps is also not always practiced. One obvious drawback of such an
approach is that it only applies to loosely coupled reactive transport problems in which
mineral-solution interactions are weak and kinetics of the reaction are typically slow,
such as in natural biogeochemical degradation process in subsurface scenarios. For engi-
neered environmental remediation problems where strong mineral-solution interactions
and fast kinetics are typically encountered, chemical reactions and transport are tightly
coupled together. Use of the operator splitting approach for such problems produces
large decoupling errors even when using a very small time step.
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Numerical diffusion due to 

1st order time integration 

(~15 ms) 

Error due to explicit 

coupling (>20%) 

∆t = 1.5 ms 

∆tfine = 0.5 ms 

(a) Multiphysics Temporal Error.

Reference 3134.47C (Max T@ 3s) 

BE1 explicit  3195.73 

BDF2 explicit 3273.69 

BE1 implicit 3112.89 

BDF2 implicit 3137.48 

(b) Temperature Variation.

Figure 1: Comparison of four solutions of (2.1) and (2.2) showing solution differences between first and second
order time integration and loose and tight coupling.

(a) Slow kinetics solution: Component A (b) Slow kinetics solution: Component C

(c) Fast kinetics solution: Component A (d) Fast kinetics solution: Component C

Figure 2: Comparison of operator split (STOMP) and tightly coupled solution strategies (MOOSE-RAT) for
two reaction regimes. The top figures show a comparison of the codes for a slow kinetics problem, operator
split methods perform well as the reaction equations are not strongly interdependent. The bottom figures show
a fast kinetics problem where coupling issues negatively impact the accuracy of the operator split method.
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Here, a simple synthetic case of kinetic mineral precipitation in a one-dimensional
column is used to illustrate the validity of operator splitting and implicit coupled ap-
proaches. Reactants A and B are injected at constant concentrations and rates into a
column from one end to react and form a solid species C in the column. The system of
governing equations for this simple first-order mineral precipitation example is

∂[θ(CA+CC(s))]

∂t
+∇[θV ·CA]−∇[θD ·∇CA ]=0, (2.14a)

∂[θ(CB+CC(s))]

∂t
+∇[θV ·CB]−∇[θD ·∇CB]=0, (2.14b)

d(CC(s))

dt
+k·A·

(

1−CA ·CB

Keq

)

=0. (2.14c)

The rate of precipitation was adjusted through the equilibrium constant Keq. Two
values, 10−5 and 10−8, are used for Keq in this example. This results in a 3 order of magni-
tude difference that spans both weakly coupled phenomena (slow kinetics) and strongly
coupled scenarios (strong mineral-solution interaction and fast kinetics). STOMP [11]
was chosen to represent the operator splitting approach, and ReActive Transport (RAT),
developed using the Multiphysics Object Oriented Simulation Environment framework
(MOOSE; see Part II of this issue [1]), generates the tightly-coupled solution. Both sim-
ulators were applied to simulate the spatial and temporal distributions of species within
the column.

Fig. 2 shows a comparison of concentration profiles of the reactants and precipitated
mineral using both RAT and STOMP for the two scenarios. A “reference” solution is also
provided for comparison. Because this nonlinear system does not have an analytical so-
lution, the reference solution was generated numerically by a MATLAB code specifically
designed for this particular problem, using an extremely small time step size (10−9 s) and
fine mesh. For slow chemical kinetics (i.e., Keq=10−5) where the coupling between trans-
port and reaction is weaker than the fast kinetics case (Fig. 2(a) and Fig. 2(b)), concentra-
tion profiles for both reactant (A) and precipitated mineral (C) obtained from the two sim-
ulators are in excellent agreement with the reference solution. Operator-splitting clearly
works well for this problem. However, in the fast kinetics scenarios (i.e., Keq = 10−8) a
implicit coupled approach produced solutions that match the reference solution much
better than those generated by an operator splitting approach (Fig. 2(c) and Fig. 2(d)).
This comparison concludes that for engineered systems where processes are generally
tightly coupled, a implicit coupled solution approach is desirable. In closing, accurate
time integration methods are currently an active area of research (cf. [3, 12, 13]).

2.2 Spatial integration error

The next major consideration for coupled multiphysics applications is the process by
which solution data is shared between physical phenomena. Typically, the spatial dis-
cretization requirements for each phenomenon being considered differ, occasionally
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markedly. For example, when one solves a fluid structure interaction problem, a mesh
well tailored to the needs of the fluid mechanics problem is used, particularly in the
boundary layer region where it is important to resolve the flow to obtain a correct so-
lution to the force transferred to the structure. In the structure, one employs a mesh
well suited for the structural mechanics problem to accurately calculate stresses and vi-
brational moments, etc. These requirements usually do not intersect where the meshes
intersect; at the boundary of the structure and fluid region. It is common to compromise
one or both meshes to match them at this point (to create a conformal mesh interface) or
to couple the separate meshes using a mesh tying approach [14, 15].

A more difficult challenge ensues when the meshes span the same geometry, such as
a fluid (coolant), thermal, and neutronics calculation inside of a nuclear reactor. Here, the
physics are interdependent and each phenomenon is solved across the entire domain of
the reactor. Further, the spatial discretization requirements may be quite different at cer-
tain locations within the domain. Again, one may choose a single compromise mesh on
which to solve all of the problems simultaneously. Alternatively, one may choose a dis-
tinct mesh for each physics and transfer the required data between meshes and calcula-
tions as needed, perhaps using interpolation between meshes. This is often the approach
used when codes are coupled to solve multiphysics problems, as each code may have
unique and perhaps mutually exclusive mesh requirements. If the code employs internal
coupling, interpolation may still be used to transfer the solution between meshes, but
other options also exist. Recently, there has been substantial work in spatial integration
approaches that accommodate spatial diversity within the solution method (such as the
multimesh approach [16–20]). This section of the paper examines potential issues with the
use of multiple meshes where data is exchanged between meshes.

There are many approaches [21–23] for transferring data from one mesh to another,
depending on the nature of the two meshes. Jiao and Heath [22] study the use of analyti-
cal functions hosted on various one- and two-dimensional meshes, where the data are ex-
changed from a coarse to a fine mesh and back (defining one transfer cycle) using several
different data transfer schemes (cubic spline, common refinement, common refinement 2,
source, target, and linear interpolation), where common refinement uses linear finite ele-
ments while common refinement 2 used quadratic elements. The technique of applying
many transfer cycles to a static function is an experimental approach useful to indicate
possible cumulative effects of data transfer over many time steps. Both [22] and [24]
employ the Runge function, f (x)= 1/(1+25x2) on −1≤ x≤ 1 as a one-dimensional ex-
ample function. To study the effect of function shape on these observations, [24] adds
a second set of results generated using the sine-based function, f (x) = 0.6+0.1sin(πx)
on 0≤ x ≤ 1. For the Runge function, uniform grids having 45 and 32 nodes, denoted
as (45, 32), are used. For the sine-based function, the uniform fine and coarse grids are
(23, 16), which is about the same spacing as for the Runge function but on the smaller
domain. Fig. 3 illustrates the error as a function of 64 data transfer (remapping) cycles for
both functions, where the error is computed as ‖ fnumerical− fexact‖2/‖ fexact‖2. While all
of the data transfer schemes perform at a similar relative accuracy for the two examples
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Figure 3: Normalized L2 error vs. the number of data transfer cycles for the sine and Runge functions using
cubic spline, common refinement, source, target, and linear interpolation.

examined, the magnitude of the L2 error depends on the function (actually the smooth-
ness of the function) being remapped. The figure shows the precision of each of the data
transfer schemes considered on the Runge and sine-based functions, and provides a com-
parison of the relative performance between various schemes. Note that both the cubic
spline and common refinement methods provide the lowest error results for multiple
data transfer cycles. Secondly, note that linear interpolation does not compete well with
these two, more involved approaches. Finally, note that none of the schemes is error free;
it is important to realize that some precision loss occurs whenever data from one mesh
are transferred to another. Whether in the end this is significant is problem dependent,
and the impact of this must be verified by the analyst using the code. Two examples will
be used to further study potential issues with multiphysics spatial integration.

The Brusselator is a system proposed in [25] to model a chemical reaction diffusion
system, coupled through nonlinear source terms,

∂T

∂t
=D1

∂2T

∂x2
+α−(β+1)+T2 C, (2.15a)

∂C

∂t
=D2

∂2C

∂x2
+βT−T2 C, (2.15b)

where Ω is the one dimensional domain a≤x≤b, T(a,t)=T(b,t)=α and C(a,t)=C(b,t)=
β/α. The system (2.15) has steady state, oscillatory and chaotic solutions. With the choice
of α = 0.6, β = 2.0 and D1=D2 = 0.025, T and C are oscillatory [12]. The initial conditions,
T(x,0)= f (x), C(x,0)= g(x), can be specified as any smooth functions, which allows the
study of the effects of the initial conditions and evolving solutions on aggregate numer-
ical error. It also allows the use of functions for f (x) and g(x) that have distinct natures
that will allow the investigation of such disparity on the aggregate error given various
data transfer strategies.
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The study by Johnson et al. [24] presents two examples that apply the following initial
conditions to investigate the effects of data transfer error:

f (x)=0.6+
1

1+25x2
, g(x)=

10

3
+

1

1+25x2
, (2.16)

f (x)=0.6+
exp(ax)−1

exp(a)−1
, g(x)=

10

3
+

1

1+25x2
, (2.17)

where a=15 in (2.17).

To examine the effects of data transfer error on selected solutions of the Brusselator
system (2.15), consider the Runge functions (2.16) as the initial condition on an interval
of −1≤ x≤1 with ∆t=5.0×10−5. The uniform meshes consist of 45 (∆x≈0.045) and 32
(∆x≈0.065) nodes for C and T, respectively, which are both within the asymptotic con-
vergence range for their respective functions. Fig. 4 shows T at t= 1 using cubic spline,
common refinement, source, target, and linear interpolation data transfer schemes. Also
shown are the initial condition and a reference solution, computed using a common uni-
formly discretized 45 node mesh. There is a diversity of results that are a function of the
data transfer scheme employed to transfer information between meshes. The common
refinement and target schemes show similar results that match the reference solution
closely. Both the source scheme and linear interpolation schemes show poor accuracy.
Cubic spline results are slightly worse than those for common refinement and target. The
percentage difference of the results for each scheme (compared to the reference solution
at x = 0) are 0.47% for cubic spline, 0.0003% for common refinement, -4.1% for source,
-0.05% for target, and 2.9% for linear interpolation. Unlike [24], these results are based
on a coarse reference solution.

Given this simple multiphysics problem, it is readily apparent that the choice of data
transfer mechanism is an important consideration. While only the analyst that will em-
ploy the calculation can make the determination of what the acceptable accuracy is for
the problem at hand, it is likely of significant general concern that the selection of the
source transfer scheme results in a 4% error, and selecting linear interpolation results in
a 3% error on this example, with all else being equal.

The next study examines results obtained by selecting different initial conditions
(2.17). Here, the uniform meshes used were (45, 33) for T and C, respectively. These
discretizations result in mesh node spacings of (∆x ≈ 0.045,0.063), which are spacings
within the asymptotic range of convergence for (2.15). Fig. 5 shows T and C at t= 3. In
this result, there is significant diversity in the results for T near x = 0.9, where a sharp
peak has evolved in the solution. The L2 norm of the error in T is 0.55% for common
refinement, 0.14% for common refinement 2, 0.64% for cubic spline and 3.17% for linear
interpolation as compared to the fine mesh reference solution. Similar errors are seen for
C. These results again show that one may encounter significant error in the data trans-
fer process between meshes in a multiphysics simulation. Further, these results indicate
that while one may be within the asymptotic range of the physics approximations on all
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the meshes, one needs to verify that the data transfer scheme chosen for the problem
supports the spatial resolution requirements of the aggregate problem.

The next example considers the use of nonuniform meshes optimized for the initial
conditions on the aggregate error, perhaps as one might see in adaptive mesh refinement.
Optimized meshes consisting of 67 and 45 nodes for the exponential and modified Runge
functions were used. The mesh adaptation to the initial source data was accomplished
using an approach based on curvature and then adjusted using a manufactured solution
[24]. The maximum element sizes for these nonuniform meshes (∆x≈0.096,0.091) were
verified to be within the asymptotic convergence range of (2.15).

Solutions for T and C using cubic spline, common refinement, common refinement
2 and linear interpolation compared to the fine mesh and initial solutions are shown in
Fig. 6 for t=3. The solution for T at the location of the peak near x=0.9 significantly over-
shoots the fine mesh solution for linear interpolation and common refinement schemes;
cubic spline results are slightly low at the peak. Common refinement 2 results are slightly
high. The L2 norm of the error in T is 2.51% for common refinement, 0.51% for common
refinement 2, 0.57% for cubic spline and 6.59% for linear interpolation compared to the
fine mesh reference solution. Again, similar errors are seen for C near x=1.

While the results for the cubic spline and common refinement 2 approaches are of
the same magnitude as discretization error, both the linear interpolation and common
refinement solutions depart significantly from the peak near x = 0.9, likely by an unac-
ceptable amount. Even though the maximum element sizes on both meshes fall within
the asymptotic ranges of their respective physics solutions, the disparity of meshes near
the peak combine with the tight coupling between the equations and with the data trans-
fer algorithm to result in significant spatial error. Indeed, this leads to a hypothesis that
even though the separate physics equations are spatially resolved, the coupled multi-
physics problem (which includes the chosen data transfer algorithm), is not resolved at
the location of the T peak. Said another way, even though the meshes are adaptively
refined to their respective source functions, the C mesh is probably too coarse near the T
peak (x=0.9) to support the data transfer operation there. In the case of adaptive mesh
refinement in a multiple mesh multiphysics calculation, a global error indicator must
be employed that includes a quantification of spatial error occurring within the data
transfer operation between meshes. Note that even advanced schemes such as Fig. (4)
in [26] do not consider the error within the data transfer process. The metric that must
be used needs to consider the impact of the quantity being transferred on the aggregate
solution. A metric based on an a posteriori reference solution [27] does provide this in-
formation (albeit expensively). Even better, it may be preferable to consider one of the
advanced multimesh strategies based on hp-FEM that do not require data transfer be-
tween meshes [19, 20].

If one is developing a new coupled multiphysics application, it is important to care-
fully assess the advantages and disadvantages of a multiple mesh approach over using a
single mesh to host the composite multiphysics problem. A multiple mesh approach has
the advantage of using the minimum number of elements to host the solution; a single
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mesh must be sufficiently fine at every location to support the most demanding physics
there. But a multiple mesh approach is much more complex in that multiple meshes must
typically be generated [28], data must be transferred between them, and adequate refine-
ment must be maintained on each mesh, usually in parallel. Dynamic load balancing of
a time adaptive multiple mesh application is a very sobering challenge, indeed.

Alternatively, while using a single mesh with sufficient refinement to satisfy the most
demanding of the physics phenomena present may be computationally expensive, it is a
straightforward and accurate approach. A single, adaptively refined mesh is employed in
the results presented in Part II [1] of this paper. Here, data transfer error is not a concern
as data is not transferred, all physics discretizations share the same mesh and coupling
values between equations is straightforward.

2.3 Jacobian-free Newton-Krylov methods

The preconditioned Jacobian-free Newton-Krylov method is the cornerstone of the multi-
physics approach presented in this study. This method is a popular coupled multiphysics
solution algorithm [4, 29, 30] and it also has utility as a multiscale algorithm [31–33]. Fol-
lowing finite element discretization of (2.1) and (2.2), Newton’s method can be used to
solve the nonlinear problem

M(u)u̇+K(u)u−f(u)=F(u), (2.18)

where u is the unknown solution vector, M and K are matrices, f are source terms, and
F(u) is the system residual. Newton’s method, given an initial guess that is within the
sphere of convergence of the method, can provide quadratic convergence in driving the
system residual toward zero. Note that one may write the entire composite multiphysics
system in the monolithic form

F(u)=0, (2.19)

where the composite system is coupled through terms in the above matrices and the state
u.

Newton’s method requires the solution of the linear system [6]

Jkδuk=−F(uk), (2.20)

followed by the update
uk+1=uk+δuk, (2.21)

where J is the Jacobian matrix the state vector and k is the nonlinear iteration index. In
vector notation, the (i, j)th element of the Jacobian matrix is

Ji,j =
∂Fi(u)

∂uj
. (2.22)

Forming each element of J requires taking analytic or numerical derivatives of Fi(u) with
respect to u at each grid point. This can be difficult, time consuming, and error-prone.
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In the Jacobian free Newton Krylov method (JFNK), a Krylov method [34] is used to
solve (2.20). An initial linear residual, ro, given an initial guess, δuo, is formed using

ro =−F(u)−Jδuo. (2.23)

Note that the nonlinear iteration index k has been dropped as Krylov iteration is per-
formed at each Newton iteration k until convergence is achieved. The approximate solu-
tion at the lth Krylov iteration δul is constructed from a linear combination of the Krylov
vectors (search directions)

{

ro, Jro, (J)2ro,··· ,(J)l−1ro

}

, (2.24)

which were constructed during the previous l−1 Krylov iterations. This linear combina-
tion of Krylov vectors can be written as

δul =δuo+
l−1

∑
j=0

αj(J)
jro, (2.25)

where evaluating the scalars αj is part of the Krylov iteration. Upon examining (2.25)
it is apparent that a Krylov method requires the action of the Jacobian on a vector, not
the Jacobian alone. One may express the action of the Jacobian on a vector v with the
difference expression [35]

Jv≈ F(u+ǫv)−F(u)

ǫ
, (2.26)

where v is a Krylov vector (i.e., one of the set (2.24)) and ǫ is a small perturbation.

A fair amount of literature exists on the use of matrix free methods, motivated by
ODEs and boundary value problems, while less exists for time-dependent PDEs. Stan-
dard “PDE motivated” references are [4, 35, 36]. The JFNK approach, besides its obvious
memory advantage in not requiring storage for the Jacobian matrix, has other interest-
ing features. The JFNK method provides Newton-like nonlinear convergence without
forming the true Jacobian. The method also lends itself to a clean mathematical abstrac-
tion that results in a façade design pattern [37] that supports extensible implementation in
software.

The JFNK method also has its advantages and disadvantages. The main advantage is
that for a tight convergence tolerance there is no splitting or linearization error [2]. The
algorithm provides a clean way to include other nonlinear phenomena, and the devel-
oper can readily add complex physics into the residual evaluation function F(u), and
have the derivatives of this physics be computed and included into the action of the Ja-
cobian. Indeed, one may even call an external nonlinear analysis code that operates at
a different scale than the host, as is described in [32, 33]. Another advantage is that one
can implement a variety of time discretizations such as higher-order backward difference
formula (BDF) methods or implicit Runge-Kutta methods.
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One major consideration in the use of the JFNK method is that one is solving a non-
linear problem, using iteration, to advance a time step. Furthermore, one is solving the
full dimensional system implicitly. Thus a large matrix system must be approximately in-
verted on each Newton iteration. In order for this approach to be tractable one must pro-
duce an effective preconditioner, as the number of JFNK function evaluations needed to
form (2.26) are directly proportional to the number of Krylov iterations required for con-
vergence of the linear system. Clearly, strategic use of the inexact Newton method [38,39]
will economize solution time. Further, note that the JFNK function evaluation may often
be implemented to be “embarrassingly parallel.” As a final note, on finite element prob-
lems this function evaluation short circuits the need for a global assembly operation as
one is forming the action of the Jacobian on a per element basis not the global Jacobian
itself, simplifying the code significantly in most cases.

2.4 Preconditioning of JFNK

The purpose of preconditioning a Krylov method is to efficiently cluster eigenvalues of
the iteration matrix, which in turn will reduce the number of Krylov iterations required
for converging (2.20). Traditionally, standard iterative methods such as Jacobi, SSOR, or
ILU are applied to the system Jacobian matrix when constructing a preconditioner [34].
In the sequel, we refer to the set of approaches in this class as algebraic preconditioning
methods. When applying physics-based preconditioning to the JFNK method the Jacobian
matrix J is never formed.

When employing the right preconditioned form of (2.20), one solves the problem

(JP−1)(Pδu)=−F(u), (2.27)

where P−1 denotes a linear operator which symbolically represents the preconditioning
process. By symbolically, we mean that the inverse of a preconditioning matrix P is func-
tionally not required to implement the algorithm. For example, in physics based pre-
conditioning, P−1 actually represents a linearized time step. The right preconditioned
version of the JFNK matrix-vector multiply approximation (2.26) is

(JP−1)v≈ F(u+ǫP−1v)−F(u)

ǫ
. (2.28)

This preconditioning process is implemented using two steps:

1. Perform

y=P−1v. (2.29)

2. Perform Jy=[F(u+ǫy)−F(u)]/ǫ.
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2.4.1 Physics-based preconditioning

There exist numerous legacy algorithms to solve nonlinear systems, and these algorithms
are typically based on linearization and time splitting. This linearization and time split-
ting has usually been developed with significant insight into the time scales or physical
behavior of the problem. As a benefit of this insight, a reduced implicit system, or a
sequence of segregated implicit systems may be solved in place of the implicit coupled
system. In the end, these legacy algorithms may make excellent preconditioners for the
Jacobian-free Newton-Krylov method.

This algorithmic concept is referred to as physics-based preconditioning. Here, the
Jacobian matrix is not manipulated algebraically to find an approximate inverse; rather,
approximations are made to the original differential system that result in a modified,
more tractable, approximate Jacobian system for preconditioning.

Consider using the first-order in time operator split method (e.g., explicitly coupled)
for our model problem ((2.1) and (2.2)) as a preconditioner. The Newton step (2.20) can
be expressed as:

[

Jφ,φ Jφ,T

JT,φ JT,T

][

δφ
δT

]

=−
[

Fφ

FT

]

, (2.30)

with

δu=[δφ,δT]T , F(u)= [Fφ,FT]
T.

Typically in problems such as this, simplification is made to the operators JT,T and Jφ,φ

within the preconditioner. As an example, one can linearize the temperature dependent
coefficients, Σa(T), Σ f (T), as Σa(Tn), Σ f (T

n), thus simplifying the evaluation of JT,T and
Jφ,φ. After enough simplification it may be more appropriate to call the preconditioning
operators PT,T and Pφ,φ, as they may be very poor approximations of the system Jacobian.
A multigrid method is often employed to smooth the two separate elliptic systems in the
preconditioner, due to the potential of scalability of this approximate inversion method.
This overall process is equivalent to using code coupling (i.e., using the time discretiza-
tion of (2.9) and (2.10)) as the system preconditioner.

Note that it is often key to carefully “engineer” the structure of PT,T and Pφ,φ; one
desires that these matrices be easily and effectively addressed using multigrid but they
must still include sufficient character of the coupled problem such that P−1 is an effective
preconditioning process. This becomes quite important for larger, tightly coupled prob-
lems. To increase the effectiveness of the overall preconditioner without adding to the
complexity of the diagonal blocks, one could add some source coupling while retaining
a block lower triangular system such that:

P=

[

Pφ,φ 0
PT,φ PT,T

]

. (2.31)

Then a preconditioning process δu≈P−1(−F(u)) is done in two steps:
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1. Perform an approximate inversion of a parabolic system of order N (number of mesh nodes) to
solve for δφ from

Pφ,φδφ=−Fφ. (2.32)

2. Perform an approximate inversion of a parabolic system of order N to solve for δT from

PT,TδT=−FT−PT,φδφ. (2.33)

Fig. 7 shows the effectiveness of this blocked preconditioner strategy on a three dimen-
sional coupled thermomechanical problem [6]. The diagram shows a result that does
not employ preconditioning of the GMRES linear solver as a reference case. The other
curves show a diagonal preconditioner P consisting of only the diagonal blocks Pφ,φ and
PT,T, then a system that adds the lower triangular block PT,φ. Finally, a curve is shown
that employs a second block sweep to the L+D approach. Note that simple diagonal
preconditioning of this example results in a significant decrease in the number of GM-
RES iterations to provide a given linear residual value. As one adds progressively more
complexity (L+D blocks, then two sweeps of L+D) the performance steadily improves
further. Clearly, preconditioning is an important component to the overall solution strat-
egy, and is quite effective in reducing the number of GMRES iterations required for a
given level of accuracy even on this simple problem. Again, minimizing the number of
GMRES iterations is paramount due to the function evaluations that form the action of
the Jacobian that is the heart of GMRES.

For finite element problems (2.18), note that the Jacobian is

J=
∂

∂u
[M(u)u̇+K(u)u−f(u)]. (2.34)

One may, upon analysis of the relative importance of the terms, choose to neglect portions
of the complete finite element problem to develop a physics based preconditioner. In is
case, one uses experience and intuition to neglect components, such as the source term
and time derivative in the above. In this case, the approximate Jacobian of interest might
be

J̃=[K(u)u]′=K(u)u′+[K(u)]′u. (2.35)

In many cases, linearizations of the stiffness matrix of the finite element problem might
be convenient (or inexpensive) to form, one might consider using a linearization to form
a Picard preconditioner [29],

P=K(uk), (2.36)

that ignores the derivative of the stiffness matrix for economy and perhaps ease of ap-
proximate invertibility by a multigrid process. Variations of this approach, as well as
comparison to other simplified stiffness matrix approaches were studied. Here, solutions
of Laplace’s equation in harmonic coordinates [40]

∆xi ≡ 1√
g

∂

∂uα

(√
ggαβ ∂xi

∂uβ

)

=0, (2.37)
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are studied. Following discretization using the finite element method, the stiffness matrix
Kmn is

Kmn=
∫

Ω

∂ψm

∂uα

√
ggαβ ∂ψn

∂uβ
d3u. (2.38)

The Picard preconditioner considered is the stiffness matrix linearized about the current
Newton solution (or the initial guess). Two other simpler preconditioners were studied,
a pure Laplacian stiffness form

K
Lap
mn =

∫

Ω

∂ψm

∂uα

∂ψn

∂uβ
d3u, (2.39)
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and a Winslow-Crowley form

KWC
mn =

∫

Ω

∂ψm

∂uα

√
ggδαβδαβ

∂ψn

∂uβ
d3u. (2.40)

The linearized form of the stiffness matrix ((2.38), (2.39), or (2.40)) is symbolically P that
is then passed to the ML algebraic multigrid package in Trilinos [41, 42] for approximate
inversion to form P−1. The ML package provides the mathematical operation (2.29).

Fig. 8 shows the performance of the Laplace–Beltrami solution (2.37) on an example
from [43]. These results indicate the scalability of the GMRES Krylov solver used in the
JFNK solution; the performance of the linear solver in this case is completely determined
by the effectiveness of the preconditioner used. In this case, the Picard preconditioner is
the best performing of the three, but it falls short of providing scalability (i.e., the number
of iterations taken by the linear solver increase with problem size). The Laplace-Beltrami
problem considered is a very challenging numerical problem due to its nonlinearity and
stiffness [44]. It is typically difficult to obtain scalability on highly nonlinear problems of
this sort, on complex three dimensional domains such as this one. As such, this example
serves as an excellent test problem on which to study physics based preconditioning
ideas.

Several interesting points are apparent in Fig. 8. Note that the dotted lines show the
convergence behavior obtained using a preconditioner that is based on direct inversion
of each of the three preconditioners shown (KLU). This data was not continued beyond
127832 elements as the full inverse of the next largest problem could not be stored in the
231 bit address space used to solve the problem. Secondly, the ML algebraic multigrid
approach was nearly as effective as the direct approach, at least up to 127832 elements.
Here, parameters appropriate for smoothed aggregation were chosen and ILU(0) was
used as a smoother (using one sweep, zero overlap and fill in). KLU was used as a
coarse grid solver, and a full-MGV strategy was employed limited to a maximum of six
levels. Also note that the Picard preconditioner provides the best performance. Given
this data, it is clear that ML is a very effective approximate inversion method for the three
preconditioners studied. Further, even in the case of the Picard preconditioner, too much
of the relevant physics has been removed from P to provide a scalable preconditioner
for this problem. To conclude, 5 Newton iterations and 550 Picard-ML-preconditioned
GMRES iterations were needed to solve this 7.4×106 degree of freedom (DOF) problem
to steady state on the three dimensional horseshoe geometry in [43]. Other forms of
physics-based preconditioning are discussed in [4].

2.5 JFNK as a multiscale solver

This section considers the use of the JFNK solver to simultaneously couple solutions at
significantly difference scales. For example, assume that thermal conductivity impacts
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heat conduction within a material according to a solution of a mathematical model,

ρcp
∂T

∂t
−∇·q−Q=0, T∈Ω,

n·q=q(T), T∈ΓC,

n·q=0, T∈ΓT∪ΓB,

T(t=0)=T0, T∈Ω,

(2.41)

where T is the internal temperature and that heat is generated within the bulk material at
a uniformly distributed constant rate, Q. Further, assume that the object being analyzed
is a cylindrical geometry, where Ω is the body of the cylinder, ΓT denotes the top and ΓB

denotes the bottom boundary of the material, and ΓC denotes the outer circumferential
boundary such that Γ = ΓT∪ΓB∪ΓC, and q(T) is an expression of the heat rejected to
surroundings around the outside radius of the cylinder. The heat flux q within Ω may be
written as

qi =−k∇T, (2.42)

where k is the isotropic thermal conductivity of the material making up the cylinder. The
heat conduction problem is further simplified in this example by assuming steady-state
conditions, i.e. ∂T/∂t=0.

Further, assume that the value of k depends on the microstructure of the material,
and that the microstructure changes over time. In this case, the evolving microstructure
will influence the thermal conductivity of the material, e.g., the curing of moist concrete
or irradiation of nuclear fuel. In the case of fuel, the microstructure at a given point in
time depends on both the irradiation rate and the temperature history of the material.
A typical fuel thermal calculation might use an experimentally derived correlation such
as those seen in [45] to account for the microstructure dependence of k. In this example,
we assume that the value of k is determined by implicitly coupling a macroscale thermal
calculation of the cylindrical problem (2.41) to a mesoscale phase field model that evolves
k as a function of irradiation and temperature history.

Linking calculations between scales is relatively common [46–48]. However, linking
mutually dependent (or coupled) multiscale simulations is more challenging, since op-
erator splitting may result in both stability and accuracy issues as discussed above. In
addition, the proposed multiscale calculation has significant diversity in spatial scales
between the engineering and mesoscale solutions. To address both of these consider-
ations, evaluation of the mesoscale physics within the JFNK function evaluation process
is proposed; where the nonlinear engineering scale calculation is consistently coupled
with the mesoscale solution and then solved using the JFNK algorithm presented in Sec-
tion 2.3. Performing the mesoscale calculation within the function evaluation process
eliminates the need to write down the derivatives of the state of the mesoscale proper-
ties, which may be difficult or impossible to obtain analytically. The concept of using the
JFNK method to bridge scales in this manner was developed by Knoll [31], who employs
JFNK as an accelerator for reactor neutronics calculations.
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2.5.1 Macroscale (coarse) discretization

The macroscale model begins with a fully coupled finite element discretization of the
heat equation (2.41) in a UO2 fuel pellet. To develop this approximation, the coarse test
space V is approximated by Vh using linear Lagrange finite elements such that Vh ⊂V
and Vh = span{φi}n

i=1. The trial space hosting the engineering scale solution is similarly
approximated, where v∈Vh is

v(t,x)=
n

∑
j=1

vj(t)φj(x), (2.43)

which allows the governing equations for heat conduction to be written in weak form as
in [49]

F(T)=
(

k∇Tk+1,∇φi

)

−(Q,φi). (2.44)

The JFNK solution method as outlined in Section 2.3 is used to solve this residual equa-
tion. To precondition this equation, one could choose Pij= k

(

∇φi,∇φj

)

in (2.29).

Unlike [49], in this example the thermal conductivity k is a function of tempera-
ture and irradiation, and is based on the macroscale temperature field T coupled to the
mesoscale model as demonstrated in Part II [1] of this paper. The coupling strategy is de-
picted in Fig. 9. Here, at each integration point of the macroscale calculation a call to the
mesoscale code is initiated, and the current value of temperature at that location is passed
to the mesoscale code as input. The mesoscale model then evolves the microstructure for
a specified amount of time, at the provided temperature value. Finally, the mesoscale
thermal conductivity is returned to the macroscale calculation, and is utilized within the
residual calculation.

The matrix free solution strategy ensures that this solution method is self-consistent.

2.5.2 Algorithm for JFNK scale bridging

The spatial bridging method employed here is similar to the method proposed by Wagner
and Liu [50], in which the multiscale problem is divided into coarse and fine spaces. Here,
the heat flux in (2.42) is represented as

q= q̄+q′, (2.45)

where q̄ is the coarse space heat flux field and q′ is the fine space flux field. The coarse
space is the macroscale domain Ω, while the mesoscale solution exists only in the vicinity
of the integration points of the macroscale mesh. Further, the spatial projection of the
mesoscale domain is assumed to be of measure zero in the engineering scale.

Unlike [50], decoupling the spatial scales is accomplished here using Fourier’s Law

qi=−k(t,r,T)∇T, (2.46)
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The energy equation is 

solved at the coarse scale 

for temperature using JFNK 

Figure 9: Pictorial of the scale bridging method used to calculate the effective thermal conductivity at the
macroscale. At each integration point, the current macroscale temperature is passed to the mesoscale and the
mesoscale model evolves the microstructure. Next, the effective thermal conductivity k is “homogenized” and
passed back to the macroscale, all within a given function evaluation call. The heat conduction equation is then
solved using the preconditioned JFNK algorithm.

where the engineering scale heat flux q results from the temperature gradient at that
scale, while the coarse thermal conductivity k represent a spatial homogenization over
the mesoscale. The mesoscale model calculates void evolution over the fine space, re-
sulting in the spatially-dependent mesoscale thermal conductivity k′(r). We determine
the homogenized coarse thermal conductivity k by solving a steady-state conductivity
equation [51],

∇·(k′(r)∇T)=0, (2.47)

in the fine space using the evolved microstructure. Eq. (2.47) is discretized and solved
using the same grid as that used for the phase field simulations. A constant-temperature
boundary condition of Tl = 800 K is applied on the left boundary and a constant heat
flux of q = 50 ĵ MW/m2 is applied across the right boundary as illustrated in Fig. 10;

T
=

 8
0
0
 K

Figure 10: Effective thermal conductivity is obtained by solving (2.47) with a constant temperature (T=800 K)

on the left boundary and a constant heat flux of q=50 ĵ MW/m2 applied to the right boundary.
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periodic boundary conditions are applied in the y-direction (note that the values of Tl

and q′ are arbitrarily selected and have no effect on the value of the calculated thermal
conductivity). Assuming q=q′, k is determined with qi =−k∆T, where ∆T is the differ-
ence between the temperature on the left boundary of the fine space (Tl =800 K) and the
average temperature on the right boundary. ∇T at the engineering scale equals ∆T at the
mesoscale, since the mesoscale is of measure zero at the engineering scale.

Fig. 5 in Part II [1] of this paper shows the nonlinear convergence of the coupled
multiscale calculation.

3 Conclusions

Part I of this paper motivated the need to carefully consider time and spatial integration
for multiphysics problems. First, a simple example was used to demonstrate that opera-
tor splitting (or code coupling) in a coupled system will produce errors that vary with the
size of the time step taken. Two numerical studies were presented; the first showed that
both operator splitting and first order time integration resulted in significant errors in a
nuclear engineering problem. In the second study, two kinetics problems were analyzed
that show that operator splitting may be fully acceptable when the physics is weakly
coupled, but not for strongly coupled problems.

Issues with spatial integration with multiple meshes were also studied. This pa-
per concludes that, for accuracy, each solution on the mesh that hosts it must employ
a resolution sufficiently fine to be in the asymptotic convergence range. Furthermore, all
meshes must also be sufficiently fine over the domain of interest such that the data trans-
fer mechanism used between solutions also yields the level of accuracy needed. This
paper also described the modern algorithmic approach of JFNK, physics-based precon-
ditioning, and the use of JFNK as a multiscale monolithic solution algorithm. In clos-
ing, Part II [1] of this work presents the software framework MOOSE that implements
these ideas. Further, several applications based on these algorithms and software are
presented, along with results.
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