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Abstract. In this paper we present a selective segmentation model using a dual level
set variational formulation. Our variational model aims to segment all objects with
one level set function (global) and the selected object, which is the closest to the geo-
metric constraints (markers), with another level set (local). It is a combination of edge
detection, markers distance function and active contour without edges. Experimental
results show that our model is more robust than previous work.
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1 Introduction

Image segmentation is a central problem among image processing applications. Its aim
is to distinguish objects in the image foreground from background and to systematically
select specific features out of an image that has many features.

There are different techniques developed for this task such as histogram analysis and
thresholding [21,29,32], region growing [2,35], edge detection and active contours [3,11,
16]. Active contour models are widely used in image segmentation due to their robust-
ness and reliability. These models are formulated as energy minimization problems and
can be categorized broadly into edge-based models [6, 16–18], and region-based mod-
els [9, 11, 24, 26, 31]. Edge-based models use the edge information (certain form of gra-
dients) guiding the active contours towards the object boundary, and the region based
ones make use of image intensities (certain homogeneity) to guide the motion of active
contours.
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The above image segmentation models are useful for various applications when all
features in the whole image are to be segmented. This challenging task is continually
tackled by more refined models but is not required in some other applications such as
CCTV monitoring of a subject and medical imaging of a particular organ. For the latter
applications, the problem becomes selective segmentation.

The main challenge in a selective image segmentation problem is how to differentiate
one feature from another, especially when two objects have similar or same intensities.
For example, in an artificial image like in Fig. 1 the intensities between the triangle and
the rectangle have an extremely small difference and we might be interested in selecting
only one of them. Another example is with medical images (CT and MRI) which often
have less contrast in image intensities.

Recent work by Gout and Guyader [14] and Badshah-Chen [4] proposed two different
variational models for selective segmentation. The Gout-Guyader model [14,15] is based
on edge information of the object while the Badshah-Chen model [4] combines an edge
based model with region based information. Both models are useful and can segment a
range of images, but there are cases which appear too challenging for either model. The
latter model, with the help of region information, improved the former in robustness and
segmentation quality in case of noisy images. It should be remarked that for global seg-
mentation, the idea of combing an edge based model with region based information was
earlier used in [5,30]. However we have observed that the particular selective segmenta-
tion model of [4] partly based on Chan-Vese model [11], when solved in a time-marching
framework, can reproduce the same solution of two piecewise constants as the Chan-Vese
model [11]; if this happens, the capability of selectiveness is lost and we obtain a global
segmentation which is not needed for our purpose. This problem is illustrated in the top
two plots of Fig. 2 (which solves the problem from Fig. 1).

To further improve on the Badshah-Chen work [4] here we will introduce a new
model which does two tasks at the same time, one to find the segmentation of all bound-
aries and the other to focus on the selected object, which is the closest to the geometric
constraints (or markers). The first task implements a global segmentation like a region
based model while the second one implements a local segmentation using both local
edge and local region information. Since each task is characterized by a level set func-
tion [1, 7, 10, 17, 23, 25, 28], our model employs two level set functions, namely, the global
function φG and the local function φL. Once our dual level set variational model is solved,
the global level set function φG will segment the entire domain while the local one will
define the desired selective object. However, since a level set function is not unique away
from a boundary, a re-initialization might be required. There are two different techniques
of re-initialization, either by solving a re-initialization equation [25] or by incorporation
of a functional into the minimization problem [18]. Before proceeding, to give an early
clue on our new model to be presented shortly, the bottom two plots of Fig. 2 show our
new and correctly segmented results.

We remark that our proposed model for local and selective segmentation may be fur-
ther speeded up by using the numerical methodology as developed by Sethian [27],
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Figure 1: (a) An image of a 2D triangle over a rectangle; (b) Plot of intensities of the image; (c) Plane cut
view through the vertical middle of the image.
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Figure 2: Comparison of (c) by the new model and (b) by an old model of [4]. (a) given image; (b) incorrect
result by the old model; (c) correct selection of the triangle by the new model; (d) correct selection of the
rectangle by the new model.

known as fast marching methods, which were later extended in Farcadel-Guyader-
Gout [12], through evolving boundary contours in a neighbourhood of the underlying
zero level set curves.

The rest of this paper is organized in the following way: Section 2 gives a review of ex-
isting and related models of Chan-Vese [11], Badshah-Chen [4], and Li-Xu-Gui-Fox [18].
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In Section 3 we present the proposed new model and derive the Euler-Lagrange equa-
tion. In Section 4 we describe an additive operator splitting method (AOS) for solving
the PDE. In Section 5 we give some experimental results to further illustrate the improved
robustness of our new model.

2 Review of existing variational segmentation models

As mentioned, there exist many variational segmentation models in the literature [8, 19,
22]. We shall only review three models below that are directly related to this work.

2.1 Chan-Vese model

The Chan-Vese variational model [11] of active contours without edges has been used
successfully for segmentation of all image features. This model does not use the gradient
of the image as a stopping process as it is a region based method and the stopping term
is depending on the Mumford and Shah segmentation technique [24].

The basic idea of the model is as follows. Assume that a given image z is formed by
two regions of approximatively piecewise constant intensities, of distinct values zi and zo

and that the object to be detected is represented by the region with intensities closest to
the value zi. Let Γ denote the boundary that separates the two regions Ω1 and Ω2=Ω\Ω1.
Then z≈zi inside the object (inside Γ) and z≈zo outside the object (outside Γ). Chan and
Vese [11] proposed the variational problem

inf
c1,c2,Γ

F(Γ,c1,c2) (2.1)

for the segmentation of all image features, where

F(Γ,c1,c2)=µlength(Γ)+λ1

∫

inside(Γ)
|z(x,y)−c1|2dxdy+λ2

∫

outside(Γ)
|z(x,y)−c2|2dxdy. (2.2)

Here z(x,y) is the original image, c1 and c2 are the average values of z inside and outside
of the variable contour Γ, also µ, λ1 and λ2 are non-negative fixed parameters that should
be related to the features’ diameter. As both the integral and the limits of integration in
equation (2.2) are not known, to overcome this problem, a level set function is introduced.
The unknown curve Γ can be represented by the zero level set of Lipschitz function φ :
Ω→R such











Γ=∂Ω1={(x,y)∈Ω
∣

∣φ(x,y)=0},

inside(Γ)=Ω1={(x,y)∈Ω
∣

∣φ(x,y)>0},

outside(Γ)=Ω2={(x,y)∈Ω
∣

∣φ(x,y)<0}.

Define the Heaviside and the Dirac delta function as

H(x)=

{

1, if x≥0,

0, if x<0,
and δ(x)=H′(x),
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and given φ as above, Eq. (2.2) is rewritten in the following way

F(φ,c1,c2)=µ
∫

Ω
|∇H(φ)|dxdy+λ1

∫

Ω
|z(x,y)−c1|2H(φ(x,y))dxdy

+λ2

∫

Ω
|z(x,y)−c2|2(1−H(φ(x,y)))dxdy. (2.3)

Once the level set function φ is obtained, the segmented image is given by

u= c1H(φ)+c2(1−H(φ)).

To minimize F with respect to c1, c2, keeping φ(x,y) fixed, we have

c1(φ(x,y))=

∫

Ω
z(x,y)H(φ(x,y))dxdy
∫

Ω
H(φ(x,y))dxdy

, (2.4)

if
∫

Ω
H(φ(x,y))dxdy>0 (i.e., the curve has a nonempty interior in Ω) and

c2(φ(x,y))=

∫

Ω
z(x,y)(1−H(φ(x,y)))dxdy
∫

Ω
(1−H(φ(x,y)))dxdy

, (2.5)

if
∫

Ω
(1−H(φ(x,y)))dx>0 (i.e., the curve has a nonempty exterior in Ω).

To compute the Euler-Lagrange equation for the unknown function φ, as H is not
differentiable at the origin, we consider regularized versions of H and δ:

Hǫ(x)=
1

2

(

1+
2

π
arctan

( x

ǫ

))

, δǫ(x)=H′
ǫ(x)=

ǫ

π(ǫ2+x2)
, (2.6)

where Hǫ →H when ǫ→0. The regularized functional of F(φ,c1,c2) is given by

Fǫ(φ,c1,c2)=µ
∫

Ω
δǫ(φ(x,y))|∇φ|dxdy+λ1

∫

Ω
|z(x,y)−c1|2Hǫ(φ(x,y))dxdy

+λ2

∫

Ω
|z(x,y)−c2|2(1−Hǫ(φ(x,y)))dxdy. (2.7)

Finally we obtain the following Euler-Lagrange equation for φ:















δǫ(φ)
[

µ∇·
( ∇φ

|∇φ|
)

−λ1(z(x,y)−c1)
2+λ2(z(x,y)−c2)

2
]

=0, in Ω,

δǫ(φ)

|∇φ|
∂φ

∂~n
=0, on ∂Ω,

(2.8)

where~n is the unit normal exterior to the boundary ∂Ω, and ∂φ/∂~n is the normal deriva-
tive of φ at boundary. Then once φ is found, the piecewise segmented image is given by
u(x,y)=Hǫ(φ(x,y))c1+(1−Hǫ(φ(x,y)))c2.
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2.2 Li-Xu-Gui-Fox model

Improving on the Chan-Vese model, Li-Xu-Gui-Fox [18] proposed a new variational for-
mulation for geometric active contours that forces the level set function to be close to
a signed distance function, and therefore completely eliminates the need of the costly
re-initialization procedure. Their variational formulation

min
φ

E(φ)=µP(φ)+αLg(φ)+νAg(φ), (2.9)

where µ > 0, α > 0 and ν are constants, consists of an internal energy term µP(φ) that
penalizes the deviation of the level set function from a signed distance function, and an
external energy term Em(φ)=αLg(φ)+νAg(φ) that drives the motion of the zero level set
toward the desired image features, such as object boundaries. The terms P(φ), Lg(φ) and
Ag(φ) are defined by

P(φ)=
∫

Ω

1

2
(|∇φ|−1)2dxdy, Lg(φ)=

∫

Ω
gδ(φ)|∇φ|dxdy, Ag(φ)=

∫

Ω
gH(−φ)dxdy,

where g=
(

1+|∇Gσ∗z(x,y)|2
)−1

for a given image z(x,y).
By calculus of variations, the Euler-Lagrange equation of (2.9), ∂E/∂φ = 0, for the

function φ is

−µ
[

∆φ−div
( ∇φ

|∇φ|
)]

−αδ(φ)div
(

g
∇φ

|∇φ|
)

−νgδ(φ)=0, (2.10)

where ∆ is the Laplacian operator. The steepest descent process for minimization of the
functional E is the following gradient flow:

∂φ

∂t
=µ

[

∆φ−div
( ∇φ

|∇φ|
)]

+αδ(φ)div
(

g
∇φ

|∇φ|
)

+νgδ(φ)

or
∂φ

∂t
=µ

[

∆φ−div
( ∇φ

|∇φ|
)]

+αδ(φ)
[

gdiv
( ∇φ

|∇φ|
)

+∇g
∇φ

|∇φ|
]

+νgδ(φ).

Hence the level set evolution can be easily implemented by a finite difference scheme and
is computationally efficient.

2.3 Badshah-Chen model

The above models are examples of global segmentation methods. To tackle the task of
selective segmentation, these global models are inadequate even if we start an initial con-
tour from within an interested object. Below we review the selective model by Badshah-
Chen [4] which is based on the C. Gout and C. Guyader model [14]. Assume that z(x,y)
is the given image defined on the rectangular domain Ω.
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In a selective segmentation, we hope to detect the features of image z that are defined
in a closed domain and to be closest to the geometrical points in a set A={(x∗i ,y∗i )∈Ω, 1≤
i≤n1}⊂Ω consisting of n1 distinct points near the object boundary to be detected [13,14].
The aim a selective segmentation is to find an optimal contour Γ⊂ Ω that represents a
closed object and best approaches the points from the set A in some sense of minimal
geometric distance.

The C. Gout and C. Guyader model [14] combines the geodesic active contour
model [6] with the geometrical constraints of being close to A. An edge detector function
g is used, as defined in Eq. (2.11) (other forms can be found in [6, 10, 22])

g(w)=
1

1+w2
. (2.11)

The purpose of the edge detector function g is to stop the evolving curve on edges of the
objects in an image. Clearly g(|∇z(x,y)|) is zero on edges in an image where w is large
and one in flat regions where w is small. A distance function d will be required to stop the
evolving curve when approaching the points from set A. Let the function d be defined in
the following way [14]:

d(x,y)=distance((x,y),A)=
n1

∏
i=1

[

1−exp
(

− (x−x∗i )
2

2τ2

)

exp
(

− (y−y∗i )
2

2τ2

)

]

, ∀(x,y)∈Ω. (2.12)

Another option for d is
d(x,y)= min

(x∗i ,y∗i )∈A

∣

∣(x,y)−(x∗i ,y∗i )
∣

∣

as used in [13]. Clearly d acts locally and will be approximately 0 in the neighborhood of
points of A. The aim is to find a contour Γ such that d≃0 or g≃0 along it. They proposed
the following model for this purpose

min
Γ

F(Γ)=
∫

Γ
d(x,y)g(|∇z(x,y)|)ds. (2.13)

The contour Γ will stop at local minima where d≃ 0 (in the neighborhood of points for
A) or g≃0 (near object boundaries). When the interested object is not too close to other
objects and if the given image z does not have noise, the above model leads to reliable
segmentation. In the latter case, using a blurring operator K and replacing g(|∇z(x,y)|)
by g(|∇Kz(x,y)|) to smooth out the noise in z can improve the segmented results but the
results are not always satisfactory.

The Badshah-Chen [4] work, improving on (2.13), proposed the following model:

min
φ(x,y),c1,c2

F(φ(x,y),c1,c2)=µ
∫

Ω
d(x,y)g(|∇z(x,y)|)|∇H(φ(x,y))|dxdy

+λ1

∫

Ω
|z(x,y)−c1|2H(φ(x,y))dxdy

+λ2

∫

Ω
|z(x,y)−c2|2(1−H(φ(x,y)))dxdy, (2.14)
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essentially adding two region-based terms

λ1

∫

inside(Γ)
|z(x,y)−c1|2dxdy+λ2

∫

outside(Γ)
|z(x,y)−c2|2dxdy

to (2.13) where H is the Heaviside function.
Since the Heaviside function is not differentiable at the origin, they consider the reg-

ularized version of H denoted by Hǫ and of the corresponding δ by δǫ as with (2.6). Then
the minimization problem (2.14) becomes

min
φ(x,y),c1,c2

Fǫ(φ(x,y),c1,c2)=µ
∫

Ω
Wδǫ(φ(x,y))|∇φ(x,y)|dxdy

+λ1

∫

Ω
|z(x,y)−c1|2Hǫ(φ(x,y))dxdy

+λ2

∫

Ω
|z(x,y)−c2|2(1−Hǫ(φ(x,y)))dxdy, (2.15)

where W = d(x,y)g(|∇z(x,y)|). Keeping φ(x,y) fixed and minimizing with respect to c1

and c2, one gets the following equations for computing c1 and c2

c1(φ(x,y))=

∫

Ω
z(x,y)Hǫ(φ(x,y))dxdy
∫

Ω
Hǫ(φ(x,y))dxdy

, (2.16)

if
∫

Ω
Hǫ(φ(x,y))dxdy>0 (i.e., if the curve has a nonempty interior in Ω), and

c2(φ(x,y))=

∫

Ω
z(x,y)(1−Hǫ(φ(x,y)))dxdy
∫

Ω
(1−Hǫ(φ(x,y)))dxdy

, (2.17)

if
∫

Ω
(1−Hǫ(φ(x,y)))dxdy > 0 (i.e., if the curve has a nonempty exterior in Ω). Finally

keeping c1 and c2 fixed, one can minimize (2.15) with respect to φ(x,y). Thus we have the
following Euler-Lagrange equation for φ

δǫ(φ)µ∇·
(

W
∇φ

|∇φ|
)

−δǫ(φ)
(

λ1(z(x,y)−c1)
2−λ2(z(x,y)−c2)

2
)

=0, in Ω (2.18)

with

W
δǫ(φ)

|∇φ|
∂φ

∂~n
=0, on ∂Ω.

3 A new variational model

Our new model is motivated by the fact that the region-based terms in (2.14) essentially
carry out a global segmentation and new region-based terms are required for local seg-
mentation i.e., selection. To this end, we shall propose a dual level set approach where
φG and φL are respectively used to carry out global and local segmentation.
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For the given image z, we shall use the following notation. Denote by ΓG =∂ΩG in Ω

the global evolving curve for locating all features ΩG of image z. The desired selective
curve is denoted by ΓL = ∂ΩL in Ω, where we naturally assume ΩL is contained in ΩG.
Thus we have inside(ΓL) = ΩL, outside(ΓL) = Ω\ΩL, inside(ΓG) = ΩG, outside(ΓG) =
Ω\ΩG. The two zero level set functions φL(x,y) and φG(x,y) are defined such that











ΓL=∂ΩL ={(x,y)∈ΩL

∣

∣φL(x,y)=0},

inside(ΓL)=ΩL ={(x,y)∈ΩL

∣

∣φL(x,y)>0},

outside(ΓL)=Ω\ΩL ={(x,y)∈ΩL

∣

∣φL(x,y)<0},










ΓG =∂ΩG ={(x,y)∈Ω
∣

∣φG(x,y)=0},

inside(ΓG)=ΩG ={(x,y)∈Ω
∣

∣φG(x,y)>0},

outside(ΓG)=Ω\ΩG ={(x,y)∈Ω
∣

∣φG(x,y)<0}.

In this way we replace the unknown quantities ΓL by φL and ΓG by φG shortly. To explore
possible advantages of having an enlarged domain of ΩG within a distance of γ away,
we define

ΩG,γ={(x,y)∈Ω
∣

∣φG(x,y)>−γ},

where the parameter γ≥0 will be taken as 0 or 3. Note ΩL⊂ΩG ⊆ΩG,γ⊂Ω.
Then realizing the idea of looking all features ΩG in the whole image domain Ω and

the selective features ΩL in the local domain ΩG, our new variational model is the fol-
lowing

min
ΓL,ΓG ,c1,c2

F(ΓL,ΓG,c1,c2)

=µ1

∫

ΓL

d(x,y)g(|∇z(x,y)|)ds+µ2

∫

ΓG

g(|∇z(x,y)|)ds

+λ1G

∫

inside(ΓG)
|z(x,y)−c1|2dxdy+λ2G

∫

outside(ΓG)
|z(x,y)−c2|2dxdy

+λ1

∫

inside(ΓL)
|z(x,y)−c1|2dxdy+λ2

∫

outside(ΓL)∩inside(ΓG)
|z(x,y)−c1|2dxdy

+λ3

∫

outside(ΓL)∩outside(ΓG)
|z(x,y)−c2|2dxdy, (3.1)

where

g(|∇z(x,y)|)= 1

1+
∣

∣∇Gσ(x,y)∗z(x,y)
∣

∣

2
, (3.2)

parameters µ1, µ2, λ1G, λ2G, λ1, λ2, λ3 are all positive, d(x,y) is a distance function from
the given geometric markers in set A as defined in [4]. Here Gσ(x,y)∗z(x,y) as a smooth

version of z(x,y) with Gaussian Gσ(x,y)=σ−1/2e−|x2+y2|/4σ is to deal with possible noise
(in our experiments for the image with strong noise, σ=1/2 is taken).

When deriving level set formulation for (3.1), we make these two decisions. Firstly
both level set functions φL(x,y), φG(x,y) will be automatically scaled with new terms
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Figure 3: (a) The Heaviside function H and the approximation Hǫ (b) function δǫ.

similar to P(φ) in (2.9) to avoid re-initialization. Secondly we like to constrain the search
domain for computing the weighted length of ΓL to ΩG,γ instead of Ω since

∫

ΓL

d(x,y)g(|∇z(x,y)|)ds=
∫

Ω
d(x,y)g(|∇z(x,y)|)|∇H(φL (x,y))dxdy

=
∫

ΩG,γ

d(x,y)g(|∇z(x,y)|)|∇H(φL (x,y))dxdy

=
∫

Ω
d(x,y)g(|∇z(x,y)|)|∇H(φL (x,y))|H(φG(x,y)+γ)dxdy.

We shall follow the same procedure of treating the non-differentiable H function by
replacing it with Hǫ a regularized Heaviside function as in [3, 9]. Fig. 3 shows a regu-
larized Heaviside function (H1 compared to H) and its derivative. Different regularized
Heaviside functions can be used e.g.,

H1ǫ =



















0, z<−ǫ,

1

2

[

1+
z

ǫ
+

1

π
sin

(πz

ǫ

)]

, |z|≤ǫ,

1, z>ǫ,

H2ǫ =
1

2

(

1+erf
(ǫ

z

)

)

, H3ǫ =
1

2

(

1+
2

π
arctan

( z

ǫ

)

)

.

The error function erf(x) is twice the integral of the Gaussian distribution with 0 mean
and variance of 1/2 in the form

erf(x)=
2√
π

∫ x

0
e−t2

dt.

The differences between H1ǫ,H2ǫ and H3ǫ and their corresponding delta function δ1ǫ,δ2ǫ

and δ3ǫ are that the first two functions have a small support in the interval [−ǫ,ǫ], while
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H3ǫ and its corresponding δ3ǫ are different from zero everywhere. The above observation
suggests that H3ǫ may not be suitable for the extreme case where the interested feature is
less than 2 pixels away from other features; adjusting ǫ will resolve the problem but we
lose the automatic capability. So our suggestion is to use H1ǫ, or H2ǫ while we may use
H3ǫ for less challenging problems.

With a regularized Heaviside, the Eq. (3.1) can be rewritten as

min
φL(x,y),φG(x,y),c1,c2

Fǫ(φL(x,y),φG(x,y)c1,c2)

=µ1

∫

Ω
d(x,y)g(|∇z(x,y)|)δǫ(φL(x,y))|∇φL(x,y)|Hǫ(φG(x,y)+γ)dxdy

+
µL

2

∫

Ω
(|∇φL(x,y)|−1)2dxdy+µ2

∫

Ω
g(|∇z(x,y)|)δǫ(φG(x,y))|∇φG(x,y)|dxdy

+
µG

2

∫

Ω
(|∇φG(x,y)|−1)2dxdy+λ1G

∫

Ω
|z(x,y)−c1|2Hǫ(φG(x,y)dxdy

+λ2G

∫

Ω
|z(x,y)−c2|2(1−Hǫ(φG(x,y))dxdy+λ1

∫

Ω
|z(x,y)−c1|2Hǫ(φL(x,y)dxdy

+λ2

∫

Ω
|z(x,y)−c1|2(1−Hǫ(φL(x,y))H(φG(x,y)dxdy

+λ3

∫

Ω
|z(x,y)−c2|2(1−Hǫ(φL(x,y))(1−Hǫ(φG(x,y))dxdy. (3.3)

Here µL, µG are positive. For brevity, we use d, z, φL, φG to denote d(x,y), z(x,y), φL(x,y)
and φG(x,y). Keeping φ fixed and minimizing with respect to c1 and c2, we have the
following equations for computing c1 and c2:

c1=
λ1G

∫

Ω
zHǫ(φG)dxdy+λ1

∫

Ω
zHǫ(φL)dxdy+λ2

∫

Ω
z(1−Hǫ(φL))Hǫ(φG)dxdy

λ1G

∫

Ω
Hǫ(φG)dxdy+λ1

∫

Ω
Hǫ(φL)dxdy+λ2

∫

Ω
(1−Hǫ(φL))Hǫ(φG)dxdy

, (3.4a)

c2=
λ2G

∫

Ω
z(1−Hǫ(φG))dxdy+λ3

∫

Ω
z(1−Hǫ(φL))(1−Hǫ(φG))dxdy

λ2G

∫

Ω
(1−Hǫ(φG))dxdy+λ3

∫

Ω
(1−Hǫ(φL))(1−Hǫ(φG))dxdy

, (3.4b)

if we assume the φG(x,y) has neither empty interior nor empty exterior.

Now keeping c1 and c2 fixed, we minimize (3.3) with respect to φL(x,y) and φG(x,y).
We first minimize Fǫ with respect to φL by using the Gâteaux derivatives to find the first
variation of the functional Fǫ with respect to φL

lim
h→0

d

dh

(

Fǫ(φL+hψ,c1,c2)
)

=0.

Using the same W as in (2.15), the following Euler-Lagrange equation for φL can be de-
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rived:



































µ1δǫ(φL)∇·
(

WHǫ(φG+γ)
∇φL

|∇φL|
)

+µL∇·
((

1− 1

|∇φL|
)

∇φL

)

+δǫ(φL)
(

−λ1(z(x,y)−c1)
2+λ2(z(x,y)−c1)

2Hε(φG)

+λ3(z(x,y)−c2)2(1−Hε(φG))
)

=0, in Ω,

∂φL

∂~n
=0, on ∂Ω,

(3.5)

where boundary conditions

µ1WHǫ(φG+γ)
δǫ(φL)

|∇φL|
∂φL

∂~n
=0 and µL(|φL|−1)

1

|∇φL|
∂φL

∂~n
=0

reduce to Neumann boundary condition. In the same way we may derive the Euler-
Lagrange equation for φG.

In equations for φG and φL, balloon terms such as αW|∇φL|, αg(x,y)|∇φG | respec-
tively can be added to speed up the convergence. The final equations of φG and φL can
be written in the form



































µ1δǫ(φL)∇·
(

WHǫ(φG+γ)
∇φL

|∇φL|
)

+µL∇·
((

1− 1

|∇φL|
)

∇φL

)

+δǫ(φL)
(

−λ1(z(x,y)−c1)
2+λ2(z(x,y)−c1)

2Hε(φG)

+λ3(z(x,y)−c2)2(1−Hε(φG))
)

+αW(x,y)|∇φL|=0, in Ω,

∂φL

∂~n
=0, on ∂Ω,

(3.6)

and











































µ2δǫ(φG)∇·
(

g(x,y)
∇φG

|∇φG|

)

+µG∇·
((

1− 1

|∇φG|
)

∇φG

)

+δǫ(φG+γ)
(

−µ1W(x,y)|∇Hε(φL)|
)

+δǫ(φG)
(

−λ1G(z(x,y)−c1)
2

+λ2G(z(x,y)−c2)2−λ2(z(x,y)−c1)
2(1−H(φL))

+λ3(z(x,y)−c2)2(1−H(φL)
)

+αg(x,y)|∇φG |=0, in Ω,

∂φG

∂~n
=0, on ∂Ω.

(3.7)

By freezing the nonlinear coefficients in Eqs. (3.6) and (3.7) we get linearised systems
of equations which can be solved by a fixed point method. Since the drawback of this
method is the computational cost of the associated linear system for large image, we
develop a fast method similar to [4, 14, 33, 34].
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4 An additive operator splitting algorithm

In order to develop an additive operator splitting (AOS) method [20, 34] for (3.6) and
(3.7), we consider the following related parabolic equations:











































φL(x,y,0)=φ0
L(x,y),

∂φL

∂t
=µ1δǫ(φL)∇·

(

WHǫ(φG+γ)
∇φL

|∇φL|

)

+µL∇·
((

1− 1

|∇φL|
)

∇φL

)

+δǫ(φL)
(

−λ1(z(x,y)−c1)
2+λ2(z(x,y)−c1)

2Hε(φG)

+λ3(z(x,y)−c2)2(1−Hε(φG))
)

+αW(x,y)|∇φL |,
∂φL

∂~n

∣

∣

∣

∂Ω
=0,

(4.1a)























































φG(x,y,0)=φ0
G(x,y)

∂φG

∂t
=µ2δǫ(φG)∇·

(

g(x,y)
∇φG

|∇φG|
)

+µG∇·
((

1− 1

|∇φG|
)

∇φG

)

+δǫ(φG+γ)
(

−µ1W(x,y)|∇Hε(φL)|
)

+αg(x,y)|∇φG |
+δǫ(φG)

(

−λ1G(z(x,y)−c1)
2+λ2G(z(x,y)−c2)2

−λ2(z(x,y)−c1)
2(1−H(φL))+λ3(z(x,y)−c2)2(1−H(φL))

)

,

∂φG

∂~n

∣

∣

∣

∂Ω
=0.

(4.1b)

By denoting

fL =δǫ(φL)
(

−λ1(z(x,y)−c1)
2+λ2(z(x,y)−c1)

2Hε(φG)

+λ3(z(x,y)−c2)
2(1−Hε(φG))

)

+αW(x,y)|∇φL |,
fG =δǫ(φG+γ)

(

−µ1W(x,y)Hε(φL)
)

+δǫ(φG)
(

−λ1G(z(x,y)−c1)
2+λ2G(z(x,y)−c2)

2

−λ2(z(x,y)−c1)
2(1−H(φL))+λ3(z(x,y)−c2)

2(1−H(φL))
)

+αg(x,y)|∇φG |,

FL=
WHǫ(φG+γ)

|∇φL|
, FG =

g

|∇φG|
, EL=1− 1

|∇φL|
, EG =1− 1

|∇φG|
,

Eqs. (4.1b) and (4.1a) can be written in the compact form:



























∂φL

∂t
=µ1δǫ(φL)∇·(FL∇φL)+µL∇·(EL∇φL)+ fL

=µ1δǫ(φL)(∂x(FL∂xφL)+∂y(FL∂yφL))+µL(∂x(EL∂xφL)+∂y(EL∂yφL))+ fL,

∂φG

∂t
=µ2δǫ(φG)∇·(FG∇φG)+µG∇·(EG∇φG)+ fG

=µ2δǫ(φG)(∂x(FG∂xφG)+∂y(FG∂yφG))+µG(∂x(EG∂xφG)+∂y(EG∂yφG))+ fG.

(4.2)

Since the coefficients contain the nonlinearities, and φG, φL depend on each other, we have
to iterate the above equations. Note that both equations in (4.2) are of similar self-adjoint
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form. It suffices to consider how to solve the second equation:

∂φG

∂t
=µ2δǫ(φG)

(

∂x(FG∂xφG)+∂y(FG∂yφG)
)

+µG(∂x

(

EG∂xφG)+∂y(EG∂yφG)
)

+ fG. (4.3)

Below we shall write φ,F,E after dropping the subscripts in φG, FG, EG.
Discretizing with spatial step size h1=h2=h=1, the Eq. (4.3) leads to the semi-implicit

equation in x-coordinate direction

φk+1
i,j −φk

i,j

2△t
=µ2δǫ(φi)

(( Fk
i,j+Fk

i+1,j

2h2

)

(φk+1
i+1,j−φk+1

i,j )−
(Fk

i,j+Fk
i−1,j

2h2

)

(φk+1
i,j −φk+1

i−1,j)
)

+µG

((Ek
i,j+Ek

i+1,j

2h2

)

(φk+1
i+1,j−φk+1

i,j )−
(Ek

i,j+Ek
i−1,j

2h2

)

(φk+1
i,j −φk+1

i−1,j)
)

+
1

2
fi,j , (4.4)

⇒ φk+1
i,j =φk

i,j+2△t(w1φk+1
i+1,j−w2φk+1

i,j +w3φk+1
i−1,j)+△t fi,j , (4.5)

where

w1=µ2δǫ(φi,j)
Fk

i,j+Fk
i+1,j

2h2
+µG

Ek
i,j+Ek

i+1,j

2h2
, (4.6a)

w2=µ2δǫ(φi,j)
Fk

i−1,j+2Fk
i,j+Fk

i+1,j

2h2
+µG

Ek
i−1,j+2Ek

i,j+Ek
i+1,j

2h2
, (4.6b)

w3=µ2δǫ(φi,j)
Fk

i,j+Fk
i−1,j

2h2
+µG

Ek
i,j+Ek

i−1,j

2h2
. (4.6c)

Similarly, in y-coordinate direction, one gets

⇒ φk+1
i,j =φk

i,j+2△t(w̄1φk+1
i,j+1−w̄2φk+1

i,j +w̄3φk+1
i,j−1)+△t fi,j. (4.7)

In the spirit of AOS, we solve the decoupled system of Eqs. (4.5) and (4.7) with time step
2△t respectively in the x,y-direction and then average the two solutions with the result
equivalent to solving a coupled semi-implicit system with the time step △t. In matrix
notation, Eqs. (4.5) and (4.7) can be written as:

(I−2△tAl(φ
k))φk+1

l = f̂ k, for l=1,2 : φk+1=
1

2

2

∑
l=1

φk+1
l , k=0,1,··· ,

where f̂ k =φk+△t f k , I is the identity matrix and Al is a tridiagonal matrix respectively
for l=1,2 consisting of {w1,−w2,w3} and {w̄1,−w̄2,w̄3} (adjusted at boundary nodes).

5 Experimental results

In order to illustrate the robustness of our proposed model we present further numerical
results from segmentation of a range of artificial, synthetic and real images, with different
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types of contours and shapes. We also compare our work with Badshah-Chen [4]; as we
shall see, for problems which can be solved by both models, our method is less dependent
on the choice of regularized Heaviside functions used while there exist some cases where
the latter method does not work.

In our numerical experiments, we generally choose two image sizes n=128,256 and
the parameters as follows:

λ1G =1, λ2G =1, λ1=1, λ2=1, λ3=1, τ=4, h=1 (the step space),

△t=0.1 or 0.01 (the time step), α=0.001,

µL=0.4, µG=0.4, µ1=n2/10, µ2=n2/10

(if a given image has no noise, then all µ parameters can chosen smaller). The initial
global level set, placed as a circle, has the form

φ0
G =

√

(x−x0
G)

2+(y−y0
G)

2−r0
G

(where (x0
G, y0

G) is the center of the circle, usually at the center of Ω and r0
G = n/5 the

radius), and the initial local level set is placed similarly as

φ0
L =

√

(x−x0
L)

2+(y−y0
L)

2−r0
L,

where (x0
L, y0

L) is the center of the markers in set A and the radius r0
L is the minimum

distance of the markers r0
L =mina 6=b‖pa−pb‖, where pa,pb ∈A; here

x0
L =

∑x-comp of markers

no. of markers
, y0

L =
∑y-comp of markers

no. of markers
.

Since H1ǫ and H2ǫ lead to simatic results, in our experiments we try approximations H1ǫ,
H3ǫ and corresponding δ1ǫ and δ3ǫ with ǫ=h=1; note H3ǫ has a bigger support in the in-
terval [−ǫ,ǫ], which means that with it a moderately large ǫ may lead to spurious results.

In test comparisons, the initial local level set initialization and the choices of parame-
ters are the same for the Badshah-Chen method [4].

5.1 Test Set 1 – robustness of the new model

First we show some numerical results of our new method for segmenting 8 different
images. The top left image in Fig. 4 shows an image with many features where the spiral
was the aim of detection. The top right image shows results of all features captured by
our global level set, and the last images show the segmentation result of the spiral using
3 geometric markers.

In Fig. 5, we test the model on a real CT image where the right kidney is to be selected;
again the bottom two images show the correctly segmented organ, using 3 geometric
markers.



276 L. Rada and K. Chen / Commun. Comput. Phys., 12 (2012), pp. 261-283

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

(a) (b)

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

(c) (d)

Figure 4: Problem 1 of Test Set 1 by the new model — Successful detection of the spiral in a clean and synthetic
image with 3 markers. (a) Initial zero level set contours with dt=0.1 (n=128); (b) Successful global segmentation
by the New model; (c-d) Successful local segmentation and the segmented feature. CPU time=56.3.
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Figure 5: Problem 2 of Test Set 1 by the new model — Successful detection of the right kidney in a real CT image
with 3 markers. (a) Initial zero level set contours with dt=0.01 (n=128); (b) Successful global segmentation
by the New model; (c-d) Successful local segmentation and the segmented feature. CPU time=69.1.

Fig. 6 shows three test results (of an artificial flower, the cameraman and a cell image)
by our model; clearly our selection model delivers good results.

Finally Fig. 7 shows three more results obtained from segmentation of images with
strong noise or smooth contours. Again our model gives the correctly segmented results
satisfying the expected selection requirement.

5.2 Test Set 2 – comparison of segmentation of easier problems

As far as selective segmentation is concerned, easier problems refer to those images
where the selective target is well separated from all other nearby features; in the ex-
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Figure 6: Problems 3-5 of Test Set 1 by the new model — (a) Successful detection of the flower in a clean
and synthetic image with 3 markers; (b) cameraman in a clean and real image with 3 markers; (c) one cell
in a real image with 3 markers. Here we take dt = 0.1 (n = 256). The first row shows the selected object
from using 3 markers, the second row the final global level set selection and the third row the selected feature.
CPU time=120.4, 138.2 and 517.8 respectively.
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Figure 7: Problems 6-8 of Test Set 1 by the new model — (a) Successful detection of one coin in a strong noise
image with 3 markers; (b) one cell in a real image of mouse embryonic stem cells with 3 markers; (c) selection
of the main galaxy with 3 markers. Here we take dt=0.01 (n=256). The first row shows the selected object
from using 3 markers, the second row the final global level set selection and the third row the selected feature.
CPU time 221.2, 885.0 and 183.3 respectively.
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Figure 8: Problem 1 in Test Set 2: Identical results by [4] (top row) and this model (bottom row). (a) Initial
zero level set contours with dt=0.01 (n=256); CPU time=48.5; (d) Successful global segmentation by the New
model; (e-f) Successful local segmentation of the box with 4 markers by the New model, with CPU time=117.6.
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Figure 9: Problem 2 in Test Set 2: Identical results by [4] (top row) and this model (bottom row). (a) Initial
zero level set contours with dt= 0.1 (n= 256); (b-c) Successful result and the selected feature with [4], with
CPU time=50.7; (d) Successful global segmentation by the New model; (e-f) Successful local segmentation of
the cross with 4 markers by the New model, with CPU time=118.8.
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Figure 10: Problem 3 in Test Set 2: Identical results by [4] (top row) and this model (bottom row). (a) Initial
zero level set contours with dt= 0.1 (n= 256); (b-c) Successful result and the selected feature with [4], with
CPU time=62.7; (d) Successful global segmentation by the New model; (e-f) Successful local segmentation of
the knee cap with 4 markers by the New model, with CPU time=142.3.
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treme case where the separation distance is extremely large and the target feature is of a
simple convex shape, one may even use the non-segmentation models such as [11,18] by
starting evolving contours near the geometric markers. Practically the above distance of
more than 3 pixels away may lead to an easy problem.

We now compare our model with Badshah-Chen [4] for three easier problems as
shown in Figs. 8, 9, 10; comparative results between [4] and [13, 14] can be found in [4].
For the test results in Fig. 10, although both models give required and almost identical
segmentation from using H1ǫ or H2ǫ, the Badshah-Chen method is more sensitive to the ǫ
parameter choice for the regularized Heaviside H3ǫ; specifically our model would work
for ǫ = 0.01, or ǫ = 1 while the Badshah-Chen method must use the smaller parameter
(otherwise redundant features are captured).

5.3 Test Set 3 – comparison of segmentation of harder problems

Our final set of 4 test problems are harder and more challenging due to a small sepa-
ration distance between features and a small intensity difference between features and
background. In these difficult cases, the previous models from [4, 13, 14] will not work.
Figs. 11, 12, 13 and 14 show four respective images and their segmented results of one
feature; in each case, the top line of images shows the results of [4] which are not correct
due to inclusion of redundant features in the selective segmentation and the bottom line
shows the correctly segmented results by our new model. Clearly our model is robust.
Here we used the third regularized Heaviside H3ǫ with ǫ=1.

5.4 Test Set 4 – necessity of a selection model

Here we show one final experiment to reiterate on the importance of a selective segmen-
tation model in clear contrast to other widely known methods for global segmentation.

In Fig. 15, we compare three sets of usual segmentation results with our selective
segmentation result. Here the image in Fig. 15(a) is the original image, given with the
markers indicating where the feature is to be extracted. First (a) is segmented by the
Chan-Vese [11] algorithm to obtain the segmented image in Fig. 15(b). Then two cropped
and smaller images (c)-(d) of Fig. 15(a) are respectively segmented to give the results in
(e)-(f). Finally our proposed method gives the correctly segmented result in Fig. 15(g)-(h).

Clearly one observes that only a selective model such as ours can deliver the required
and correct segmentation in such situations where selection is needed.

6 Conclusions

Selective image segmentation is an important and practical problem in image processing,
where only certain image features defined by geometric constraints are desired. In this
paper we presented a new variational model with two level set functions (one for global
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Figure 11: Test Set 3 — Comparative results for Problem 1: (a) Initial zero level set contours with dt= 0.1
(n=256); (b) Unsuccessful result by [4] model; (c) Redundant features selected with [4]; (d) Successful global
segmentation by the New model; (e-f) Successful local segmentation of the right kidney with 3 markers with
the New model, CPU time=173.1.
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Figure 12: Test Set 3 — Comparative results for Problem 2: (a) Initial zero level set contours with dt= 0.01
(n=128); (b) Unsuccessful result by [4] model; (c) Redundant shapes selected with [4]; (d) Successful global
segmentation by the New model; (e-f) Successful local segmentation of a non-convex shape with 3 markers
with the New model, CPU time=49.2.
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Figure 13: Test Set 3 — Comparative results for Problem 3: (a) Initial zero level set contours with dt= 0.01
(n = 256); (b) Unsuccessful result by [4] model; (c) Redundant cells selected with [4]; (d) Successful global
segmentation by the New model; (e-f) Successful local segmentation of a single cell with 3 markers with the
New model, with CPU time=217.1.
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Figure 14: Test Set 3 — Comparative results for Problem 4: (a) Initial zero level set contours with dt= 0.01
(n = 256); (b) Unsuccessful result by [4] model; (c) Redundant cells selected with [4]; (d) Successful global
segmentation by the New model; (e-f) Successful local segmentation of a cell with 3 markers with the New
model, with CPU time=178.1.
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Figure 15: Test Set 4 — Comparative results for Problem 4: (a) Given image with the markers set (n=256);
(b) Result by [11] model; (c-d) Cropped image size 128×128 and 64×64; (e-f) Segmentation by [11] model;
(g-h) Successful segmentation of the object with the New model.

segmentation and the other for local and selective segmentation) for reliable segmenta-
tion, improving on two related models proposed recently. Numerical experiments show
that the new model delivers similar results for easier problems to old models and equally
reliable results for harder problems where old models fail. Future work will focus on
selective segmentation in higher dimensions and on fast algorithms development.
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