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Abstract. Simulation of elastic wave propagation has important applications in many
areas such as inverse problem and geophysical exploration. In this paper, stability con-
ditions for wave simulation in 3-D anisotropic media with the pseudospectral method
are investigated. They can be expressed explicitly by elasticity constants which are
easy to be applied in computations. The 3-D wave simulation for two typical anisotropic
media, transversely isotropic media and orthorhombic media, are carried out. The re-
sults demonstrate some satisfactory behaviors of the pseudospectral method.
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1 Introduction

Forward modeling is an important way to construct synthetic data which can be used in
inverse problems, it is also a valuable way for studying wave phenomenon in complex
geological structures. Various techniques for wave modeling have been developed. Such
methods include the ray-tracing [8, 16], finite-volume [11, 41], finite-difference [1, 12, 18,
20, 25, 36–39], finite-element [4, 6, 7, 9, 10, 22], spectral-element [5, 33] and pseudospectral
methods [15,21,29,30]. In this paper, the pseudospectral or Fourier method will be used.

The ray-tracing method is based on the asymptotic solution of the eikonal equation. It
has the limit of high frequency assumption. The finite-volume method adapts to unstruc-
tural grids, but constructing schemes with high-order accuracy in space is not easy. The
finite-difference method is a widely used method. Its main drawback is a limitation on
high-frequency resolution. Usually, ten or more grid points per wavelength are required
at the Nyquist spatial frequency for the second-order explicit finite-difference method [1].
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For typical wave velocities and frequency bands in application such as in exploration
seismology, it means that the grid space is the order of 3−4m. The finite-element method
is well known for its flexibility in describing problem with complex geometries. How-
ever, it is not commonly used in wave simulation. The main reason is that it requires to
inverse mass matrix at each time step. In order to get an efficient scheme, the mass lump-
ing technique is needed [4,9,40]. For low-order element such as linear Lagrange element,
the mass lumping can be implemented by using the quadratic rules for numerical inte-
gration, but for high-order Lagrange element, it is not obvious and a new finite-element
space is required [9]. Some comparisons between finite-element and finite-difference for
solving the wave equation have already been given, for example, see [22] and [24]. The
spectral-element method was first introduced by Patera [27] in computational fluid dy-
namics. It was first used for modelling wave propagation by Seriani et al. [33]. Like the
finite-element method, the mass lumping is also used in the spectral-element method [5].

The pseudospectral method or Fourier method was introduced in early 1970s [13,
26]. Fornberg discussed the basic features of pseudospectral method and compared the
method with the finite-difference method for the 2-D elastic wave equation [14]. He
pointed out in the case of smoothly varying coefficients the required grid spacings in each
space dimension satisfied ratios of 16 : 4 : 1 for the pseudospectral method, fourth-order
difference, and second-order finite-difference. The pseudospectral method differs from
the finite-difference technique is that it uses the fast Fourier transform (FFT) to calcu-
late spatial derivatives instead of finite-difference. The resulting derivative operators are
highly accurate, and only two grid points are required to resolve a spatial wave length.
The pseudospectral method can be viewed as the limit of finite-difference with infinite
order of accuracy. Usually, high accuracy in spatial approximation is the primary pursuit
in wave simulation. This is the main reason why we use the Fourier method in this paper.

Anisotropy is existed widely in the earth. For example, sedimentary rocks frequently
possess an anisotropic structure [31]. In a completely anisotropic medium, 21 elastic
constants are necessary to correctly define the medium [3]. Body symmetries reduce
the number of independent elastic parameters. There are two typical and important
anisotropic medium, transversely isotropic (TI) media and orthorhombic anisotropy (OA)
media. Transversely isotropic media exhibits hexagonal symmetry that reduces to 5 the
number of independent elastic constants, while OA media has 9 independent elastic con-
stants.

In this paper, the pseudospectral or Fourier method is applied to simulating wave
propagation in 3-D anisotropic media. Wave simulation with this method has been done
for acoustic and elastic isotropic media [21, 29, 30], however, to my knowledge, the work
of 3-D wave simulation in TI and OA media is few and its stability analysis is still a
blank. I focus attentions on the stability analysis of 3-D numerical simulation. The sta-
bility conditions for OA and arbitrary anisotropic media are investigated. They can be
expressed explicitly with elastic constants. Numerical computations for two typical 3-
D anisotropic models, transversely isotropic media and orthorhombic anisotropy media,
are implemented. The results show the corrects and effects of our algorithm and analysis.
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2 Theory

2.1 Wavefield extrapolation scheme

The linearized set of partial differential equations which govern the displacement of
anisotropic elastic solid satisfy

cijkl
∂2uk

∂xl∂xj
+ρ fi =ρ

∂2ui

∂t2
. (2.1)

The equations are written with respect to a fixed Cartesian reference frame Ox1x2x3, with
t denoting time. ui denotes the components of the displacement vector. The components
of the body force vector, per unit mass, are fi and ρ is the constant density of the solid.
cijkl is the fourth-order tensor of elastic constants. The symmetries reduce the number
of independent elements of the elastic constants tensor cijkl from 81 to 21 which is often
expressed by a 6×6 symmetric (elasticity) matrix [3, 28]. For orthorhombic anisotropy
(OA) media, this elasticity constants matrix has 9 non-zero elements: c11, c12, c13, c22, c23,
c33, c44, c55, c66, while for transversely isotropic (TI) media, it has 5 non-zero elements:
c11= c22, c12, c13= c23, c33, c44= c55, c66=(c11−c12)/2.

For convenience, we rewrite u1, u2 and u3 as u, v and w respectively. Then the wave
equation (2.1) in OA media becomes

∂2u

∂t2
=

∂

∂x1

[

c11
∂u

∂x1
+c12

∂v

∂x2
+c13

∂w

∂x3

]

+
∂

∂x3

[

c55

(

∂w

∂x1
+

∂u

∂x3

)]

+
∂

∂x2

[

c66

(

∂u

∂x2
+

∂v

∂x1

)]

+ f1, (2.2a)

∂2v

∂t2
=

∂

∂x2

[

c12
∂u

∂x1
+c22

∂v

∂x2
+c23

∂w

∂x3

]

+
∂

∂x3

[

c44

(

∂v

∂x3
+

∂w

∂x2

)]

+
∂

∂x1

[

c66

(

∂u

∂x2
+

∂v

∂x1

)]

+ f2, (2.2b)

∂2w

∂t2
=

∂

∂x3

[

c13
∂u

∂x1
+c23

∂v

∂x2
+c33

∂w

∂x3

]

+
∂

∂x2

[

c44

(

∂v

∂x3
+

∂w

∂x2

)]

+
∂

∂x1

[

c55

(

∂w

∂x1
+

∂u

∂x3

)]

+ f3. (2.2c)

Here, cij are density-normalized stiffness and thus are of dimension velocity2. In general,
the stiffness are constrained by the conditions of stability of the medium, i.e., the condi-
tion that the 6×6 matrix with elements cij is positive definite. In the following, we assume
cij are constants, i.e., the medium is homogeneous. However, the derived result can be
used for inhomogeneous media such as the media with piecewise elastic constants. If we
approximate the second-order derivatives of time with the second-order finite-difference
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scheme, and calculate the space derivatives with the fast Fourier transform, we will get
the following wavefield extrapolation scheme

Un+1=−Un−1+2Un−∆t2(c11k2
1+c66k2

2+c55k2
3)U

n−∆t2(c12+c66)k1k2Vn

−∆t2(c13+c55)k1k3Wn, (2.3a)

Vn+1=−Vn−1+2Vn−∆t2(c12+c66)k1k2Un−∆t2(c66k2
1+c22k2

2+c44k2
3)V

n

−∆t2(c23+c44)k2k3Wn, (2.3b)

Wn+1=−Wn−1+2Wn−∆t2(c13+c55)k1k3Un−∆t2(c23+c44)k2k3Vn

−∆t2(c55k2
1+c44k2

2+c33k2
3)W

n, (2.3c)

where U,V,W are the corresponding results of spatial Fourier transform of u,v,w respec-
tively. k1, k2 and k3 are the spatial wavenumber of x, y and z respectively. Eq. (2.3) is the
scheme for wavefield extrapolation in time.

2.2 Stability condition for OA media

Rewrite (2.3) as a matrix form
















Un+1

Un

Vn+1

Vn

Wn+1

Wn

















=

















2+θ1 −1 θ4 0 θ5 0
1 0 0 0 0 0
θ4 0 2+θ2 −1 θ6 0
0 0 1 0 0 0
θ5 0 θ6 0 2+θ3 −1
0 0 0 0 1 0

































Un

Un−1

Vn

Vn−1

Wn

Wn−1

















. (2.4)

To analyze the stability condition, we consider the characteristic equation of the transfer
matrix in (2.4). The characteristic equation is

λ6+A5λ5+A4λ4+A3λ3+A2λ2+A1λ+1=0, (2.5)

where

A5=A1=−(µ1+µ2+µ3),

A4=A2=(3+µ1µ2+µ1µ3+µ2µ3)−(θ2
4+θ2

5+θ2
6),

A3=−2(µ1+µ2+µ3)+µ3θ2
4+µ2θ2

5+µ1θ2
6−2θ4θ5θ6−µ1µ2µ3,

with

µi =2+θi, i=1,2,3, (2.6)

and

θ1=−∆t2(c11k2
1+c66k2

2+c55k2
3), θ4=−∆t2(c12+c66)k1k2, (2.7a)

θ2=−∆t2(c66k2
1+c22k2

2+c44k2
3), θ5=−∆t2(c13+c55)k1k3, (2.7b)

θ3=−∆t2(c55k2
1+c44k2

2+c33k2
3), θ6=−∆t2(c23+c44)k2k3. (2.7c)
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The necessary condition of stability for wavefield extrapolation in time is |λi|6 1, i= 1,
2,··· ,6. From the relationship between roots λi and coefficients Ai, we have the restriction
of |λi|=1 (i=1, 2,··· ,6). Otherwise, at least one root will be out of the unit circle and lead
to unstability [23, 34]. Obviously, the six characteristic roots will be in pair and so (2.5)
can be factorized as

(λ2+r1λ+1)(λ2+r2λ+1)(λ2+r3λ+1)=0, (2.8)

where ri (i = 1,2,3) are real coefficients and can be determined but not necessary here.
Expanding (2.8) and comparing the result with (2.5) yield the following expressions

r1+r2+r3=A5, (2.9a)

3+r1r2+r2r3+r1r3=A4, (2.9b)

r1r2r3+2(r1+r2+r3)=A3. (2.9c)

Therefore, based on (2.9a)-(2.9c) and the restriction of |λi|= 1, we obtain the following
inequalities

|A5|66, |A4−3|612, |A3−2A5|68. (2.10)

From the first inequality in (2.10), we have

−126θ1+θ2+θ360, (2.11)

or
∆t2

[

k2
1(c11+c55+c66)+k2

2(c22+c44+c66)+k2
3(c33+c44+c55)

]

612. (2.12)

According to the sampling theorem [19], the maximum of wave number k1, k2 and k3

are π/∆x, π/∆y and π/∆z respectively. Here, ∆x, ∆y and ∆z are the spatial steps with
respect to x, y and z respectively. Thus (2.12) yields the first restriction of ∆t as

∆t16

√
12

π
√

c11+c55+c66

∆x2 + c22+c44+c66

∆y2 + c33+c44+c55

∆z2

. (2.13)

From the second inequality in (2.10), we have

∣

∣µ1µ2+µ1µ3+µ2µ3−(θ2
4+θ2

5+θ2
6)
∣

∣612, (2.14)

i.e,

−2464(θ1+θ2+θ3)+θ1θ2+θ1θ3+θ2θ3−(θ2
4+θ2

5+θ2
6)60. (2.15)

Using the relationship (2.11), we obtain

1

2
(θ2

1+θ2
2+θ2

3)+(θ2
4+θ2

5+θ2
6)696, (2.16)



708 W. S. Zhang / Commun. Comput. Phys., 12 (2012), pp. 703-720

which yields the second restriction for the time step

∆t26
2 4
√

6

π

{

1

2

(

c11

∆x2
+

c66

∆y2
+

c55

∆z2

)2

+
1

2

(

c66

∆x2
+

c22

∆y2
+

c44

∆z2

)2

+
1

2

(

c55

∆x2
+

c44

∆y2
+

c33

∆z2

)2

+
(c12+c66)2

∆x2∆y2
+
(c13+c55)2

∆x2∆z2
+
(c23+c44)

2

∆y2∆z2

}− 1
4

. (2.17)

From the third inequity in (2.10), we conclude

062(θ2
4+θ2

5+θ2
6)+θ3θ2

4+θ2θ2
5+θ1θ2

6−2θ4θ5θ6

−2(θ1θ2+θ1θ3+θ2θ3)−4(θ1+θ2+θ3)−θ1θ2θ3616. (2.18)

Using the following relationships from (2.11) and (2.16):

−4864(θ1+θ2+θ3)60, (2.19a)

−1926−(θ2
1+θ2

2+θ2
3)−2(θ2

4+θ2
5+θ2

6)60, (2.19b)

06θ2
1+θ2

2+θ2
3+2(θ1θ2+θ1θ3+θ2θ3)6144, (2.19c)

we have

−2406θ3θ2
4+θ2θ2

5+θ1θ2
6−2θ4θ5θ6−θ1θ2θ36160. (2.20)

Considering the stability of media, we obtain the third restriction for the time interval

∆t36

6
√

160

π

{(

c55

∆x2
+

c44

∆y2
+

c33

∆z2

)

(c12+c66)2

∆x2∆y2
+

(

c66

∆x2
+

c22

∆y2
+

c44

∆z2

)

(c13+c55)2

∆x2∆z2

+

(

c11

∆x2
+

c66

∆y2
+

c55

∆z2

)

(c23+c44)
2

∆y2∆z2
− 2(c12+c66)(c13+c55)(c23+c44)

∆x2∆y2∆z2

−
(

c11

∆x2
+

c66

∆y2
+

c55

∆z2

)(

c66

∆x2
+

c22

∆y2
+

c44

∆z2

)(

c55

∆x2
+

c44

∆y2
+

c33

∆z2

)}− 1
6

. (2.21)

If the grids are uniform i.e., ∆x=∆y=∆z :=h, (2.13), (2.17) and (2.21) are simplified as

∆t16

√
2h

π
√

c11+c22+c33+2(c44+c55+c6)
, (2.22a)

∆t26
2 4
√

6h

π

{1

2
(c11+c66+c55)

2+
1

2
(c66+c22+c44)

2+
1

2
(c55+c44+c33)

2

+(c13+c66)
2+(c13+c55)

2+(c23+c44)
2
}− 1

4
, (2.22b)

∆t36

6
√

160h

π

{

(c55+c44+c33)(c12+c66)
2+(c66+c22+c44)(c13+c55)

2

+(c11+c66+c55)(c23+c44)
2−2(c12+c66)(c13+c55)(c23+c44)

−(c11+c55+c66)(c22+c44+c66)(c33+c44+c55)
}− 1

6
, (2.22c)
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respectively. Combing (2.13), (2.17) and (2.21) or (2.22a), (2.22b) and (2.22c), we obtain
following stability condition for OA media

∆t<min{∆t1,∆t2,∆t3}. (2.23)

The TI media can be treated as a special case of OA media, so its stability condition can
be obtained from (2.23) with relationships c11=c22, c13=c23, c44=c55 and c66=(c11−c12)/2.
Similarly, the stability condition for elastic isotropic media can also be obtained from
(2.23) with relationships c11 = c22 = c33 = v2

p, c44 = c55 = c66 = v2
s and c12 = c13 = c11−2c44,

where vp and vs are the compress wave velocity and the shear wave velocity respectively.

2.3 Stability condition for arbitrary anisotropic media

In this section, I will generalize the stability condition to arbitrary anisotropic media. For
arbitrary anisotropic media, there are 21 elasticity constants. Without loss of generality in
the following, we rewrite x1, x2 and x3 as x, y and z respectively. In the domain of wave
number, the wave equation (2.1) without source can be written as

∂2P

∂t2
(K,t)=−MP(K,t), (2.24)

where P= (U,V,W) is the wavefield in the wave number domain corresponding to its
spatial domain, K=(kx,ky,kz) and M is given by

M=





β1 β4 β5

β4 β2 β6

β5 β6 β3



 (2.25)

with

β1= c11k2
x+c66k2

y+c55k2
z+2c16kxky+2c56kykz+2c15kxkz, (2.26a)

β2= c66k2
x+c22k2

y+c44k2
z+2c26kxky+2c24kykz+2c46kxkz, (2.26b)

β3= c55k2
x+c44k2

y+c33k2
z+2c45kxky+2c34kykz+2c35kxkz, (2.26c)

β4= c16k2
x+c26k2

y+c45k2
z+(c12+c66)kxky+(c25+c46)kykz+(c14+c56)kxkz, (2.26d)

β5= c15k2
x+c46k2

y+c35k2
z+(c14+c56)kxky+(c36+c45)kykz+(c13+c55)kxkz, (2.26e)

β6= c56k2
x+c24k2

y+c34k2
z+(c25+c46)kxky+(c23+c44)kykz+(c36+c55)kxkz, (2.26f)

where kx, ky and kz are the spatial wave number with respect to x,y,z respectively.
The extrapolation scheme for (2.24) with the pseudospectral method can be written

as
















Un+1

Un

Vn+1

Vn

Wn+1

Wn

















=

















2+β1 −1 β4 0 β5 0
1 0 0 0 0 0
β4 0 2+β2 −1 β6 0
0 0 1 0 0 0
β5 0 β6 0 2+β3 −1
0 0 0 0 1 0

































Un

Un−1

Vn

Vn−1

Wn

Wn−1

















. (2.27)
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The characteristic equation of the transfer matrix in (2.27) is

λ6+B5λ5+B4λ4+B3λ3+B2λ2+B1λ+1=0, (2.28)

where

B5=B1=−(γ1+γ2+γ3), (2.29a)

B4=B2=(3+γ1γ2+γ1γ3+γ2γ3)−(β2
4+β2

5+β2
6), (2.29b)

B3=−2(γ1+γ2+γ3)+γ3β2
4+γ2β2

5+γ1β2
6−2β4β5β6−γ1γ2γ3, (2.29c)

with

γi=2+βi, i=1,2,3. (2.30)

Using the similar approach in Section 2.2, the stability condition for arbitrary anisotropic
media requires

|B5|66, |B4−3|612, |B3−2B5|68. (2.31)

Through a series of deduction similar to that in the Section 2.2, we conclude the stability
condition for arbitrary media media is

∆t<min{∆t1,∆t2,∆t3}, (2.32)

where

∆t1 <

√
12

π

{ c11+c55+c66

∆x2
+

c22+c44+c66

∆y2
+

c33+c44+c55

∆z2
+

2(c16+c26+c45)

∆x∆y

+
2(c24+c34+c56)

∆y∆z
+

2(c15+c35+c46)

∆x∆z

}−1/2
, (2.33a)

∆t26
2 4
√

6

π

{

1

2

(

c11

∆x2
+

c66

∆y2
+

c55

∆z2
+

2c16

∆x∆y
+

2c56

∆y∆z
+

2c15

∆x∆z

)2

+
1

2

(

c66

∆x2
+

c22

∆y2
+

c44

∆z2
+

2c26

∆x∆y
+

2c24

∆y∆z
+

2c46

∆x∆z

)2

+
1

2

(

c55

∆x2
+

c44

∆y2
+

c33

∆z2
+

2c45

∆x∆y
+

2c34

∆y∆z
+

2c35

∆x∆z

)2

+

[

c16

∆x2
+

c26

∆y2
+

c45

∆z2
+
(c12+c66)

∆x∆y
+
(c25+c46)

∆y∆z
+
(c14+c56)

∆x∆z

]2

+

[

c15

∆x2
+

c46

∆y2
+

c35

∆z2
+
(c14+c56)

∆x∆y
+
(c36+c45)

∆y∆z
+
(c13+c55)

∆x∆z

]2

+

[

c56

∆x2
+

c26

∆y2
+

c34

∆z2
+
(c25+c46)

∆x∆y
+
(c23+c44)

∆y∆z
+
(c36+c55)

∆x∆z

]2
}− 1

4

, (2.33b)
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∆t36
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√

160

π

{

(

c55

∆x2
+

c44

∆y2
+

c33

∆z2
+

2c45

∆x∆y
+

2c34

∆y∆z
+

2c35

∆x∆z

)

×
[

c16

∆x2
+

c26

∆y2
+

c45

∆z2
+
(c12+c66)

∆x∆y
+
(c25+c46)

∆y∆z
+
(c14+c56)

∆x∆z

]2

+

(

c66

∆x2
+

c22

∆y2
+

c44

∆z2
+

2c26

∆x∆y
+

2c24

∆y∆z
+

2c46

∆x∆z

)

×
[

c15

∆x2
+

c46

∆y2
+

c35

∆z2
+
(c14+c56)

∆x∆y
+
(c36+c45)

∆y∆z
+
(c13+c55)

∆x∆z

]2

+

(

c11

∆x2
+

c66

∆y2
+

c55

∆z2
+

2c16

∆x∆y
+

2c56

∆y∆z
+

2c15

∆x∆z

)

×
[

c56

∆x2
+

c26

∆y2
+

c34

∆z2
+
(c25+c46)

∆x∆y
+
(c23+c44)

∆y∆z
+
(c36+c55)

∆x∆z

]2

−2

[

c16

∆x2
+

c26

∆y2
+

c45

∆z2
+
(c12+c66)

∆x∆y
+
(c25+c46)

∆y∆z
+
(c14+c55)

∆x∆z

]

×
[

c15

∆x2
+

c46

∆y2
+

c35

∆z2
+
(c14+c56)
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+
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∆y∆z
+
(c13+c55)

∆x∆z

]

×
[

c56

∆x2
+

c24

∆y2
+

c34

∆z2
+
(c25+c46)

∆x∆y
+
(c23+c44)

∆y∆z
+
(c36+c55)

∆x∆z

]

−
(

c11

∆x2
+

c66

∆y2
+

c55

∆z2
+

2c16

∆x∆y
+

2c56

∆y∆z
+

2c15

∆x∆z

)

×
(

c66

∆x2
+

c22

∆y2
+

c44

∆z2
+

2c26

∆x∆y
+

2c24

∆y∆z
+

2c46

∆x∆z

)

×
(

c55

∆x2
+

c44

∆y2
+

c33

∆z2
+

2c45

∆x∆y
+

2c34

∆y∆z
+

2c35

∆x∆z

)

}− 1
6
, (2.33c)

respectively.

3 Numerical computations

In this part, we use the pseudospectral method to simulate wave propagation in two
important anisotropic media, TI media and OA media. Though the selected media are
homogeneous in our computations, the pseudospectral method can be used for inhomo-
geneous media or other complex models. An example for a TI medium with complex
structures can be found in [42]. The source function used in numerical computations is
the wavelet source depicted by

f (t)=cos(2π f0t)e−α(t−t0)
2
, (3.1)

where f0 is the main frequency, t0 and α are the given parameters. In our computations,
we choose f0 = 20Hz, t0 = 0.06s and α= 4000. Its history is shown in Fig. 1. The point



712 W. S. Zhang / Commun. Comput. Phys., 12 (2012), pp. 703-720

0 0.05 0.1 0.15 0.2 0.25 0.3

−0.2

0

0.2

0.4

0.6

0.8

1

t/s

s(
t)

source function

Figure 1: Source function used in numerical computations. It has 20Hz main frequency.

source is always located at the center of physical model.
First we consider 3-D wave propagation in a transversely isotropic model with a ver-

tical symmetry axis in the z direction. The transverse plane is the xy plane. The physical
model has grids of 128×128×128 with uniform spatial sampling interval h :=∆x=∆y=
∆z = 25m. The density-normalized elastic constants are listed in Table 1. The stability
condition (2.22a) gives (unit: ms)

∆t<0.1167h (3.2)

which requires ∆t<2.9170ms for this medium. In the computations we choose ∆t=0.002s.

Table 1: Density-normalized elastic constants (unit: 106m2/s2) for a transversely medium.

c11 c12 c13 c33 c44

16.7 1.31 6.6 14.0 6.63

Fig. 2 is the snapshot of 3-D wave propagation of w component at propagation time
of 0.38s. The result is completed on a PC with one processor and 3G main frequency. The
cup time for this model is 33 minutes for extrapolating 250 time steps. The algorithm of
Fast Fourier transform is used in computation. The wave is generated by a z (or x3) direc-
tional point source with time function given by (3.1). Similar 3-D data volume for u and v
components can also be obtained but we omit them here for reason of space. Fig. 3 shows
a 2-D x−z u component in the xz plane sliced at y=50. The wavefront of u component
can also be calculated analytically [28]. Fig. 4 is the corresponding result obtained by the
analytical method. The source is also a z directional force. The outer ellipse in Fig. 4 is
the qP wave. The qSV motion has four cuspidal triangles. Comparisons between Fig. 3
and Fig. 4 show the good accuracy of the pseudospectral or Fourier method.

If we slice the 3-D data volume along different directions, we can get different 2-D
sections. Fig. 5, Fig. 6 and Fig. 7 are wave snapshots of three components in the xy, yz
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Figure 2: Snapshot of 3-D wave propagation in a transversely isotropic medium at propagation time of 0.38s.
It is a 3-D data volume of w component.
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Figure 3: A snapshot of displacement u compo-
nent at propagation time of 0.38s in transversely
isotropic media. It is a 2-D x−z section of the
3-D date volume.
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Figure 4: Wavefront of wave propagation in a
transversely isotropic medium in xz plane. It is
obtained by analytical method.

and xz planes respectively. In Fig. 5, wave surface sections are circles because of isotropy
in the xy plane. The inner wavefront corresponds to the qSV mode. The outer wavefront
is qP wave and the middle is the SH motion. In Fig. 6 and Fig. 7, all components only
have qP and qSV wavefronts since SH motion is normal to the yz and xz planes when the
source is the z directional point force. The qSV wavefronts have cusps and triplications
[12] which can be clearly observed in Fig. 6 and Fig. 7.

It is noticed that the components are relevant to the source directions. In stead of z
direction only, the source is now set in the x, y and z directions simultaneously. Fig. 8,
Fig. 9 and Fig. 10 show wavefield snapshots of three components in the xy, yz and xz
planes respectively. Three wave modes qP,qSV and SH are still circles in Fig. 8. The SH
wave can be observed now in Fig. 9(a), Fig. 9(b), Fig. 10(a) and Fig. 10(b), which can be
compared with Fig. 6(a), Fig. 6(b), Fig. 7(a) and Fig. 7(b). The wavefront of SH wave is
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Figure 5: Wavefront of wave propagation in transversely isotropic medium in the xy plane with the z directional
point source. (a) x component, (b) y component, (c) z component.
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Figure 6: Wavefront of wave propagation in a transversely isotropic medium in the yz plane with the z directional
point source. (a) x component, (b) y component, (c) z component.
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Figure 7: Wavefront of wave propagation in a transversely isotropic medium in the xz plane with the z directional
point source. (a) x component, (b) y component, (c) z component.

ellipse and the qP and qSV show the directional dependence on propagation velocity.
The shear-wave splitting in Fig. 9(a), Fig. 9(b), Fig. 10(a) and Fig. 10(b) can be observed
clearly.
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Figure 8: Wavefront of wave propagation in a transversely isotropic medium in the xy plane with three directional
point source. (a) x component, (b) y component, (c) z component.
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Figure 9: Wavefront of wave propagation in a transversely isotropic medium in the yz plane with three directional
point source. (a) x component, (b) y component, (c) z component.
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Figure 10: Wavefront of wave propagation in a transversely isotropic medium in the xz plane with three
directional point source. (a) x component, (b) y component, (c)z component.

Now we simulate 3-D wave propagation in an OA medium. The density-normalized
elastic constants are listed in Table 2. The physical model has the 128 grids in each di-
mension. In computations we choose uniform spatial steps h :=∆x=∆y=∆z=20m. The
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Table 2: Density-normalized elastic constants (unit: 106m2/s2) for an orthorhombic anisotropic medium.

c11 c12 c13 c22 c23 c33 c44 c55 c66

9.0 3.5 2.5 8.0 1.5 6.0 5.0 4.0 3.0

stability condition (2.22a) requires (unit: ms)

∆t<0.1608h (3.3)

i.e., ∆t<3.2168ms, we choose ∆t=2ms. Fig. 11 is the snapshot of 3-D wave propagation
which corresponds to w component at propagation time of 0.38s. The wavefront of 3-D
propagation is clear in Fig. 11. The sections in three planes can be obtained from the 3-D
data volume. Fig. 12, Fig. 13 and Fig. 14 show the wave snapshots of three components in
the xy, yz and xz planes respectively. In Fig. 12, the wavefronts of qP, qSV and SH modes
are not circles comparing with Fig. 5 and Fig. 8. The shear-splitting with triplication in
the OA medium is more complicated than that in the TI medium by comparing Fig. 13(a),
Fig. 13(b), Fig. 14(a), Fig. 14(b) with Fig. 9(a), Fig. 9(b), Fig. 10(a), Fig. 10(b), respectively.
The phenomena of wave propagation in OA media can be explained theoretically by
solving the Christoffel equation [32, 35].

Figure 11: A snapshot of 3-D wave propagation in an orthorhombic anisotropy medium at a propagation time
0.38s. It is a 3-D data volume of displacement w.

4 Conclusions

Wave simulation of propagation in elastic media is an important topic in oil geological
exploration or inverse problems. In this paper, the pseudospectral method is used for
wave simulation in 3-D elastic anisotropic media. The pseudospectral method calculates
spatial derivatives by the fast Fourier transform in stead of finite differences, while time
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Figure 12: Wavefront of wave propagation in an orthorhombic media in the xy plane with the z directional
point source. (a) x component, (b) y component, (c) z component.
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Figure 13: Wavefront of wave propagation in an orthorhombic medium in the yz plane with the z directional
point source. (a) x component, (b) y component, (c) z component.
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Figure 14: Wavefront of wave propagation in an orthorhombic medium in the xz plane with the z directional
point source. (a) x component, (b) y component, (c) z component.

derivatives appeared in wave equations are calculated by the second-order difference
scheme. The stability conditions for wave simulation in 3-D anisotropic media are inves-
tigated in detail. The stability conditions can be expressed explicitly by the corresponding
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elastic constants which are easy to use in computations. Numerical computations for two
typical anisotropic media, transversely isotropic (IT) media and orthorhombic anisotropy
(OA) media, are completed. The phenomena of wave propagation is shown clearly.
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[16] D. Gajewski and I. Pšenčik, Computation of high frequency seismic wavefields in 3-D later-
ally inhomogeneous anisotropic media, Geophys. J. Roy. Astr. Soc., 91 (1987), 383-411.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd ed.), Johns Hopkins University
Press, 1996.

[18] H. Igel, P. Mora and B. Riollet, Anisotropic wave propagation through finite-difference grids.
Geophysics, 60 (1995), 1203-1216.

[19] A. Jerri, The Shannon sampling theorem – its various extensions and applications: a tutorial
review, Proceedings of the IEEE, 65 (1977), 1565-1596.

[20] K. R. Kelly, R. W. Ward, S. Treitel and R. M. Alford, Synthetic seismograms: a finite-difference
approach, Geophysics, 41 (1976), 2-27.

[21] D. D. Kosloff and E. Baysal, Forward modeling by a Fourier method, Geophysics, 47 (1982),
1402-1412.

[22] K. J. Marfurt, Accuracy of finite-difference and finite-element modelling of the scalar and
elastic wave equations, Geophysics, 49 (1984), 535-549.

[23] J. J. H. Miller, On the location of zeros of certain classes of polynomials with applications to
numerical analysis, IMA J. Appl. Math., 8 (1971), 397-406.

[24] W. A. Mulder, A comparison between high-order finite elements and finite differences for
solving the wave equation, Proc. 2nd ECCOMAS Conf. on Numerical Methods in Engineer-
ing, John Wiley & Sons, Paris, 1996, 344-350.

[25] S. Nilsson, N. A. Petersson, B. Sjörn and H. Kreiss, Stable difference approximations for the
elastic wave equation in second order formulation, SIAM J. Numer. Anal., 45 (2007), 1902-
1936.

[26] S. A. Orszag, Spectral methods for problems in complex geometries, J. Comp. Phys., 39
(1980), 70-92.

[27] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel
expansion, J. Comp. Phys., 54 (1984), 468-488.

[28] R. G. Payton, Elastic wave propagation in transversely isotropic media, Martinus Nijhoff
Publishers, 1983.

[29] M. Reshef, D. Kosloff, M. Edwards and C. Hsiung, Three-dimensional acoustic modeling by
the Fourier method, Geophysics, 53 (1988), 1175-1183.

[30] M. Reshef, D. Kosloff, M. Edwards and C. Hsiung, Three dimensional elastic modeling by
the Fourier method, Geophysics, 53 (1988), 1184-1193.

[31] C. M. Sayers and D. A. Ebrom, Seismic traveltime analysis of azimuthally anisotropic media:
Theory and experiment, Geophysics, 62 (1997), 1570-1582.

[32] M. Schoenberg and K. Helbig, Orthorhombic media: Modelling elastic wave behavior in a
vertically fractured earth, Geophysics, 62 (1997), 1954-12974.

[33] G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heteroge-
neous media, Finite Elements in Analysis and Design, 16 (1994), 337-348.

[34] J. W. Thomas, Numerical Partial Difference Equations: Finite Difference Methods, Springer-
Verlag New York Inc., 1995.

[35] I. Tsvankin, Anisotropic parameters and P-wave velocity for orthorhombic media, Geo-
physics, 62 (1997), 1292-1309.

[36] C. Tsingas, A. Vafidis and E. R. Kanasewich, Elastic wave propagation in transversely
isotropic media using finite differences, Geophys. Prosp., 38 (1990), 933-949.

[37] J. Virieux, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference
method, Geophysics, 51 (1986), 889-901.

[38] D. Yang, E. Liu, Z. Zhang and J. Teng, Finite-difference modelling in two-dimensional



720 W. S. Zhang / Commun. Comput. Phys., 12 (2012), pp. 703-720

anisotropic media using a flux-corrected transport technique, Geophys. J. Int., 148 (2002),
320-328.

[39] D. Yang, G. Song and M. Lu, Optimally accurate nearly analytic discrete scheme for wave-
field simulation in 3D anisotropic media, Bulletin of the Seismological Society of America,
97 (2007), 1557-1569.

[40] O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method – its Basis and
Fundamentals (6th ed.), Elsevier Butterworth-Heinemann, 2005.

[41] J. F. Zhang, Elastic wave modeling in fractured media with an explicit approach, Geophysics,
70 (2005), T75-T85.

[42] W. S. Zhang and Q. D. He, Pseudo-spectral forward modeling in transversally isotropic
medium, Oil Geophysical Prospecting, 33 (1998), 310-319 (in Chinese).


