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Abstract. We introduce a lattice-free hard sphere exclusion stochastic process. The
resulting stochastic rates are distance based instead of cell based. The corresponding
Markov chain build for this many particle system is updated using an adaptation of
the kinetic Monte Carlo method. It becomes quickly apparent that due to the lattice-
free environment, and because of that alone, the dynamics behave differently than
those in the lattice-based environment. This difference becomes increasingly larger
with respect to particle densities/temperatures. The well-known packing problem and
its solution (Palasti conjecture) seem to validate the resulting lattice-free dynamics.

AMS subject classifications: 82C20, 82C22, 82C80, 82B20, 82D99, 90B20

Key words: Lattice-free, microscopic stochastic dynamics, kinetic Monte Carlo.

1 Introduction

Stimulated by the exponential growth in CPU power computationally intensive models
and applications have thrived in recent decades. Among them lattice models through
Cellular Automaton (CA) and/or Monte Carlo methods have proliferated significantly
and are increasingly used to describe and understand a wide variety of complex physical
and biological systems [25]. CA for instance have been used in modeling gas phenom-
ena, urban development, immunological processes, and crystallization. The best known
application for CA is modeling living systems [26].

Lattice models in conjunction with Monte Carlo methods are often [15] used as a way
of modeling systems involving many interacting particles under the influence of noise.
Such approaches have been followed in many fields although they are particularly re-
sponsible for significant innovation in space and oil exploration [6]. Similarly, molecular
dynamics modeling through lattice gas CA or lattice Boltzmann methods are responsible
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for producing a better understanding for a number of fundamental scientific problems in
the physics of fluids.

A lattice based model describes a particle system by introducing a spatial discrete
lattice consisting of predetermined number of cells within which the particle interac-
tions and dynamics will evolve. One common approach is to built a Markov Chain
which evolves the dynamics responsible for constructing the solution of the system. The
stochastic dynamics applied depend on the physical properties describing the micro-
scopic interactions for the system. As a result, Metropolis, Arrhenius, Glauber, Kawasaki
and other rates are carefully considered depending on the knowledge of the microscopic
behavior of the system. The applications of such methodologies range from granular
material [14, 19], traffic flow [22], ecology [5, 7], lattice Boltzmann and lattice gas [23,27],
surface growth [13] just to name a few.

In this work we construct a lattice-free (LF) stochastic process. The underlying stochas-
tic dynamics are stripped of their dependence on the usual lattice-based (LB) environ-
ment. Interacting particles therefore will be free to land and interact at locations pre-
scribed by the dynamics from stochastic rates which are distance based instead of cell
based. For this exposition we equip our stochastic process with an Arrhenius spin-flip
(non-conservative), hard sphere, exclusion potential and examine/compare the particle
behavior at equilibrium as well as on the transition path to equilibrium. Other potentials
can also be considered as well since the findings of this work are not tied to the par-
ticular form of the interaction potential used. We furthermore propose a corresponding
version of the well-known kinetic Monte Carlo (KMC) algorithm in order to practically
implement this LF stochastic process. Although we restrict our exposition in this article
to updates performed by the KMC algorithm other updating mechanisms can also be
considered and applied in a similar fashion.

We motive the application of LF dynamics by exposing obvious shortcomings in solu-
tions produced by LB dynamics under certain regimes where particle sizes can influence
or interfere with their interactions. Under such regimes LB dynamics and corresponding
LB models can produce erroneous results with non-physical solutions. This phenomenon
occurs for all interaction potentials. The differences in solutions however are most pro-
nounced for model parameters promoting high particle densities. Furthermore, we show
that convergence will not fix this discrepancy. In other words, as the lattice size increases
the solutions from LB dynamics will not converge to that of the LF dynamics. Clearly the
reason for the difference in solutions between LB and LF dynamics simply results from
the fact that a lattice, with predefined cells for particles to land in, offers a more efficient
use of space. As a result the corresponding density of those particles can be much higher
in the case of LB models. Many natural processes involve interactants which move in
continuum space and not in preset distances/cells as is the case for LB environments.
Thus in several modeling situations such a LB methodology, although easier to imple-
ment, will produce wrong solutions.
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2 Lattice free stochastic process

We now provide all the details towards the construction of the LF microscopic stochastic
process. We let A=T* where T¢=[0,1)“ is a d-dimensional torus and d denotes the spatial
dimension. For contrast we note that for a typical two-dimensional LB stochastic process
the corresponding lattice A consists of a predetermined number of microscopic cells all
of which have the exact same dimensions and each of which could accommodate a single
particle.

For now we assume that all particles occupy the same volume B; = B, (¥;) with radius
r around their centers X; € A and that physically it will not be possible for two particles
to occupy the same space. This will be implemented below using an exclusion principle.
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Figure 1: Schematic of disjoint sets comprising A for one-dimensional example. E;'s denote unoccupied space
and vary in size. B;'s denote occupied space by a single particle and their size is the same as that of the particle.

We let the domain be comprised of a number of disjoint sets A = PUP®. Here P =
UB(X;) for i=1,---,k and P = UE; for k+1 <i < k+I where E; denotes all the disjoint
unoccupied sets in A. Note that the size of the E;’s can differ since each E; denotes the
empty space between particles with centers at x; and x4, i.e. |E;| =|xj41—x;|—2r. In
contrast the size of the B;’s is the same. In one-dimension for instance each B; = B, (X;)
corresponds to a line segment occupied by a particle (see Fig. 1). In two-dimensions of
course all such sets B;’s, E;’s represent areas. Note therefore that the lattice A can always
be represented as a set of a finite number of such empty and filled sets,

A=PUP®=BjUByU---UBUEg1U---UEj

even as those sets will be changing while the particles move and occupy different loca-
tions over time.

The degrees of freedom (the microscopic order parameter) is given by a spin-like
variable o(i) for 1<i<k+1I for each set B; or E; € A. In this work we present only the case
of discrete spin variables although generalizations to the continuous case (Heisenberg
model) can be carried through without major changes. We start by defining a microscopic
stochastic process {¢}; and define each o (7) to occupy a volume equivalent to the particle
volume it is supposed to represent. Specifically

o(i) = 1, if there exist a particle at 7,
~ | 0, if thereis no particle at 7,

where 1 <i<k-+I.
We denote the configuration of spins on the lattice by o= {c(i)|1 <i<k+I}. A spin
configuration ¢ is an element of the configuration space £={0,1} where N=|A|=k+I.
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The interactions between spins are defined by the microscopic Hamiltonian,

1 k+1k+I1 k+1
H(o)=—3 ZQZJ (i=f)e(@)a() +;hia(i), 21)
1=1j= 1=

where h; = h(X;) denotes the external field at X;. We note that this Hamiltonian is not
used directly towards the construction of the Markov chain however. Instead, for that
purpose, we make use of the local, hard sphere type, interaction potential |

](i—j):(2Li1)dv<2Lilyzi—ij>, 1<i<k+l, 22)
where we let V:R— R with V(s) =V(—s) and V(s) =0if |s| > 1. In fact for simplicity we
take V(s)=]Jp for |s|<1. For now we assume uniform potentials and let ] to be a constant.
The interaction radius for these dynamics is denoted by L in (2.2). Note that due to the
construction of V the potential in (2.2) and corresponding Hamiltonian (2.1) will be well
defined and summable even in the case of N,L — co. The canonical equilibrium state for
the stochastic process {0} }+>0 is given by the Gibbs measure [15]

p(0) = e PHO P(de), 23)
Zp
where B=1/kT is the inverse temperature and k is the Boltzmann constant. Here Zg is the
normalizing partition function and P(do) =IIzcpp(do (X)) the a priori Bernoulli product
measure. Typical choice for p in Ising systems would be p(0) =p(1) =1/2.

3 Arrhenius spin-flip dynamics

Depending on how particles interact we can equip the stochastic process ¢ with a number
of different dynamics. In Ising systems for instance Metropolis dynamics are applied
with rate

c(i,oc) =¥ (—BAy,H(0)),

where )
AyH(o)=H(c%)—H(o)

with ¥ a continuous function satisfying ¥(r) =¥ (—r)e™", r € R [3,15]. Other common
choices for ¥ can be Glauber ¥ (r) = (1+¢") ~!, Kawasaki, Barker, etc [15]. The type of dy-
namics chosen is of great importance for the proper description of the underlying phys-
ical process. In Metropolis dynamics for instance the choice to perform a spin-flip [15]
depends on the energy difference between the initial and final states of the process. On the
other hand in Arrhenius dynamics the activation energy of spin-flip is defined as the en-
ergy barrier a species has to overcome in jumping from one phase to another. These rates
are derived from transition state theory or molecular dynamics calculations.
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For this work we implement Arrhenius spin-flip dynamics although we will consider
other rates [8,12] in the future. Such dynamics are usually associated with desorption or
adsorption of particles from and to a surface [11,13]. For traffic flow [22], for instance,
such non-Hamiltonian dynamics are responsible for adding or removing vehicles from
the highway at select locations while in micromagnetics they are responsible for changing
the overall magnetization of the surface according to a prescribed temperature [10].

The rate by which spin-flip dynamics evolve particles in a LF domain is given by

i) — caexp(—pU(i,0)), ifo(i)=1,
(i,0) { caw(i), if o(i) =0, (3.1)

for 1<i<k+I. Here w(i) is a weight function related to the empty space still available for
particle adsorption at location i in the domain. The exact details for w(7) will be provided
below in (4.1). Here ¢, and c¢; denote adsorption and desorption constants respectively
and involve the inverse of the characteristic time of the stochastic process. Usually c,
and ¢, are calibrated from experimental parameters such as particle velocities or reaction
times. The potential function in (3.1) is given by [9,15] U (i,0) = ;‘:1] (i—j)o(j)—h; with |
from (2.2). We point out that based on definition (3.1) if there is already a particle located
at i then we have ¢(i) =1 and therefore we can not adsorb at that location since the rate
c(i,0) in (3.1) only allows desorption from such a location. Thus exclusion principle is
enforced.

The stochastic process {0} }+>0 is a continuous time jump Markov process on L®(A;R)
which evolves with the rule [15], 4Ef(c) =ELf(c). Here E denotes the expected value
with respect to the equilibrium measure p4 from (2.3), f € L*(A;R) is a test function and
L denotes the generator for this stochastic process [15]

k+1

Lf(o)= ;CO}U) [F(e)~f(0)],

where X} denotes the configuration after the spin has changed (flipped) at X;. Detailed
balance c(i,0’)exp(—H(c)) =c(i,0% )exp(—H(c™ ) ensures that the invariant measure for
this process is the Gibbs measure prescribed by (2.3).

4 Lattice-free kinetic Monte Carlo

Monte Carlo methods are used for a variety of scientific applications. Systems can be
simulated for up to 10! mesh points for some specialized computer architectures. In
many cases however critical slowing down occurs when the dynamics reach equilibration
thus even Monte Carlo approaches become computationally expensive.

Among the many choices for numerically updating stochastic dynamics the KMC al-
gorithm [2, 4] or n-fold way is prominent since there is no slowing-down effect at the
process nears equilibration. In that respect every move performed by the KMC algo-
rithm results in a success. Under the KMC update particles perform moves at every time
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iteration regardless of whether the system is near equilibration or not. As a result KMC
is a favorite in the literature since it avoids excessive computational overhead due to this
critical slowing down phenomenon which can be detrimental for typical Monte Carlo
methods.

We now present a generalization of the original KMC algorithm [2] adapted to ac-
commodate this new LF stochastic process. The driving force behind the updating of
the stochastic dynamics is in the calculation of the rates for adsorption to, or desorption
from, the domain. The rates for desorption for each particle on the domain can be cal-
culated directly from (3.1). The rates for adsorption however depend on the amount of
unoccupied space on that domain. In classic LB KMC algorithms the adsorption rates are
calculated for each unoccupied lattice cell with weight w(i) =1. In our case we obtain
the adsorption rates by first identifying all the available unoccupied space, E;’s, within
the domain. We then calculate the adsorption rate with a weight corresponding to the
amount of empty space found. In the one-dimensional case for instance

w(i):{ |E;|—2r, if|E;|>2r, 1)

0, otherwise.

This implies that if the size of the empty space between two adjacent particle locations is
not large enough then the corresponding adsorption rate is 0 and no particle has a chance
of landing there (exclusion principle). This is enforced through the stochastic rate c(i,0)
in (3.1).

Note that although the domain is continuous (not a lattice) the rates (3.1) will always
be countable. The stochastic process developed above therefore is not just an abstract
mathematical object but can also be constructed as shown in the pseudo-code provided
in the Appendix. This pseudo-code gives only a rough outline of the main algorithm.
There are several techniques, not listed here, which allow for significant speed-up for
each of the main steps presented in the Appendix. We also note that there are a number
of recent improvements [20, 21] for the original KMC algorithm which can also be im-
plemented in this LF KMC. These techniques would allow for significant speed-up and
further computational efficiency.

4.1 Adsorption location

The only remaining question therefore is how the dynamics pinpoint the exact location
on the domain at which such a particle will adsorb to. That location is calculated through
the invariant measure yg from (2.3) as shown below.

We note that for Arrhenius dynamics a spin is flipped as long as the rate (energy
barrier) has been overcome. Sampling for instance from pg under the detailed balance
k+1
i=1

condition we choose a random rate ¢* as follows 0 <c* <Y ¢(i,0). Assume for instance

m+1

Y c(io)>c" > ic(i,a),

i=1 i=1
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Figure 2: Adsorption at x* for one-dimensional example. The rates ¢; for each location in this LF domain
are calculated from (3.1) depending on whether the domain is occupied by a particle or not. The adsorption
location x* is then obtained from (4.2).

for some 0 <m <k+I. Then in classic LB methods a particle would adsorb at lattice cell m.
LF dynamics do not involve such boundaries however. LF dynamics will instead adsorb
at location X¥* corresponding to the exact rate c* (see Fig. 2). In the one-dimensional case
for instance

x*=Ac*/c,+2r, 4.2)

where Ac* =c*—Y" ; ¢(i,0). Similar calculations can be performed in higher dimensions
as well. Stochastic dynamics are therefore updated with a KMC pseudo-code for LF
domains whose details are provided in the Appendix.

To further facilitate the mathematical analysis of our stochastic dynamics we consider
an analogue of the Curie-Weiss model where we allow long-range uniform, weak interac-
tions. The Curie-Weiss spin model is a classic simple example in statistical mechanics that
exhibits phase transitions even in one-dimension and further allows for detailed calcula-
tions such as mean field and thermodynamical limit at all temperatures. As the domain
size approaches infinity and particle radius » — 0, under appropriate scaling and limit
arguments [9,24], the coverage c can be shown to solve the following equation

¢—V-F=0 (4.3)

with flux function F=¢o[Vc—Bc(1—c)V]+*c] where J*c denotes a convolution. A similar
such derivation can be obtained for Metropolis type dynamics [24].

5 Monte Carlo simulations

In the simulations which follow we present results of LB and LF stochastic processes un-
der the influence of spin-flip dynamics using Monte Carlo simulations in one-dimension.
We apply circular boundary conditions: as the lattice ends on one side it continuous on
the other side. Other types of boundary conditions can easily be implemented as well
without difficulty. Simulations for higher dimensions will be carried out in the future.

We provide comparisons for LB versus LF dynamics in Fig. 3. Three examples are
presented in that figure based on different choices of the temperature parameter BJy =
—2,.01,3 for repulsive, (almost) neutral and attractive dynamics respectively. We know [9,
10] that for Jo = —2,.01,3 the average density for LB dynamics should be approximately
.34,0,.94 respectively.
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Lattice Free vs Lattice Based Dynamics
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Figure 3: Three examples for BJp =3,.01,—2. Dynamics compared pathwise and at equilibration. The case
of BJo=—2 does not show any obvious discrepancy. Any positive temperature however BJy >0 will involve
significant errors if LB dynamics are used. The case BJo =3, for instance, promoting high particle densities,
produces significantly different dynamics. Compare with simulations in Fig. 4 and extended results in Table 1.
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Figure 4: Comparison of ensemble average coverage for 3]y =3 versus domain size for the classic LB dynamics
versus the new LF dynamics. Each point corresponds to ensemble, uncorrelated, density averages ¢ after
equilibration. The LF dynamics seem to respect the Palasti conjecture.

However the results in Fig. 4 and especially in Table 1 show disagreement between
LB and LF dynamics for all values of BJo. The difference in solutions is quite significant
for the case of BJo =3. The case of B]Jy =3 corresponds to high particle densities. In fact,
as presented in the more detailed study in Table 1, all temperatures BJo >0 would fall
into that category with increasing discrepancies for higher particle densities and corre-
sponding increasingly higher differences in the dynamics. In Table 2 further long-time
ensemble averages are calculated for the case ]y =3 in order to better understand this
discrepancy between LB and LF dynamics as domain size increases.
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Table 1: The average density c= %HZU(X) in one-dimension for a range of ]y values. Averages are provided

over several uncorrelated ensembles. Note that the LB density is clearly different than the LF dynamics. The
errors increase as temperature BJy (and particle density) increases.

Blo -0 -3 -2 -1 0 1 2 3 10

Density(LB) 189 295 336 486 504 .663 .835 945 997
Density(LF) 174 287 325 439 449 549 649 743 744
Rel. Errors (%) | 3 3 3 9 11 17 22 22 >22

Table 2: The average density c= kLHZ(T(x) in one-dimension for BJg =3 as domain size increases. Averages

over several ensembles. Results shown in Fig. 4. The LB density is clearly different than the LF dynamics
regardless of domain size. Convergence will not fix that difference. The theoretical estimate (6.1) for domain
size N — o0 is ¢ =.74759 which supports the LF solution.

Domain Size | 200 500 1000 5000 10000 20000
Density(LB) | .882 .923 .934 941 .942 945
Density(LF) | .616 .705 .724 736 .740 743

6 Discussion

A theoretical result from Renyi [18] as well as the well-known conjecture due to Palasti
[17] further validate our findings since it is shown [18] that as the line becomes infinite in
length the packing density c, of randomly placed unit intervals is

%) t1_p— U
Co—= / exp{—Z / 1-e du}dt:.74759. 6.1)
0 0

u

This theoretical value is in agreement with the numerical solutions obtained in Fig. 4 for
BJo=3 as well as the extended results shown in Table 2. It is clear from Table 2 that for the
full range of temperatures —10< ]y <10 we have obtained a similar upper bound which
agrees with this conjecture. The Palasti conjecture further states that in n-dimensions the
random packing density of unit squares would be ¢} [17].

We have shown that the dynamics are clearly different between LB and LF processes
(see Fig. 4). We found that if traditional, LB dynamics, are used to model physical pro-
cesses which evolve continuously in space then erroneous solutions can result for all
values of BJo. These errors become larger with increasing BJo as shown by the relative
errors in Table 1. In this case statistical estimates of densities from LB dynamics are al-
ways greater (and wrong) than those of LF dynamics. The relative errors presented in
Table 1 become significant as soon as ]y > 0. Furthermore, as has been shown in Fig. 4,
increasing the lattice size and /or number of interacting particles will not diminish these
errors.

This work therefore points out some of the issues resulting due to the fact that for
a number of models particle size is actually important towards understanding system
behavior. So the main point which we advocate here is that in many physical applications
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significant errors can occur if we disregard the effects due to particle size. The problem
arises because in many instances particles modelled with such lattice dynamics actually
have significant (non-negligible) size in relation to their domain and therefore it is not
physically meaningful to take the limit as the lattice cell gets smaller and smaller. If
however particle size is not significant in the corresponding physical system we model
then both LF and LB dynamics will produce the same continuum PDE in the limit of
particle size or corresponding cell size reaching 0 as shown in (4.3).

Our findings have direct consequences in the modeling of a number of physical appli-
cations for which LB models have been used inappropriately (i.e for modeling particles
of non-negligible size). A large amount of work in CA simulations for instance comes
into question due to the fact that LB dynamics seem to produce wrong solutions at high
concentrations. CA simulations of traffic flow for instance is the predominant [1, 16]
methodology of solutions especially during high vehicle concentrations. According to
our findings such simulations should not be trusted for the simple reason that actual
vehicles do not move in lattice cells (even if safe distances are included). Similar such
examples exist in many other fields where LB dynamics have been applied to model con-
tinuous spatial interactions at high densities. In such cases therefore LB dynamics should
not be applied. In particular the size of the lattice can not and should not be considered
as cell size goes to 0 if particle sizes are important towards understanding the behav-
ior of the actual physical system we try to model. The LF process proposed here could
potentially be used instead to eliminate such discrepancies.

Appendix: Pseudo-code for lattice-free Monte Carlo dynamics

The LF KMC algorithm for Arrhenius spin-flip dynamics is provided below.

1. Calculate all transition rates for adsorption ¢?(I) and desorption c?(1) from (3.1) for the domain
A.

2. Calculate the total rates to adsorb R, =Y;c(I) or desorb R;=Y;c?(l). Obtain the total rate
R=R,+Ry.

w

Obtain a random number p. Index rates in an array c.

Find j and x* for which Y7 (/) 2pR>Z]’-”:_Olc(j).

&

5. Update the time, t=f+ At where At=1/R.

6. Repeat until dynamics of interest have been captured.
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