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Abstract. An unstructured nodal spectral-element method for the Navier-Stokes equa-
tions is developed in this paper. The method is based on a triangular and tetrahedral
rational approximation and an easy-to-implement nodal basis which fully enjoys the
tensorial product property. It allows arbitrary triangular and tetrahedral mesh, afford-
ing greater flexibility in handling complex domains while maintaining all essential
features of the usual spectral-element method. The details of the implementation and
some numerical examples are provided to validate the efficiency and flexibility of the
proposed method.
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1 Introduction

The spectral-element method combines the geometric flexibility of finite elements with
the high accuracy of spectral methods. It exhibits several favorable computational prop-
erties, such as the use of tensor products, naturally diagonal mass matrices, and suitabil-
ity for parallel computation.

However, in order to use the properties of the tensor product, the standard spectral-
element method is usually limited to quadrilateral/hexahedral partitions. This require-
ment makes it difficult to use unstructured mesh for complex geometries. One way to
overcome this drawback is to allow the use of triangles/tetrahedrons in the partition.
There has been a number of works addressing the so-called triangular spectral methods.
The existing spectral methods on triangle can be classified into different types according
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to the class of functions used in the approximations: (i) approximations by polynomials
in triangle through mapping (see, e.g., [2,5,9,14,19]); (ii) approximations by polynomials
in triangle using special nodal points such as Fekete points (see, e.g., [8, 15, 16, 20]); and
(iii) approximations by non-polynomial functions in triangle (see, e.g., [1, 7, 18]).

The triangular spectral method based on polynomial spaces were motivated by the
classical result that any smooth function can be well approximated by polynomials. Koorn-
winder [10] and Dubiner [5] constructed the orthogonal polynomials on triangle, often
referred as the Dubiner’s basis in the spectral-element community. The first practical im-
plementation of the Dubiner basis in the solution of incompressible Navier-Stokes equa-
tions was carried out in the spectral-element package NekTar [9, 19]. Their approach is
based on the modal formulation in which the basis functions are Jacobi polynomials with
index varying with the polynomial order. A drawback of this modal basis is that there is
no corresponding nodal basis, making it more difficult, to implement. Recently, a trian-
gular spectral method using rational polynomials was proposed and analyzed for elliptic
problems (cf. [18]). It is extended to the Stokes problem on a triangle in [3]. The main ad-
vantage of this method is that a nodal basis is available, so it can be incorporated into the
usual nodal spectral-element framework. In particular, it preserves the tensor product
structure which enables the fast evaluation of the matrix-vector multiplications.

In this paper, we design an unstructured spectral-element method for the Navier-
Stokes equations. More precisely, we describe in detail how to formulate the nodal basis
with two-dimensional unstructured meshes for the Stokes equations, and apply them
for solving time dependent Navier-Stokes equations. Our nodal basis functions in tri-
angles/tetrahedrons are constructed from the standard tensor product of Lagrangian
polynomials defined on the 2-D Gauss-Lobatto points through the Duffy mapping. The
advantages of this nodal basis are that it allows arbitrary mixture of triangular and rect-
angular elements; enjoys the fully tensorial-product property, and can be easily incorpo-
rated into an existing spectral-element code.

The paper is organized as follows. In the next section, we first present the ratio-
nal spectral-element method for the Stokes equations on a single triangle. In Section 3,
we extend the method to 2-D unstructured mesh with arbitrary mixture of triangular
and quadrilateral elements. In Section 4, we apply this spectral-element method to the
Navier-Stokes equations and present several numerical experiments exhibiting its flexi-
bility and accuracy. Some concluding remarks are given in the final section.

2 Preliminaries

In this section, we introduce some necessary notations and recall briefly the triangular
spectral method for the Stokes equations developed recently in [3].

Throughout this paper, we use boldface letters to denote vectors and vector functions.
Let c be a generic positive constant independent of any functions and of any discretiza-
tion parameters. We use the expression A.B to mean that A6cB, and use the expression
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A∼= B to mean that A.B. A. For a bounded domain Ω and a generic positive weight
function ω, we denote the inner product of L2

ω(Ω) by

(u,v)ω,Ω :=
∫

Ω
uvωdx

and the associated norm by ‖·‖ω,Ω. We also use Hm
ω (Ω) and Hm

0,ω(Ω) to denote the
usual weighted Sobolev spaces, whose norm and semi-norm are denoted by ‖u‖m,ω,Ω

and |u|m,ω,Ω, respectively. We also need the space

L2
0,ω(Ω)=

{
φ∈L2

ω(Ω) :
∫

Ω
φωdx=0

}
.

In cases where no confusion would arise, ω (if ω = 1 particularly) and/or Ω may be
dropped from the notations. We denote by N the set of all non-negative integers and
Λ=(−1,1). For any N∈N, we denote by PN(Λ) the set of all polynomials of degree ≤N
defined in Λ, and set P0

N(Λ) :={φ∈PN(Λ) : φ(±1)=0}.

Let us denote by △ the triangle domain

△=
{
(x,y) : 0< x,y<1, 0< x+y<1

}
.

We consider the Stokes equations in △: For a given forcing function f∈ L2(△)2, find the
velocity vector u and the pressure p such that





−∆u+∇p= f, in △,
∇·u=0, in △,
u=0, on ∂△.

(2.1)

2.1 Duffy mapping

In order to describe the triangular spectral method for (2.1), we will use two coordinate
systems: the Cartesian coordinate (x,y)-system for the triangle △ and the (ξ,η)-system
for the square � :=Λ2 connected by the Duffy mapping x=F(ξ) (x=(x,y) and ξ=(ξ,η)):

x=
1

4
(1+ξ)(1−η), y=

1+η

2
, ∀(ξ,η)∈�, (2.2)

with its inverse ξ=F−1(x) from △ to � by

ξ=
2x

1−y
−1, η=2y−1, ∀(x,y)∈△. (2.3)

Note that the mapping (2.2) is singular as it maps the top side of � to the single vertex
(0,1) of △.



318 L. Chen, J. Shen and C. Xu / Commun. Comput. Phys., 12 (2012), pp. 315-336

(a)
•

(0,0)
❅

❅
❅

❅
❅

❅
❅❅

•

(1,0)

•

(0,1)

(b)
•

(-1,-1)
•

•

(1,1)

(1,-1)

•

(-1,1)

Figure 1: (a) Domain △ with coordinate x. (b) Domain � with coordinate ξ.

We collect below some properties of Duffy map, which will be used in the sequel:

∂ξ

∂x
=

2

1−y
=

4

1−η
,

∂ξ

∂y
=

2x

(1−y)2
=

2(1+ξ)

1−η
,

∂η

∂x
=0,

∂η

∂y
=2, (2.4)

∂x

∂ξ
=

1−y

2
=

1−η

4
,

∂x

∂η
=

x

2(1−y)
=−

1+ξ

4
,

∂y

∂ξ
=0,

∂y

∂η
=

1

2
. (2.5)

From the above, one easily finds the determinant of the Jacobian for (2.2):

det
(∂(x,y)

∂(ξ,η)

)
=

1−η

8
=

1−y

4
. (2.6)

Throughout the paper, we shall associate a function u in △ with a function ũ in � through

ũ(ξ,η)=u(x,y), x=
1

4
(1+ξ)(1−η), y=

1+η

2
, ∀(ξ,η)∈�.

Then we have

∇xu=(∂xu, ∂yu)T =

(
4

1−η
∂ξ ũ,

2(1+ξ)

1−η
∂ξ ũ+2∂η ũ

)T

, (2.7)

and inversely,

∇ξ ũ=(∂ξ ũ, ∂η ũ)T =

(
1−y

2
∂xu,

x

2(1−y)
∂xu+

1

2
∂yu

)T

. (2.8)

From (2.7), we have immediately

∂ξ ũ(ξ,1)=0 a.e. if ∂xu is a measurable function. (2.9)

In other words, if the approximation solution is chosen such that its partial derivative
with respect to x is bounded in △, then its transformation in � by Duffy mapping must
be constant at the top side. This fact should be kept in mind in constructing the basis
functions for the approximation space.
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2.2 Rational approximation in triangle

The approximation space to be used in our method consists of the rational functions
generated by polynomials in the reference square through the Duffy transform. Precisely,
let R̃mn(ξ,η) be the polynomial in � defined by:

R̃mn(ξ,η)= J0,0
m (ξ)J1,0

n (η), ∀(ξ,η)∈�, (2.10)

where J
α,β
k (ζ), ζ ∈Λ, is the classical Jacobi polynomial of degree k. Then we define the

rational function Rmn(x,y) in △ by the Duffy transformation of R̃mn(ξ,η), i.e.,

Rmn(x,y)= R̃mn

( 2x

1−y
−1,2y−1

)
= J0,0

m

( 2x

1−y
−1
)

J1,0
n (2y−1), ∀(x,y)∈△,

and the approximation spaces and their transformations as follows:

QN(△)=span{Rmn(x,y), 0≤m,n≤N,(x,y)∈△}, (2.11a)

Q̃N(�)=span{R̃mn(ξ,η), 0≤m,n≤N,(ξ,η)∈�}, (2.11b)

Q0
N(△)={v∈QN(△),v|∂△=0}, (2.11c)

Q̃0
N(�)={v∈ Q̃N(�),v|∂�=0}. (2.11d)

By the properties of the Jacobi polynomials, we have the following orthogonality:

∫

△
Rmn(x,y)Rm′n′(x,y)dxdy

=
1

8

∫ 1

−1
J0,0
m (ξ)J0,0

m′ (ξ)dξ
∫ 1

−1
J1,0
n (η)J1,0

n′ (η)(1−η)dη

=γmnδmm′δnn′ , with γmn=
1

2(n+1)(2m+1)
.

Therefore, any function u∈L2(△) has the expression

u(x,y)=
∞

∑
m=0

∞

∑
n=0

ûmnRmn(x,y),

with the coefficient ûmn given by

ûmn=
1

γmn

∫

△
u(x,y)Rmn(x,y)dxdy. (2.12)

On the other hand, we have ũ∈L2
̟(�) if and only if u∈L2(△), where the weight function

̟ :=
1−η

8
(2.13)
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is the Jacobian in (2.6), and

ũ(ξ,η)=
∞

∑
m=0

∞

∑
n=0

ûmnR̃mn(ξ,η),

with ûmn given in (2.12), or expressed in the alternative form:

ûmn=
1

γmn

∫

�
ũ(ξ,η)R̃mn(ξ,η)̟dξdη.

The inner product on L2(△) is defined as

(φ,ψ)=
∫

△
φ(x,y)ψ(x,y)dxdy=

∫

�
φ̃(ξ,η)ψ̃(ξ,η)

1−η

8
dξdη, ∀φ,ψ∈C(△),

where (1−η)/8 is the Jacobian given in (2.6).

Let ξp, p=0,1,··· ,N, be the Legendre-Gauss-Lobatto points associated to LN, i.e., zeros
of (1−z2)L′

N(z), and ωp, p=0,1,··· ,N, be the corresponding weights. We can then define
the discrete inner product (·,·)N on △:

(φ,ψ)N =
N

∑
p,q=0

φ̃(ξp,ξq)ψ̃(ξp,ξq)
1−ξq

8
ωpωq, ∀φ,ψ∈C(△). (2.14)

2.3 Triangular spectral method for the Stokes equations

Now we are in a position to define our triangular spectral method for (2.1). Let us denote
X=H1

0(△),M= L2
0(△) and X=X2. We introduce the bilinear form a(·,·) over X×X by

a(v,w)=
∫

△
∇v∇wdxdy, ∀v,w∈X,

and the bilinear form b(·,·) over X×M by,

b(v,q)=−
∫

△
∇·vqdxdy, ∀v∈X, q∈M.

Then, the weak form of (2.1) reads: Find u∈X and p∈M such that

{
a(u,v)+b(v,p)=(f,v), ∀v∈X,

b(u,q)=0, ∀q∈M.
(2.15)

Let us define the rational approximation spaces

XN =X∩QN(△), MN =M∩QN−2(△), XN =X2
N , (2.16)
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and the discrete bilinear forms

aN(uN ,vN)=(∇uN ,∇vN)N , bN(vN ,qN)=−(qN ,∇·vN)N . (2.17)

Then, our triangular spectral method for (2.15) is as follows: Find uN∈XN ,pN∈MN , such
that

{
aN(uN,vN)+bN(vN ,pN)=(f,vN), ∀vN ∈XN ,

bN(uN,qN)=0, ∀qN ∈MN .
(2.18)

The well-posedness of the discrete problem (2.18) as well as its error analysis was
established in [3].

2.4 A nodal basis

Under the Duffy mapping, XN ,MN are transformed into:

X̃N :={ϕ∈ Q̃0
N(�),∂ξ ϕ(ξ,1)=0}, M̃N := Q̃N−2(�)∩L2

0,̟(�),

where ̟ is defined in (2.13) and Q̃N(�) is given in (2.11).

Let hp(ξ), p= 0,1,··· ,N, are the one-dimensional Lagrangian interpolants associated
with the Legendre-Gauss-Lobatto points, such that hp(ξ)∈PN(Λ), hp(ξq)=δpq, 0≤p,q≤N.
Let lp(ξ), p=1,··· ,N−1, are the one-dimensional Lagrangian interpolants associated with
the N−1 interior Legendre-Gauss-Lobatto points, such that lp(ξ)∈PN−2(Λ), lp(ξq)=δpq,
1≤ p,q≤N−1. Then,

Q̃N(�)=span{hi(ξ)hj(η), 0≤ i, j≤N},

Q̃0
N(�)=span{hi(ξ)hj(η), 1≤ i, j≤N−1},

X̃N = Q̃0
N(�),

M̃N =span{li(ξ)lj(η), 1≤ i, j≤N−1}∩L2
0,̟ (�).

Let

ϕ̃ij(ξ,η)=hi(ξ)hj(η), ψ̃ij(ξ,η)= li(ξ)lj(η),

and define the basis functions

ϕij(x,y)= ϕ̃ij(ξ,η), ψij(x,y)= ψ̃ij(ξ,η)

through the Duffy mapping, then we have

XN =span{(ϕij(x,y),0),(0,ϕij(x,y)), 1≤ i, j≤N−1},

MN =span{ψij(x,y), 1≤ i, j≤N−1}∩L2
0(△).
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Figure 2: Mapping of the triangle to square domain.

We can then express uN and pN , solution of (2.18), as follows:

uN(x,y)= ũN(ξ,η)=
N−1

∑
i,j=1

uij ϕ̃ij(ξ,η),

pN(x,y)= p̃N(ξ,η)=
N−1

∑
i,j=1

pijψ̃ij(ξ,η),

where, by definition of the basis functions,

uij = ũN(ξi,ξ j)=uN(xi,yj), pij = p̃N(ξi,ξ j)= pN(xi,yj), 1≤ i, j≤N−1,

with (xi,yj) the mapped points in △ of the Gauss-Lobatto points (ξi,ξ j), i.e., (xi,yj) =
F(ξi,ξ j); see Fig. 2.

Plugging the above expansions into (2.18), we arrive at the following matrix system:

{
ANu+DN p=BNf,

DT
Nu=0,

(2.19)

where f is a vector representation of f at the Gauss-Lobatto points. The matrices AN ,
DN , and BN are block-diagonal matrices with 2 blocks each. The blocks of AN are the
discrete Laplace operator, and those of DN are associated to the different components of
the discrete gradient operators, while blocks of BN are the mass matrices.

3 Unstructured nodal spectral-element method

We now provide some details on integrating the triangular spectral method for the Stokes
equations presented in the last section into the general spectral-element framework. This
integration will enable us to use an arbitrary mixture of triangular and quadrilateral ele-
ments in a traditional spectral-element code.
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3.1 Spectral-element formulation with unstructured mesh

Let Ω be a polygonal domain, which is decomposed into a number of elements:

Ω=
K⋃

k=1

Ωk, Ωi∩Ωj =∅, i 6= j; each Ωi is a triangle or a quadrilateral.

We assume that the decomposition is conforming in the sense that the intersection Ωk∩Ωj

(1≤ k≤ j≤K) is either empty or a vertex or a whole side of Ωk and Ωj.

Let Fk be the mapping which maps � onto Ωk. If Ωk is a triangle, the mapping is given
in (A.1) below; while if Ωk is a quadrilateral, we use the usual bilinear blended mapping
(cf. [6]).

Remark 3.1. Note that the above partition and mapping are not “spectrally admissible”
(cf. [11]) in the usual sense of spectral-element formulation, since the Jacobian of the in-
verse mapping of Fk, in the case Ωk is a triangle, is not bounded. This relaxation on Fk

allows us to use unstructured mesh with both quadrilaterals and triangles while main-
taining the spectral accuracy.

We now define the local approximation space and spectral-element spaces as follows:

Qk
N ={vN ∈L2(Ωk), vN ◦Fk ∈ Q̃N(�)}, 1≤ k≤K, (3.1a)

Xk
N =Qk

N∩H1(Ωk), (3.1b)

XN ={vN ∈H1
0(Ω), vN |Ωk

∈Xk
N , 1≤ k≤K}, (3.1c)

MN ={qN ∈L2
0(Ω), qN |Ωk

∈Qk
N−2, 1≤ k≤K}. (3.1d)

It is readily seen that the local space Qk
N contains rational functions if Ωk is a triangle,

while it reduces to classical polynomial space if Ωk is a quadrilateral.
With the above preparation, the unstructured nodal spectral-element approximation

to the Stokes equations on Ω is as follows: Find uN ∈XN,pN ∈MN such that





K

∑
k=1

(∇uN ,∇vN)N,Ωk
−

K

∑
k=1

(pN ,∇·vN)N,Ωk
=

K

∑
k=1

(f,vN)N,Ωk
, ∀vN∈XN ,

K

∑
k=1

(qN ,∇·uN)N,Ωk
=0, ∀qN ∈MN ,

(3.2)

where

(φ,ψ)N,Ωk
=

N

∑
p,q=0

φ◦Fk(ξp,ξq)ψ◦Fk(ξp,ξq)Jkωpωq, (3.3)

with Jk being Jacobian of the mapping Fk.
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3.2 Implementation details

We now describe the implementation details of our unstructured spectral method (3.2)
based on a simple nodal basis for the velocity and pressure. More precisely, we describe
below the formation of the linear system corresponding to (3.2) and the fast matrix-vector
multiplications.

Let us describe how to deal with the term (∇uN ,∇vN)N,Ωk
in detail. Other terms can

be treated in a similar fashion. By definition, we have

(∇uN,∇vN)N,Ωk
=

N

∑
p,q=0

Gk
1(ξp,ξq)

∂ũk
N

∂ξ

∂ṽk
N

∂ξ
(ξp,ξq)ωpωq

+
N

∑
p,q=0

Gk
2(ξp,ξq)

∂ũk
N

∂η

∂ṽk
N

∂η
(ξp,ξq)ωpωq

+
N

∑
p,q=0

Gk
3(ξp,ξq)

(
∂ũk

N

∂ξ

∂ṽk
N

∂η
+

∂ũk
N

∂η

∂ṽk
N

∂ξ

)
(ξp,ξq)ωpωq, (3.4)

where, for a function v defined in Ωk, ṽk means v◦Fk, and Gk
1,Gk

2, and Gk
3 are defined as

Gk
1=

1

|Jk|

[(∂x

∂η

)2
+
( ∂y

∂η

)2
]

, (3.5a)

Gk
2=

1

|Jk|

[(∂x

∂ξ

)2
+
(∂y

∂ξ

)2
]

, (3.5b)

Gk
3=−

1

|Jk|

[
∂x

∂ξ

∂x

∂η
+

∂y

∂ξ

∂y

∂η

]
. (3.5c)

The evaluation of these geometric factors in the case of triangular elements are given in
the Appendix.

To derive the linear system associated to problem (3.2), we need a suitable basis for the
spectral-element approximation spaces defined in (3.1). We start by constructing the basis
functions for the local spaces associated to a given element Ωk. Since the construction for
the quadrilateral elements is standard (cf. [17, 22]), we shall only consider the case with
triangular elements.

In this case, as indicated in (2.9), we see that the transformation of the velocity local
space Qk

N∩H1(Ωk) satisfies

Xk
N =

{
vN ∈H1(Ωk), vN ◦Fk ∈ Q̃N(�), ∂ξ(vN ◦Fk)(·,1)=0

}
,

where, no loss of generality, we have supposed that the top side of � is the collapsed
side, which is mapped to a vertex of the triangle Ωk through Fk. In other words, the
transformation in � of the velocity local space consists of the polynomials of degree ≤N,
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which take constant values at the top side. A closer examination shows that the most
natural basis for the space Xk

N is the set of the following rational functions:

Xk
N =span

{
ϕij(x,y),ϕ0N(x,y) : ϕij◦Fk(ξ,η)=hi(ξ)hj(η),

0≤ i≤N, 0≤ j≤N−1, ϕ0N◦Fk(ξ,η)=hN(η)
}

.

Introducing the index set

ΞN :={(i, j) : 0≤ i≤N, 0≤ j≤N−1}∪{(0,N)}, (3.6)

we can then write

Xk
N =span

{
ϕij(x,y) : (i, j)∈ΞN

}
.

Here, one needs to pay a particular attention to the basis function ϕij corresponding to
(i, j)=(0,N). This basis function is associated to the vertex which corresponds to the col-
lapsed side in the reference domain �. Therefore all basis functions satisfy the condition:

∂ξ ϕ̃ij(ξ,1)=0, ∀ξ∈Λ, ∀(i, j)∈ΞN .

Concerning the pressure local space, we have the following natural choice for the basis:

Qk
N =span

{
ψij(x,y) : ψij◦Fk(ξ,η)= li(ξ)lj(η), 1≤ i, j≤N−1

}
.

We can now express the local solutions in a given element Ωk as

ũk
N(ξ,η)=

N

∑
i=0

N−1

∑
j=0

uk
ijhi(ξ)hj(η)+uk

0NhN(η),

p̃k
N(ξ,η)=

N−1

∑
i,j=1

pk
ijli(ξ)lj(η),

where

uk
ij=uN◦Fk(ξi,ξ j), i=0,··· ,N, j=0,··· ,N−1;

uk
0N =uN◦Fk(0,1);

pk
ij = pN◦Fk(ξi,ξ j), i, j=1,··· ,N−1.

Plugging the above expansions into (3.2), and choose the nodal basis functions of XN as
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test functions, we find that the term (3.4) becomes: for m=0,1,··· ,N; n=0,1,··· ,N−1,

∑
(i,j)∈ΞN

ak
mn,iju

k
ij = ak

N(u
k
N,ϕmn)

=
N

∑
p,q=0

[
Gk

1(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijh

′
i(ξp)hj(ξq)

)
h′m(ξp)hn(ξq)ωpq

]

+
N

∑
p,q=0

[
Gk

2(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijhi(ξp)h

′
j(ξq)+uk

0Nh′N(ξq)
)

hm(ξp)h
′
n(ξq)ωpq

]

+
N

∑
p,q=0

[
Gk

3(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijh

′
i(ξp)hj(ξq)

)
hm(ξp)h

′
n(ξq)ωpq

]

+
N

∑
p,q=0

[
Gk

3(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijhi(ξp)h

′
j(ξq)+uk

0Nh′N(ξq)
)

h′m(ξp)hn(ξq)ωpq

]

=
N

∑
p=0

Gk
1(ξp,ξn)Dpm

( N

∑
i=0

Dpiu
k
in

)
ωpn+

N

∑
q=0

Gk
2(ξm,ξq)Dqn

(N−1

∑
j=0

Dqju
k
mj+DqNuk

0N

)
ωmq

+
N−1

∑
q=0

Gk
3(ξm,ξq)Dqn

( N

∑
i=0

Dmiu
k
iq

)
ωmq+

N

∑
p=0

Gk
3(ξp,ξn)Dpm

(N−1

∑
j=0

Dnju
k
pj+DnNuk

0N

)
ωpn,

where Dkj = h′j(ξk), Gk
1,Gk

2 and Gk
3 are geometric factors in (3.5) related to the mapping

(A.1).
For the basis function, hN(η), corresponding to the index (m,n)=(0,N), noticing that

the derivative of hN(η) with respect to ξ vanishes, we have

∑
(i,j)∈ΞN

ak
0N,iju

k
ij = ak

N(u
k
N ,hN(η))

=
N

∑
p,q=0

[
Gk

2(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijhi(ξp)h

′
j(ξq)+uk

0Nh′N(ξq)
)

h′N(ξq)ωpq

]

+
N

∑
p,q=0

[
Gk

3(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijh

′
i(ξp)hj(ξq)

)
h′N(ξq)ωpq

]

=
N

∑
p,q=0

[
Gk

2(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijδpiDqj+uk

0N DqN

)
DqNωpq

]

+
N

∑
p,q=0

[
Gk

3(ξp,ξq)
( N

∑
i=0

N−1

∑
j=0

uk
ijDpiδqj

)
DqNωpq

]

=
N

∑
q=0

[ N

∑
p=0

Gk
2(ξp,ξq)DqN

(N−1

∑
j=0

Dqju
k
pj+DqNuk

0N

)
ωpq

]

+
N−1

∑
q=0

[ N

∑
p=0

Gk
3(ξp,ξq)DqN

( N

∑
i=0

Dpiu
k
iq

)
ωpq

]
.
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It is worthwhile to mention that in the last equality, the term corresponding to q = N
disappears due to the presence of the Kronecker symbol δqj. We see that, despite the
possible presence of singular Jacobian Jk at the top side, the matrix-vector multiplication
corresponding to (∇uN ,∇vN)N,Ωk

contains no singular term.

Obviously, the matrix-vector multiplication corresponding to (pN ,∇·vN)N,Ωk
, namely

N−1

∑
i,j=1

dk
mn,ijp

k
ij, m,n=1,··· ,N−1

can be treated in a similar fashion.

The global matrix system can be built by assembling the local matrix system, together
with the continuity conditions for the velocity, which can be accomplished by requir-
ing that the neighboring solutions share same nodal values at the interfaces. Finally the
resulting set of algebraic equations can be written in a matrix form,

{
ANu+DN p=BNf,

DT
Nu=0,

(3.7)

or, in component form,





K

∑
k=1

Γ
[

∑
(i,j)∈Ξk

N

ak
mn,iju

k
ij+

N−1

∑
i,j=1

dk
mn,ijp

k
ij

]
=

K

∑
k=1

Γbk
mnfk

mn, (m,n)∈Ξk
N ,

N−1

∑
i,j=1

dk
ij,mnuk

ij =0, m,n=1,··· ,N−1; k=1,··· ,K,

where Ξk
N is the set {(i, j);0 ≤ i, j ≤ N} if Ωk is a quadrilateral or is defined by (3.6) if

Ωk is a triangle, and ∑
Γ means the summation after taking into account the continuity

of the velocity on the elemental interfaces and the Dirichlet boundary conditions on the
velocity.

Using a block Gaussian elimination, this discrete spectral-element saddle problem
(3.7) can be decoupled into two positive definite systems for the pressure and the ve-
locity respectively, which are then solved by using a preconditioned conjugate gradient
method. For more detail in this regard, we refer to [12, 21].

4 Numerical results

We present in this section several numerical experiments to demonstrate the flexibil-
ity, accuracy as well as the shortcomings of the proposed unstructured spectral-element
method. In particular, we demonstrate the applicability of this method for simulations of
incompressible flows governed by the Navier-Stokes equations.
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Figure 3: Triangular partition (left); Quadrangular partition (right).

4.1 Accuracy and stability test

We examine here the accuracy and stability of the triangular spectral-element method
and compare them with the quadrangular spectral-element method.

We consider the Navier-Stokes equations





∂u

∂t
+u·∇u−ν∆u+∇p= f, in Ω×(0,T),

∇·u=0, in Ω×(0,T),

u=g, on ∂Ω×(0,T),

u=u0, on Ω×{0}.

(4.1)

The above equations are first discretized in time by using a second-order semi-implicit
BDF-Adam-Bashforth scheme. This leads to, at each time step, a generalized Stokes prob-
lem which is then discretized by using the triangular and quadrangular spectral-element
methods. The final linear system after the space discretization is solved by using an inner-
outer preconditioned conjugate gradient procedure combined with the Uzawa algorithm
(cf. [12]).

We first solve the above equations with ν=1 and with the steady state solution

u(x,y,t)=(sinxcosy,−cosxsiny),

p(x,y,t)=sinxsiny.

In Fig. 4, we plot, in a semi-log scale, the L2-errors and the H1-errors obtained from
the triangular and quadrangular spectral-element methods with the partitions in Fig. 3.
It is observed that the errors of the numerical solutions decay exponentially, and the
convergence rates using the two partitions are comparable.

Next, we examine the effect of clustering of points near the singular vertex on the
stability of a popular time discretization scheme in which the time derivative is approxi-
mated by the second-order BDF formula while the nonlinear convective terms are treated
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Figure 4: Errors in the L2- and H1-norms versus the polynomial degree, obtained with the triangular and the
quadrangular spectral-element methods. Left: velocity error; Right: pressure error.

in the frame of semi-Lagrange method [21]. In Table 1, we list the maximum allowable
time steps for solving the Navier-Stokes equations (4.1) with ν=0.001 using the quadri-
lateral and triangular partitions in Fig. 3. It is observed that the time steps required for
the triangular spectral-element method are generally 2-3 times smaller than that for the
corresponding quadrangular spectral-element method.

Table 1: Maximum allowable time steps for the quadrilateral and triangular partitions.

N 4 6 8 10 12 14
△ 0.091-0.092 0.044-0.045 0.026-0.027 0.016-0.017 0.012-0.013 0.0092-0.0093
� 0.15-0.16 0.13-0.14 0.078-0.079 0.05-0.051 0.035-0.036 0.022-0.023

4.2 Effects on conditioning

While the use of nodal tensorial triangular elements offers the geometric flexibility, it
does have a negative impact on the conditioning of the system matrix due to the fact that
collocation points are densely clustered near the collapsed node (see Fig. 2).

Let AN be the system matrix associated with the Laplace operator using the quadran-
gular and triangular spectral-element partitions in Fig. 3, and HN :=βI+AN We compare
in Table 2 their condition numbers and growth rates α defined by

αC = log(cond(C))/logN

for a given matrix C. It is shown that the condition numbers of both AN and HN (with
β=1000) in the triangular case grow much faster than the quadrangular case.

Next, we examine the condition numbers for the Uzawa operator SN := DNA−1
N DT

N

and the mass-matrix preconditioned Uzawa operator S̃N := B̃
−1
N SN , where B̃N is the mass
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Table 2: Condition numbers for the generalized Helmholtz operator.

△ �
N cond(AN) αAN

cond(HN) αHN
cond(AN) αAN

cond(HN) αHN

4 270.8 4.04 63.7 3.00 58.2 2.93 32.5 2.51
8 2319.3 3.73 356.4 2.83 218.9 2.59 49.5 1.88
12 9959.7 3.70 2224.6 3.10 530.3 2.52 81.2 1.77
16 30932.1 3.73 8104.2 3.24 1105.3 2.53 147.5 1.80

Table 3: Condition numbers for the Uzawa operator.

△ �

N cond(SN) αSN
cond(S̃N) αS̃N

cond(SN) αSN
cond(S̃N) αS̃N

4 17.4 2.06 6.7 1.37 11.8 1.78 7.5 1.45
8 29.7 2.73 8.7 1.04 57.0 1.94 8.6 1.0

12 1616.2 2.97 9.3 0.90 146.5 2.01 9.2 0.89
16 5384.7 3.10 9.6 0.82 286.5 2.04 9.6 0.82

matrix associated to the Gauss quadrature. We observe in Table 3 that while the condition
numbers of SN in the triangular case grows faster than that in the quadrangular case, their
preconditioned matrices behave very similarly and only grow very slowly.

4.3 Moffatt flow

Next, we consider the Moffatt flow near a sharp corner at zero Reynolds number (Stokes
flow). The computational domain is a triangle with three vertexes (−1,0),(1,0),(0,−4).
The domain is partitioned into 30 triangular elements (cf. left of Fig. 5) with N=18. The
flow is driven by a tangential velocity (1−x)(1+x) along the top of the domain. The
streamline contours are plotted on the right of Fig. 5. We are able to capture a cascade of

Figure 5: The domain partition (left), and the contours of the stream function (right).
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small eddies towards the bottom vertex. The results are in agreement with the Fig. 23 in
paper [19].

4.4 Flow through a backward facing step

We now apply our spectral-element method to simulate the flow through a backward
facing step by solving the Navier-Stokes equations (4.1) in the domain illustrated in Fig. 6.

Γ0

Γ0

✲

✻

y

x

✲
✲

✲
Γ1

Γ0,

Γ2

(-0.8,0)

(-0.8,0.4)

(0,-0.2) (4.3,-0.2)

Figure 6: Domain configuration.

The boundary and initial conditions in (4.1) for the backward facing step flow are
specified as follows:

g=





(0,0), on Γ0,(
1−(1−5y)2,0

)
, on Γ1,

(2

3

[
1−
(
1−

10

3
(y+0.2)

)2
]
,0
)

, on Γ2,

(4.2)

u0=
(2

3

[
1−
(
1−

10

3
(y+0.2)

)2
]
,0
)

. (4.3)

We consider the case of Reynolds number Re= ū(H−h)/ν=191, where ū is the aver-
age velocity at the entrance, H and h are respectively the height of the outlet and the en-
trance. So H−h means the height of the step. The expansion ratio of the step is h :H=2:3.
The profile of the inflow boundary condition is taken parabolic, as specified in (4.2). The
outlet boundary is taken far away from the step (22 step heights) to avoid possible artifi-
cial reflection. The spectral-element meshes based on a pure quadrangular partition and
a mixed triangular/quadrangular partition are shown in Fig. 7.

The Navier-Stokes equations (4.1) are first discretized in time by using a second order
BDF scheme for the linear part, and the nonlinear convective terms are treated in the
frame of semi-Lagrange method [21].

We used N = 8 in each macro-element and the time step size △t= 2×10−4. All the
presented results correspond to the numerical solution captured at t=1.482.

We validated the unstructured spectral-element method by comparing the results
with those obtained by a structured rectangular spectral-element mesh. Figs. 8-10 show
respectively the velocity vectors, pressure and streamline contours obtained by the quad-
rangular spectral-element method (top) and triangular spectral-element method (bot-
tom). There is no noticeable difference between the two methods.
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Figure 7: Domain partitions and spectral-element meshes for the backward facing step flow. The domain is
broken into pure quadrangular elements (up) and mixed triangular/quadrangular elements (down).

Figure 8: Instantaneous velocity vectors distribution. The results are essentially the same for the classical
spectral-element method (up) and triangular spectral-element method (down).

Figure 9: Pressure contours obtained respectively from the quadrangular spectral-element method (up) and
triangular spectral-element method (down).

Figure 10: Streamline contours: quadrangular spectral-element method (up) and triangular spectral-element
method (down).



L. Chen, J. Shen and C. Xu / Commun. Comput. Phys., 12 (2012), pp. 315-336 333

Figure 11: Enlarged pressure contourlines in the vicinity of the step: quadrangular spectral element method
(left); triangular spectral-element method (right).

In order to make a more detailed comparison, we present in Fig. 11 an enlarged view
of the pressure pattern near the step. It is observed that the unstructured mesh produces
smoother pressure fields than the structured one. This is due to the fact that there are
more grid points around the step corner in the unstructured mesh. This indicates that the
clustering of the grid points near the “collapsed” vertex in the triangular elements is not
always wasteful and can be useful in resolving corner singularities and sharp layers.

We observe that the triangular spectral method does lead to larger condition numbers
and require more CG iterations as expected. However, it is worthwhile to mention that in
most cases only a few triangular elements are needed to resolve the geometric singularity
and allow geometric flexibility. For instance, in the backward-facing step example (cf.
Fig. 7) considered above, only six triangular elements are needed near the re-entry corner.
Hence, it is expected that the effect of the triangular elements on the assembled system
matrices will not be as pronounced as in the single element case. This is confirmed by the
results in Table 4 where we list the numbers of the outer Uzawa iterations for the Stokes
problem and the number of inner CG iterations (for a tolerance of 10−8) for solving the
two velocity components with the two meshes in Fig. 7.

Table 4: Condition numbers and iteration numbers of the Stokes solver in the backward-facing step flow.

condition # of # of outer # of inner # of inner
Uzawa operator Uzawa iterations iterations for u1 iterations for u2

△ 155.9 42 265 236
� 152.7 41 194 176

Note that we have only considered the straightforward diagonal and mass-matrix
preconditioners here, it is expected that condition numbers and iteration numbers can be
reduced significantly by using a low-order finite-element method on the same grid as a
preconditioner (cf. [4, 13]). However, how to efficiently solve the finite-element system
on a spectral-element mesh which is not shape regular requires further investigation.
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5 Conclusions

We presented an unstructured nodal spectral-element method for the two-dimensional
Stokes and Navier-Stokes equations. The method is based on a rational approximation in
triangle/tetrahedrons and an easy-to-implement nodal basis. The main advantages of the
proposed method are: (i) flexibility in handling complex domains; (ii) full tensor product
property; (iii) an easy-to-implement nodal basis; and (iv) it can be easily extended to the
three-dimensional case.

We presented several two-dimensional numerical experiments which demonstrated
the flexibility and accuracy of the method for a variety of problems including incom-
pressible flows governed by the time dependent Navier-Stokes equations.

It is also observed that the use of triangular elements leads to larger condition num-
bers and requires more iterations when a simple CG iteration with diagonal precondi-
tioner is used. This loss in computational efficiency is the price we pay for the geometric
flexibility. On the other hand, the loss can be significantly reduced if only a few neces-
sary triangular elements are used to resolve the geometric singularity as in the backward
facing step example. However, for full unstructured grid, it becomes important to con-
struct a more efficient preconditioner by using perhaps a finite difference or finite element
method on the same grid (cf. [4, 13]). We shall leave this and the extension to three di-
mensional tetrahedral cases to a future work.
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Appendix: Computation of the geometric factors Gk
i

Let the three vertexes of Ωk be (x1,y1),(x2,y2), and (x3,y3). Then, the one-to-one trans-
formation from � to Ωk reads





x=
1

4
(1+ξ)(1−η)(x2−x1)+

1

2
(1+η)(x3−x1)+x1,

y=
1

4
(1+ξ)(1−η)(y2−y1)+

1

2
(1+η)(y3−y1)+y1,

∀(ξ,η)∈�, (A.1)

with the inverse transformation




ξ=2
(x−x1)(y3−y1)−(x3−x1)(y−y1)

(x−x3)(y2−y1)−(x2−x1)(y−y3)
−1,

η=2
(x−x1)(y2−y1)−(x2−x1)(y−y1)

(x3−x1)(y2−y1)−(x2−x1)(y3−y1)
−1,

∀(x,y)∈Ωk. (A.2)
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In addition, we can easily derive the following formulas:

∂ξ

∂x
=2

[
(x3−x1)(y2−y1)−(x2−x1)(y3−y1)

]
(y−y3)

[
(x−x3)(y2−y1)−(x2−x1)(y−y3)

]2
, (A.3a)

∂ξ

∂y
=−2

[
(x3−x1)(y2−y1)−(x2−x1)(y3−y1)

]
(x−x3)

[
(x−x3)(y2−y1)−(x2−x1)(y−y3)

]2
, (A.3b)

∂η

∂x
=2

y2−y1

(x3−x1)(y2−y1)−(x2−x1)(y3−y1)
, (A.3c)

∂η

∂y
=−2

x2−x1

(x3−x1)(y2−y1)−(x2−x1)(y3−y1)
, (A.3d)

∂x

∂ξ
=(x2−x1)

1−η

4
,

∂x

∂η
=−(x2−x1)

1+ξ

4
+

1

2
(x3−x1), (A.3e)

∂y

∂ξ
=(y2−y1)

1−η

4
,

∂y

∂η
=−(y2−y1)

1+ξ

4
+

1

2
(y3−y1), (A.3f)

Jk =det

(
∂(x,y)

∂(ξ,η)

)
=

1−η

8

[
(x2−x1)(y3−y1)−(x3−x1)(y2−y1)

]
. (A.3g)

In virtue of above formulas, we obtain a relationship between ∇x ϕ(x,y) and ∇ξ ϕ̃(ξ,η)

as follows:

∂ϕ

∂x
=2

[
(x3−x1)(y2−y1)−(x2−x1)(y3−y1)

]
(y−y3)

[
(x−x3)(y2−y1)−(x2−x1)(y−y3)

]2

∂ϕ

∂ξ

+2
y2−y1

(x3−x1)(y2−y1)−(x2−x1)(y3−y1)

∂ϕ

∂η
,

∂ϕ

∂y
=−2

[
(x3−x1)(y2−y1)−(x2−x1)(y3−y1)

]
(x−x3)

[
(x−x3)(y2−y1)−(x2−x1)(y−y3)

]2

∂ϕ

∂ξ

−2
x2−x1

(x3−x1)(y2−y1)−(x2−x1)(y3−y1)

∂ϕ

∂η
,

∂ϕ̃

∂ξ
=(x2−x1)

1−η

4

∂ϕ

∂x
+(y2−y1)

1−η

4

∂ϕ

∂y
,

∂ϕ̃

∂η
=
[
−(x2−x1)

1+ξ

4
+

1

2
(x3−x1)

]∂ϕ

∂x
+
[
−(y2−y1)

1+ξ

4
+

1

2
(y3−y1)

]∂ϕ

∂y
.
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