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Abstract. We develop a stable finite difference approximation of the three-dimensional
viscoelastic wave equation. The material model is a super-imposition of N standard
linear solid mechanisms, which commonly is used in seismology to model a material
with constant quality factor Q. The proposed scheme discretizes the governing equa-
tions in second order displacement formulation using 3N memory variables, making
it significantly more memory efficient than the commonly used first order velocity-
stress formulation. The new scheme is a generalization of our energy conserving finite
difference scheme for the elastic wave equation in second order formulation [SIAM J.
Numer. Anal., 45 (2007), pp. 1902–1936]. Our main result is a proof that the proposed
discretization is energy stable, even in the case of variable material properties. The
proof relies on the summation-by-parts property of the discretization. The new scheme
is implemented with grid refinement with hanging nodes on the interface. Numerical
experiments verify the accuracy and stability of the new scheme. Semi-analytical solu-
tions for a half-space problem and the LOH.3 layer over half-space problem are used
to demonstrate how the number of viscoelastic mechanisms and the grid resolution
influence the accuracy. We find that three standard linear solid mechanisms usually
are sufficient to make the modeling error smaller than the discretization error.
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1 Introduction

Dissipative mechanisms in the earth lead to anelastic attenuation of seismic waves [1].
This attenuation is commonly modeled by describing the earth as a viscoelastic constant-
Q absorption band solid, meaning that the material has a quality factor Q, which is inde-
pendent of frequency. Such material behavior can be approximated in the time-domain
by superimposing n standard linear solid (SLS) mechanisms [4].

In this article we develop a stable finite difference approximation of the three-
dimensional viscoelastic wave equation with an n-SLS material model. The proposed
scheme discretizes the governing equations in second order displacement formulation
using 3n memory variables, making it significantly more memory efficient than the com-
monly used first order velocity-stress formulation. The discretization is a generaliza-
tion of our summation-by-parts finite difference discretization of the elastic wave equa-
tion [19, 20, 22]. Our main result is a proof that the proposed discretization is energy
stable, even in the case of variable material properties.

There is a substantial number of papers on anelastic attenuation in the literature on
seismic wave propagation. Liu et al. [16] showed that the constant-Q material behavior
can be approximated by superimposing n standard linear solid (SLS) mechanisms. Day
and Minister [7] introduced a rational approximation of the viscoelastic modulus, which
enabled realistic attenuation to be introduced in a time-domain seismic wave simulation.
Emmerich and Korn [8] pointed out that the rational approximation of the viscoelastic
modulus represents the rheological model of a generalized Maxwell body. They devised
a least-squares technique of optimizing the coefficients in the rational approximation,
which gave a significantly improved approximation of the constant-Q behavior. Moczo
and Kristek [18] showed that the generalized Maxwell body used by Emmerich and Korn
is equivalent to superimposing n SLS mechanisms. More recently, Savage et al. [23] found
that a SLS with n = 3 mechanisms gives a close to constant Q-value over 1.7 decades
in frequency, and illustrated how a higher number of mechanisms allows the frequency
band to be made wider. Komatitisch et al. [13] and Käser et al. [12] reported very accurate
results for the LOH.3 test problem [5], using three-dimensional time-domain simulations
with n= 3 or n= 4 mechanisms. Bielak et al. [3] proposed a memory efficient approach
based on the rheological model of a Kelvin-Voigt body in parallel with two Maxwell
bodies, and reports an almost constant Q-value over two decades in frequency.

Large computational resources are often required for including realistic viscoelasticity
in three-dimensional seismic wave simulations. The reason is that the n-SLS viscoelastic
model requires a number of so called memory variables to be evolved together with the
primary dependent variables (velocities and stresses, or displacements). Each memory
variable adds an extra differential equation into the system that governs seismic wave
propagation, and the numbers of extra variables and equations are proportional to n.

In the first order velocity-stress formulation, which commonly is used in seismic ap-
plications [10, 12, 15, 24], the isotropic elastic wave equation is a system of nine partial
differential equations (PDEs) that govern the three components of the velocity and the
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six unique components of the symmetric stress tensor. In this formulation, it is natu-
ral to introduce memory variables that express the viscoelastic contribution to the stress
tensor. Each SLS in the viscoelastic model adds six PDEs and six memory variables to
the system, resulting in a total of 9+6n equations [12]. Hence, even for the moderate
value of n = 3, the first order formulation leads to a system of 27 coupled PDEs. The
isotropic elastic wave equation can also be written as a second order system, consisting
of three PDEs governing the three components of the displacement (or the velocity). Also
in this case can the viscoelastic model be formulated in terms of six memory variables per
SLS [14]. However, based on the observation that only the divergence of the stress tensor
is needed, we propose a more memory efficient approach where only three additional
differential equations are added for each SLS. The total number of differential equations
in the resulting system is 3+3n, which is significantly less than the 9+6n equations for
the first order formulation.

In addition to memory variables, there are extra material parameters in the viscoelas-
tic model. The isotropic elastic wave equation has three material parameters: density and
two Lamé parameters. The viscoelastic model adds two material parameters for each
SLS. All these material parameters are field variables that may vary in space in a general
way. The second order formulation uses the same number of material parameters as the
first order velocity-stress approach. Emmerich and Korn’s [8] procedure for determin-
ing these parameters has been used extensively in seismic applications [12, 15]. Liu and
Archuleta [17] presented an alternative method for determining these parameters, based
on interpolation. To save computational resources, some researchers [6, 10] have argued
that the viscoelastic system could be reduced in size by placing the associated memory
variables on alternating grid points in each direction of the three-dimensional computa-
tional grid. The memory requirement for such a coarse grained n=8 model would thus
be the same as an n=1 model stored at every grid point. However, the accuracy of this
approach is not well understood, especially when discontinuities are present in the ma-
terial model [15]. Furthermore, it is not clear how to use the coarse graining technique
when n 6=8.

The reminder of the paper is organized as follows. After presenting the governing
equations in Section 1.1, we derive an energy estimate for the continuous problem in Sec-
tion 2, giving sufficient conditions on the material parameters for well-posedness of the
viscoelastic wave equation. The spatial discretization is presented in Section 3, where the
semi-discrete problem is shown to satisfy a corresponding energy estimate. In Section 4,
we present a second order accurate explicit time discretization of the viscoelastic wave
equation. We prove that this scheme is stable and satisfies an energy estimate under two
conditions. First, the material parameters must satisfy the aforementioned conditions for
well-posedness and, secondly, the time step must satisfy a CFL-type time step restriction.
In Section 5 we outline Emmerich and Korn’s [8] least squares method for determining
the viscoelastic parameters. We evaluate the actual frequency dependence of Q for dif-
ferent number of mechanisms and widths of the frequency band. Three-dimensional
numerical simulations are reported in Section 6, where we also outline how our scheme
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can be generalized to a composite grid [22], with hanging nodes on the grid interface.
Examples are given for the LOH.3 test case.

1.1 Viscoelastic modeling

The stress-strain relation in a linear viscoelastic material is defined by a convolution be-
tween stress relaxation functions and the time derivative of the strain, see e.g., [4]. Corre-
sponding to the time-independent Lamé parameters for an elastic material, the two stress
relaxation functions λ(t) and µ(t) specify the stress tensor in an isotropic viscoelastic ma-
terial,

T =
∫ t

−∞
λ(t−τ)

∂Tr(D(u))(τ)

∂τ
Idτ+

∫ t

−∞
2µ(t−τ)

∂D(u)(τ)

∂τ
dτ, (1.1)

where I is the Kronecker delta. Let u=u(x,t) be the displacement in the domain x∈Ω⊂
R

3. The strain tensor D is the symmetric part of the displacement gradient,

D(u)=
1

2

(
∇u+∇uT

)
, Tr(D(u))≡∇·u.

We consider a material model obtained by superimposing n SLS mechanisms, leading to
the stress-relaxation functions (see e.g., [4])

µ(t)=H(t)
[

µ0−
n

∑
ν=1

µν(1−e−ωνt)
]
, λ(t)=H(t)

[
λ0−

n

∑
ν=1

λν(1−e−ωνt)
]
, (1.2)

where H(t) is the Heaviside step function, ων >0 are relaxation frequencies, and µν and
λν are material parameters. After inserting (1.2) into (1.1) and integrating by parts in
time, the stress tensor becomes

T =λ0(∇·u)I+2µ0D(u)−
∫ t

−∞

n

∑
ν=1

ωνλνe−ωντ(∇·u)Idτ−2
∫ t

−∞

n

∑
ν=1

ωνµνe−ωντD(u)dτ.

There are several ways of introducing memory variables. In the second order formula-
tion, only the divergence of the stress tensor is needed to evolve the displacement. As we
shall see below, a memory efficient formulation is obtained by using the vector-valued
memory variables

ū(ν)(x,t)=ων

∫ t

−∞
u(x,τ)e−ων(t−τ)dτ. (1.3)

In terms of these memory variables, the stress tensor can written as

T =λ0(∇·u)I+2µ0D(u)−
n

∑
ν=1

[
λν(∇·ū(ν))I+2µνD(ū(ν))

]
. (1.4)

The displacement is governed by Euler’s equation for elasticity,

ρ
∂2u

∂t2
=∇·T +F,



N. A. Petersson and B. Sjögreen / Commun. Comput. Phys., 12 (2012), pp. 193-225 197

where ρ is the density of the material and F represents the external forcing. Evaluating
the divergence of (1.4) gives,

ρ
∂2u

∂t2
=L(λ0,µ0)u−

n

∑
ν=1

L(λν,µν)ū
(ν)+F, x∈Ω, t≥0, (1.5a)

u(x,0)=g0(x), ut(x,0)=g1(x), x∈Ω, (1.5b)

where g0, g1 are the initial data and the spatial operator is

L(λ,µ)u=:∇(λ(∇·u))+∇·(2µD(u)). (1.6)

Appropriate boundary conditions for u will be discussed below.
We want to formulate an initial-value problem for the memory variables ū(ν). By

splitting the time-integration in (1.3) over negative and positive times, we arrive at the
modified formula,

ū(ν)(x,t)= ḡ(ν)(x)e−ωνt+ων

∫ t

0
u(x,τ)e−ων(t−τ)dτ, t≥0, (1.7)

where

ḡ(ν)(x)=ων

∫ 0

−∞
u(x,τ)eωντdτ.

By differentiating (1.7) in time we find that the memory variables satisfy the differential
equations

1

ων

∂ū(ν)

∂t
+ū(ν)=u, x∈Ω, t≥0, (1.8a)

ū(ν)(x,0)= ḡ(ν)(x), x∈Ω, (1.8b)

for ν=1,2,··· ,n. Note that ḡ(ν)(x) depends on the displacement history for t<0, which in
many applications is unknown. It is therefore common to assume ḡ(ν)(x)=0, which corre-
sponds to initially only using the purely elastic terms in (1.5). Non-zero initial conditions
for ū(ν) are accommodated for by adding the solution of the homogeneous differential

equation, i.e., ū
(ν)
h = ḡ(ν)e−ωνt. Thus, the influence of initial conditions on the memory

variables decays exponentially fast in time.
The coupled system (1.5), (1.8) will in the following be referred to as the viscoelastic

wave equation. There are three components in each of the vector variables u and ū(ν),
ν=1,2,··· ,n, resulting in 3+3n differential equations for as many dependent variables. All
spatial derivatives in the system occur in (1.5). Furthermore, note that each viscoelastic
contributions to the right hand side of (1.5) is of the form L(λν,µν)ū(ν). This is the same
spatial operator as in the purely elastic case, but with different material parameters and
operating on ū(ν) instead of u. Apart from being memory efficient, our formulation is
therefore also straight forward to implement.
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2 Energy estimate for the continuous viscoelastic wave equation

We define a scalar product for real-valued vector functions u(x)= (u1(x),u2(x),u3(x))T

and v(x)=(v1(x),v2(x),v3(x))T in the bounded domain x∈Ω,

(u,v)=
∫

Ω
u·vdΩ, u·v=

3

∑
j=1

ujvj

with corresponding norm ‖u‖2 =(u,u).
Gauss’ theorem implies that the spatial operator L(λν,µν) in (1.6) satisfies

(
v,L(λν,µν)u

)
=
∫

Γ
v·

[
(λν∇·u)n+2µνD(u)n

]
dΓ−(∇·v,λν∇·u)

−
∫

Ω
2µνD(v) :D(u)dΩ, (2.1)

where Γ is the boundary of Ω with outwardly directed unit normal n. The contrac-
tion between two tensors with Cartesian components Aij and Bij is defined by A : B =

∑
3
i=1∑

3
j=1 AijBij.

The identity (2.1) has the structure

(v,L(λν,µν)u)=−Sν(v,u)+Bν(v,u), (2.2)

where Sν(v,u) and Bν(v,u) denote the interior and boundary terms, respectively,

Sν(v,u)=(∇·v,λν∇·u)+
∫

Ω
2µνD(v) :D(u)dΩ, (2.3a)

Bν(v,u)=
∫

Γ
v·

[
(λν∇·u)n+2µνD(u)n

]
dΓ. (2.3b)

It follows by inspection of (2.3a) that each function Sν(u,v) is symmetric and bi-linear.
Because Sν(u,u) is an integral over quadratic terms, it is non-negative if µν(x)> 0 and
λν(x)>0.

It is well known that the spatial operator L(λν,µν)u = 0 for all u ∈ U, where U is
the six-dimensional subspace corresponding to rigid body motions. The null-space U is
spanned by three translational and three rotational basis functions. Since the boundary
term (2.3b) is zero for all u∈U, we have Sν(u,u)=0 for all u∈U. It is straight forward
to show that, for sufficiently regular u, there are no additional non-trivial solutions of
Sν(u,u)=0.

We consider two boundary conditions for (1.5), (1.8). First, the Dirichlet condition

u(x,t)=0, x∈Γ, t≥0. (2.4)

The second type of boundary condition is the traction-free condition T n=0 imposed on
the viscoelastic stress tensor (1.4),

(λ0∇·u)n+2µ0D(u)n=
n

∑
ν=1

(λν∇·ū(ν))n+2µνD(ū(ν))n, x∈Γ, t≥0. (2.5)
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On a free surface boundary, (2.5) is the physically correct boundary condition because it
sets the normal component of the viscoelastic stress tensor to zero. Note that no explicit
boundary condition is needed for the memory variables in (2.4) or (2.5), because they are
solutions of the ordinary differential equations (1.8) on the boundary.

Define the viscoelastic energy according to

e(t)=‖√ρut‖2+S0(u,u)−
n

∑
ν=1

Sν(u,u)+
n

∑
ν=1

Sν(u−ū(ν),u−ū(ν)). (2.6)

Our first main result, stated below, provides sufficient conditions on the material proper-
ties for making the viscoelastic wave equation a well-posed problem in the energy semi-
norm.

Theorem 2.1. Assume that the material data satisfy

λ0−
n

∑
ν=1

λν ≥ λ̃min>0, µ0−
n

∑
ν=1

µν ≥ µ̃min>0, (2.7)

and
ρ≥ρmin >0, λν ≥λmin>0, µν≥µmin>0, ν=1,··· ,n. (2.8)

Then the solution of the viscoelastic wave equation (1.5), (1.8), with F= 0, subject to either the
boundary condition (2.4), or (2.5), has non-increasing energy,

e(t)≤ e(0), t≥0. (2.9)

Furthermore, e(t) can be bounded from below according to

ρmin‖ut(·,t)‖2+2µ̃min‖D(u)(·,t)‖2+λ̃min‖∇·u(·,t)‖2 ≤ e(t). (2.10)

Here, we define the norm of the tensor function D(u) by ‖D‖2=
∫

Ω
D :DdΩ.

Proof. The non-increasing energy follows from the identity

1

2

de

dt
=B0(ut,u)−

n

∑
ν=1

Bν(ut,ū
(ν))−

n

∑
ν=1

1

ων
Sν

(
ū
(ν)
t ,ū

(ν)
t

)
(2.11)

together with Sν(ū(ν),ū(ν))≥ 0, and the fact that either one of the boundary conditions
(2.4)-(2.5) make the boundary term B0−∑

n
ν=1 Bν equal to zero. Hence, de/dt≤ 0, which

shows (2.9).
To prove identity (2.11), multiply (1.5) by ut and integrate over Ω,

1

2

d

dt
(ut,ρut)=(ut,ρutt)=(ut,L(λ0,µ0)u)−

n

∑
ν=1

(ut,L(λν,µν)ū
(ν))

=−S0(ut,u)+B0(ut,u)+
n

∑
ν=1

Sν(ut,ū
(ν))−

n

∑
ν=1

Bν(ut,ū
(ν)). (2.12)
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The symmetry and bi-linear properties of Sν show that

S0(ut,u)=
1

2

d

dt
S0(u,u), (2.13a)

Sν(ut,ū
(ν))=

d

dt
Sν(u,ū(ν))−Sν(u,ū

(ν)
t ). (2.13b)

Furthermore, (1.8) gives

Sν(u,ū
(ν)
t )=

1

2

d

dt
Sν(ū

(ν),ū(ν))+
1

ων
Sν(ū

(ν)
t ,ū

(ν)
t ),

which, substituted for the last term in (2.13b), leads to

Sν(ut,ū
(ν))=

1

2

d

dt

(
2Sν(u,ū(ν))−Sν(ū

(ν),ū(ν))
)
− 1

ων
Sν(ū

(ν)
t ,ū

(ν)
t ). (2.14)

Finally, the identity

Sν(u−ū(ν),u−ū(ν))=Sν(u,u)−2Sν(u,ū(ν))+Sν(ū
(ν),ū(ν))

makes it possible to rewrite (2.14) as

Sν(ut,ū
(ν))=

1

2

d

dt

(
Sν(u,u)−Sν(u−ū(ν),u−ū(ν))

)
− 1

ων
Sν(ū

(ν)
t ,ū

(ν)
t ). (2.15)

Relations (2.13a) and (2.15) give

−S0(ut,u)+
n

∑
ν=1

Sν(ut,ū
(ν))

=−
n

∑
ν=1

1

ων
Sν(ū

(ν)
t ,ū

(ν)
t )− 1

2

d

dt

[
S0(u,u)+

n

∑
ν=1

Sν(u−ū(ν),u−ū(ν))−
n

∑
ν=1

Sν(u,u)

]
,

which inserted into (2.12) yields the identity (2.11).
It remains to prove that the energy can be bounded from below. Inspection of (2.3a)

shows that

S0(u,u)−
n

∑
ν=1

Sν(u,u)=(∇·u,λ̃∇·u)+
∫

Ω
2µ̃D(u) :D(u)dΩ,

λ̃=λ0−
n

∑
ν=1

λν, µ̃=µ0−
n

∑
ν=1

µν. (2.16)

Hence, if (2.7) is satisfied, λ̃≥ λ̃min>0 and µ̃≥ µ̃min>0, so

S0(u,u)−
n

∑
ν=1

Sν(u,u)=
∥∥
√

λ̃∇·u
∥∥2

+
∥∥√2µ̃D(u)

∥∥2
.

Because of material condition (2.8), the terms Sν(u−ū(ν),u−ū(ν)) in (2.6) are non-negative
and do not have to be bounded further. Furthermore, assumption (2.7) gives λ̃≥ λ̃min,
µ̃≥ µ̃min, which together with ρ≥ρmin proves (2.10).
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Remark 2.1. If u is a solution of the viscoelastic wave equation subject to the Dirichlet
boundary condition (2.4), there can be no rigid body motion component in u. Korn’s
inequality [11] can then be used to bound the spatial derivatives in e(t), leading to

c
(
‖ut‖2+‖∇u‖2+‖u‖2

)
≤ e, c=const.

Remark 2.2. The conditions on λν for bounding the spatial operator in e(t) can be relaxed
to

3λ̃+2µ̃≥ǫ>0, 3λν+2µν≥ǫ>0, ν=0,1,··· ,n,

where ǫ is a constant. The above conditions guarantee that the bulk modulus, λ+2µ/3,
is positive.

3 The spatially discretized problem

We discretize the viscoelastic wave equation on the domain 0≤ x≤ a, 0≤ y≤ b, 0≤ z≤ c.
We use a grid size h>0 and define a grid by xi =(i−1)h, yj =(j−1)h, zk =(k−1)h, with
0≤ i ≤ Nx+1, 0≤ j ≤ Ny+1, 0≤ k ≤ Nz+1. The domain sizes and the grid spacing are
defined such that xNx = a, yNy = b, and zNz = c. The points outside the domain (i = 0,
i = Nx+1, j = 0, j = Ny+1, k = 0, and k = Nz+1) are ghost points, which are used to
simplify the discretization of the boundary conditions. A scalar grid function is denoted
ui,j,k=u(xi,yj,zk) and ui,j,k is a vector valued grid function.

The spatial discretization is based on our energy conserving method for the elastic
wave equation [19, 20, 22]. While the ordinary differential equations (1.8) simply are en-
forced at each grid point in space, the semi-discrete problem corresponding to (1.5) is
given by

ρi,j,k

d2ui,j,k

dt2
=Lh(λ0,µ0)ui,j,k−

n

∑
ν=1

Lh(λν,µν)ū
(ν)
i,j,k+Fi,j,k, (3.1a)

ui,j,k(0)= f0(xi,j,k), (ut)i,j,k(0)= f1(xi,j,k), (3.1b)

for 1≤i≤Nx, 1≤j≤Ny, 1≤k≤Nz, where Lh(λ,µ)ui,j,k is the discretization of the continuous
operator (1.6). In component form,

Lh(λ,µ)u=
(

L
(1)
h (λ,µ)u,L

(2)
h (λ,µ)u,L

(3)
h (λ,µ)u

)T
,

where

L
(1)
h (λ,µ)u=Dx

−
(
Ex

1
2
(2µ+λ)Dx

+u1
)
+D

y
−
(
E

y
1
2

(µ)D
y
+u1

)
+Dz

−
(
Ez

1
2
(µ)Dz

+u1
)

+D̃x
0

(
λD̃

y
0u2+λD̃z

0u3
)
+D̃

y
0

(
µD̃x

0u2
)
+D̃z

0

(
µD̃x

0 u3
)
, (3.2a)
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L
(2)
h (λ,µ)u=Dx

−
(
Ex

1
2
(µ)Dx

+u2
)
+D

y
−
(
E

y
1
2

(2µ+λ)D
y
+u2

)
+Dz

−
(
Ez

1
2
(µ)Dz

+u2
)

+D̃x
0

(
µD̃

y
0u1

)
+D̃

y
0

(
λD̃x

0 u1+λD̃z
0u3

)
+D̃z

0

(
µD̃

y
0u3

)
, (3.2b)

L
(3)
h (λ,µ)u=Dx

−
(
Ex

1
2
(µ)Dx

+u3
)
+D

y
−
(
E

y
1
2

(µ)D
y
+u3

)
+Dz

−
(
Ez

1
2
(2µ+λ)Dz

+u3
)

+D̃x
0

(
µD̃z

0u1
)
+D̃

y
0

(
µD̃z

0u2
)
+D̃z

0

(
λD̃x

0u1+λD̃
y
0u2

)
. (3.2c)

Similar to the continuous case we denote the components of u by (u1,u2,u3), and use a
multi-dimensional notation of the standard divided difference operators, i.e.,

Dx
+ui,j,k=

(ui+1,j,k−ui,j,k)

h
, Dx

−ui,j,k=Dx
+ui−1,j,k, Dx

0 =
1

2
(Dx

++Dx
−).

The boundary modified operator for differences in the x-direction is defined by

D̃x
0ui,j,k=





Dx
+ui,j,k, i=1,

Dx
0ui,j,k, 2≤ i≤Nx−1,

Dx
−ui,j,k, i=Nx,

and the multi-dimensional averaging operator is defined by

Ex
1
2
(µ)i,j,k=

(µi+1,j,k+µi,j,k)

2
.

The superscripts on the difference and averaging operators denote the direction in which
the operator is applied and we use corresponding definitions for the difference operators
in the y- and z-directions.

We introduce a discrete scalar product for real-valued vector grid functions,

(u,v)h=h3
Nx

∑
i=1

Ny

∑
j=1

Nz

∑
k=1

a
(x)
i a

(y)
j a

(z)
k ui,j,k ·vi,j,k,

where the weights satisfy

a
(x)
i =





1

2
, i=1 or i=Nx,

1, 2≤ i≤Nx−1,

with corresponding definitions of a(y) and a(z). The discrete norm is defined by ‖u‖2
h =

(u,u)h.
The spatial discretization satisfies a summation by parts principle corresponding to

the integration by parts relation (2.2). In [20] (Lemma 3.1), it is proven that

(v,Lh(λν,µν)u)h=−S
(h)
ν (v,u)+B

(h)
ν (v,u). (3.3)
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The expression for the interior term S
(h)
ν is given in Appendix A. As in the continuous

case, S
(h)
ν (v,u) = S

(h)
ν (u,v). The expression for S

(h)
ν (u,u) consists of a sum of quadratic

terms and, if λν ≥λmin > 0 and µν ≥µmin > 0, it is positive semi-definite. In Appendix B

we show that the null space of S
(h)
ν (u,u) is six-dimensional and corresponds to the same

rigid body motions as in the continuous case.

The non-symmetric boundary term B
(h)
ν (u,v) was derived in the context of the elastic

wave equation in [20]. Here we restate the result to explain how to impose boundary
conditions for the viscoelastic case,

B
(h)
ν (u,v)=h2

Ny

∑
j=1

Nz

∑
k=1

a
(y)
j a

(z)
k

(
−u1,j,k ·B(h)

ν (v)
(x)
1,j,k+uNx,j,k ·B(h)

ν (v)
(x)
Nx,j,k

)

+h2
Nx

∑
i=1

Nz

∑
k=1

a
(x)
i a

(z)
k

(
−ui,1,k ·B(h)

ν (v)
(y)
i,1,k+ui,Ny,k ·B(h)

ν (v)
(y)
i,Ny,k

)

+h2
Nx

∑
i=1

Ny

∑
j=1

a
(x)
i a

(y)
j

(
−ui,j,1 ·B(h)

ν (v)
(z)
i,j,1+ui,j,Nz

·B(h)
ν (v)

(z)
i,j,Nz

)
. (3.4)

In the above expression, B
(x)
ν , B

(y)
ν , and B

(z)
ν denote the discretized boundary stresses

normal to the x, y, and z-directions, respectively. The discretization of the normal stresses
is given by the boundary terms that emerges in identity (3.3), as described in [20]. For
example, the discretized boundary stress in the z-direction on k=1 or k=Nz is

B
(h)
ν (u)

(z)
i,j,k=




1

2
µ
(ν)

i,j,k− 1
2

Dz
−ui,j,k+

1

2
µ
(ν)

i,j,k+ 1
2

Dz
+ui,j,k+µ

(ν)
i,j,kD̃x

0 wi,j,k

1

2
µ
(ν)

i,j,k− 1
2

Dz
−vi,j,k+

1

2
µ
(ν)

i,j,k+ 1
2

Dz
+vi,j,k+µ

(ν)
i,j,kD̃

y
0wi,j,k

1

2
(2µ(ν)+λ(ν))

i,j,k− 1
2

Dz
−wi,j,k+

1

2
(2µ(ν)+λ(ν))

i,j,k+ 1
2

Dz
+wi,j,k

+λ
(ν)
i,j,k(D̃x

0 ui,j,k+D̃
y
0vi,j,k)




. (3.5)

Here, µ
(ν)
i,j,k+1/2 = Ez

1/2(µ
(ν))i,j,k, and the grid point values of the material parameters are

defined by µ
(ν)
i,j,k =µν(xi,j,k), with a similar definition of λ

(ν)
i,j,k.

To simplify the presentation we only describe the boundary conditions along the
boundary k=Nz; the other boundaries are treated in a corresponding way. The Dirichlet
boundary condition (2.4) is enforced by setting

ui,j,Nz
=0, 1≤ i≤Nx, 1≤ j≤Ny, t≥0, (3.6)

and the discretized version of the free surface boundary condition (2.5) is

B
(h)
0 (u)

(z)
i,j,Nz

=
n

∑
ν=1

B
(h)
ν (ū(ν))

(z)
i,j,Nz

, 1≤ i≤Nx , 1≤ j≤Ny, t≥0. (3.7)
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Because the discretized problem satisfies identity (3.3), S
(h)
ν is positive semi-definite, and

(3.6) or (3.7) will eliminate contributions from B
(h)
ν terms, we can derive an energy esti-

mate corresponding to Theorem 2.1 in exactly the same way as in the continuous case.
The resulting estimate follows by replacing the continuous scalar product by (·,·)h, re-

placing Sν by S
(h)
ν , and Bν by B

(h)
ν . However, the lower bound of the energy needs to

be modified because of the spatial discretization. This is discussed in more detail in the
following section.

4 Time discretization

We discretize time on a uniform grid tm=m∆t with step size ∆t>0, and use the notation
um

i,j,k for the approximation of ui,j,k(tm). For the elastic wave equation, the second order

accurate Strömer scheme provides a stable time-discretization [19]. Here we use the same
scheme to discretize (3.1),

ρ
um+1−2um+um−1

∆t2
=Lh(λ0,µ0)u

m−
n

∑
ν=1

Lh(λν,µν)ū
(ν),m+Fm, (4.1a)

u0= f0, u−1= f̃1, (4.1b)

for m= 0,1,··· , where the grid index (i, j,k) has been suppressed to improve readability.
There are several ways of discretizing the memory variables ū(ν) in time. As for the
continuous and the semi-discrete cases, we choose to work with the differential equation
(1.8) rather than the integral equation (1.7). If um was already known, it is not hard to
verify that the discretization

1

ων

1

2∆t

(
ū(ν),m+1−ū(ν),m−1

)
+

1

2

(
ū(ν),m+1+ū(ν),m−1

)
=um, ν=1,2,··· ,n (4.2)

would be unconditionally stable. The subject of this section is to investigate the stability
of the coupled system (4.1)-(4.2).

The following lemma gives the discrete statement of decreasing energy, correspond-
ing to (2.11).

Lemma 4.1. The solution of (4.1), (4.2) with Fm=0 satisfies the discrete energy estimate

em+ 1
2 = em− 1

2 +B
(h)
0 (um+1−um−1,um)−

n

∑
ν=1

B
(h)
ν (um+1−um−1,ū(ν),m)

− 1

2∆t

n

∑
ν=1

1

ων
S
(h)
ν

(
ū(ν),m+1−ū(ν),m−1,ū(ν),m+1−ū(ν),m−1

)
, (4.3)
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where the discrete energy is defined by

em+ 1
2 =

∥∥∥√ρ
um+1−um

∆t

∥∥∥
2

h
+

1

4
S
(h)
0

(
um+1+um,um+1+um

)

− 1

4
S
(h)
0

(
um+1−um,um+1−um

)
− 1

4

n

∑
ν=1

S
(h)
ν

(
um+1+um,um+1+um

)

− 1

4

n

∑
ν=1

S
(h)
ν

(
um+1−um,um+1−um

)
+Pm+ 1

2 (4.4)

and the term Pm+1/2 is given by

Pm+ 1
2 =

1

2

n

∑
ν=1

S
(h)
ν

(
um+1−ū(ν),m,um+1−ū(ν),m

)
+

1

2

n

∑
ν=1

S
(h)
ν

(
um−ū(ν),m+1,um−ū(ν),m+1

)
.

Proof. See Appendix C.

We can now state our main result for the fully discrete problem.

Theorem 4.1. Assume that

µ0−
n

∑
ν=1

µν ≥ µ̃min>0, λ0−
n

∑
ν=1

λν≥ λ̃min >0, (4.5a)

ρ≥ρmin >0, µν ≥µmin>0, λν ≥λmin>0, ν=1,2,··· ,n, (4.5b)

at all grid points, and that the time-step satisfies the CFL-restriction

∆t≤∆tmax =
2
√

1−α√
ζmax

, ζmax=max
v 6=0

∑
n
ν=0S

(h)
ν (v,v)

(v,ρv)h
, (4.6)

where 0< α≪ 1 is a positive constant. Then, the solution of (4.1)-(4.2) with Fm = 0 subject to
either the boundary condition (3.6), or (3.7), satisfies the energy estimate

α
∥∥∥√ρ

um+1−um

∆t

∥∥∥
2

h
≤ em+ 1

2 ≤ em− 1
2 ≤ ··· ≤ e

1
2 , any m≥1.

Proof. Each one of the boundary conditions (3.6)-(3.7) make the boundary terms B
(h)
0 −

∑
n
ν=1 B

(h)
ν vanish in identity (4.3). Furthermore, the right hand side of (4.3) is non-positive

because S
(h)
ν (v,v) is non-negative. Therefore,

em+ 1
2 ≤ em− 1

2 .

To show the lower bound on the discrete energy (defined by (4.4)), we first observe

that S
(h)
ν depends linearly on the material coefficients λν and µν. Recall the definitions of
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λ̃ and µ̃ from (2.16). We note that

1

4
S
(h)
0

(
um+1+um,um+1+um

)
− 1

4

n

∑
ν=1

S
(h)
ν

(
um+1+um,um+1+um

)

=
1

4
S̃(h)(um+1+um,um+1+um),

where S̃(h)(u,u) is defined in the same way as S
(h)
0 (u,u), but with λ̃ and µ̃ replacing λ0

and µ0, respectively. Because of (4.5a), λ̃>0 and µ̃>0, so

S̃(h)(um+1+um,um+1+um)≥0 (4.7)

for all um+1+um. Secondly, the terms in (4.4) that depend on v = um+1−um can be
bounded from below because of the inequality

(v,ρv)h−
∆t2

4

n

∑
ν=0

S
(h)
ν (v,v)≥α(v,ρv)h =α‖√ρv‖2

h, α>0. (4.8)

To show (4.8), first note that it holds for v=0. Assuming that v 6=0, we obtain

∆t2

4

∑
n
ν=0S

(h)
ν (v,v)

(v,ρv)h
≤1−α (4.9)

by a simple rearrangement of (4.8). The time step restriction (4.6) shows that (4.8) holds.
Finally, because of (4.7), (4.8), and Pm+1/2≥0, the lower bound

α
∥∥∥√ρ

um+1−um

∆t

∥∥∥
2

h
≤ em+ 1

2

follows from (4.4).

Theorem 4.1 shows that the discretization (4.1), (4.2) is stable in the energy semi-
norm and, furthermore, that the forward in time difference (um+1−um)/∆t is bounded.
The upper bound depends on the initial energy, e1/2, which obviously can be bounded
independent of the grid size h if the initial data is bounded and sufficiently smooth. More
precise estimates would be obtained if the spatial terms in the energy,

1

4
S
(h)
0

(
um+1+um,um+1+um

)
− 1

4

n

∑
ν=1

S
(h)
ν

(
um+1+um,um+1+um

)

could be bounded from below by c‖um+1+um‖2
h, with c being independent of h. An-

other way of stating this property is that the smallest eigenvalue of the spatial operator
can be bounded away from zero, independently of h. While it is relatively straight for-
ward to obtain a lower bound of the spatial operator in terms of the symmetric part of
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the discrete solution gradient (similar to (2.10) in the continuous case), it is not possible
to include all terms of the discrete gradient, or ‖u‖h, in the bound. The reason is that
S(h)(u,u) has a six-dimensional null-space (see Appendix B), so S(h)= 0 for some non-
trivial functions. Such a bound can only be obtained if additional conditions are imposed
that remove all rigid body components from the solution. One way of obtaining such a
bound is to impose a Dirichlet boundary condition on at least one side of the computa-
tional domain. We assert that a discrete version of Korn’s inequality [11] holds in this
case, but we only have an outline of a rather technical and lengthy proof. However, simi-
lar results have been proven for finite difference approximations of the two-dimensional
elastostatic equations, with a free surface boundary condition on one side of the compu-
tational domain and Dirichlet conditions on the other three sides, see [9].

The spectral radius ζmax, which is needed to determine the time step, can be difficult
to calculate, especially when the material properties are heterogeneous and unsmooth.
For simulations of the purely elastic wave equation, we have developed the following
technique. We first use a von Neumann analysis to evaluate the largest stable local time
step at each grid point. This estimate uses the local material properties in a homogeneous
material model, assumes periodic boundary conditions to allow an explicit evaluation of
the largest stable local time step. The estimated time step is then taken as the minimum of
all local time steps. The presence of free surface boundary conditions can impose further
restrictions on the time step [19]. Unsmooth material properties can also require the time
step to be reduced. Both these effects are accounted for by using a time step which is
about 15 percent smaller than the estimated value.

Based on the observation that the sum ∑
n
ν=0S

(h)
ν (v,v) is linear in the material data, the

spectral radius for the viscoelastic wave equation can be estimated in the same way as
for the purely elastic wave equation, simply by replacing µ0 and λ0 by the sums ∑

n
ν=0µν

and ∑
n
ν=0λν, respectively. Since λν >0 and µν >0 for all ν=0,1,··· ,n, the time step must

always be reduced when viscoelastic terms are included. However, because of material
condition (4.5a),

n

∑
ν=0

µν<2µ0 and
n

∑
ν=0

λν<2λ0.

Consequently, the spectral radius of the spatial operator for the viscoelastic problem is at
most a factor of two larger than in the corresponding elastic case, and the time step never
needs to be reduced by more than a factor of

√
2.

5 Determining model parameters

To make the presentation self-contained, we need to state some well-known results from
the theory of viscoelastic materials. We suggest the book by Carcione [4] for a more
thorough presentation of this theory.

In frequency space, the viscoelastic shear modulus is defined in terms of the Fourier
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transform of the stress relaxation function (1.2),

M̂S(ω)=: iωµ̂(ω)=µ0−
n

∑
ν=1

µν

1+iω/ων
, (5.1)

where ω is the dual variable of t, and µ0 is called the unrelaxed shear modulus.
The quality factor for shear waves is defined by

QS(ω)=:
Re M̂S(ω)

Im M̂S(ω)
=

1−
n

∑
ν=1

βνω2
ν

ω2
ν+ω2

n

∑
ν=1

βνωων

ω2
ν+ω2

, βν=
µν

µ0
. (5.2)

To obtain a linear least squares problem for the βν coefficients, we follow the approach
laid out by Emmerich and Korn [8]. Relation (5.2) is re-written as

1

QS(ω)
=

n

∑
ν=1

βνωων

ω2
ν+ω2

+
1

QS(ω)

n

∑
ν=1

βνω2
ν

ω2
ν+ω2

=
n

∑
ν=1

βν
ωων+ω2

ν/QS(ω)

ω2
ν+ω2

. (5.3)

The relaxation frequencies, ων, are evenly distributed in a logarithmic sense over the
frequency band [ωmin,ωmax], i.e.,

ων=ωminr(ν−1), ν=1,2,··· ,n, r=
(ωmax

ωmin

) 1
(n−1)

.

Setting QS(ω
(c)
k )=Q0=const. in (5.3) at 2n−1 collocation frequencies ω

(c)
k , which also are

distributed logarithmically over the same frequency band, results in 2n−1 linear equa-
tions for the n coefficients βν. This over-determined linear system is solved in the least
squares sense.

To choose the unrelaxed shear modulus µ0, we need to study the wave propagation
speed in a viscoelastic material. Consider the one-dimensional half-line problem

ρutt=σx, x≥0, t≥0, (5.4a)

u(0,t)= g(t), t≥0, (5.4b)

where σ(x,t) is the viscoelastic stress. In one space dimension, the strain is given by
ǫ=ux, and the stress satisfies

σ(t)=
∫ t

−∞
µ(t−τ)

∂ǫ

∂t
(τ)dτ. (5.5)

After Fourier transforming (5.5), we get

σ̂(ω)= µ̂(ω)iωǫ̂(ω)=: M̂S(ω)ǫ̂(ω). (5.6)
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Fourier transforming (5.4a), (5.4b) and using (5.6), gives

ρω2û+M̂Sûxx =0, x≥0, −∞<ω<∞,

û(0,ω)= ĝ(ω), −∞<ω<∞,

which is solved by

û(x,ω)= ĝ(ω)eiωx
√

ρ/M̂S , Re
(

iω

√
ρ/M̂S

)
<0.

The loss angle, δ, is defined by tanδ=1/QS. By writing M̂S = |M̂S|(cos(δ)+isin(δ)), the
appropriate root is given by

√
ρ

M̂S

=−ρ
1
2 |M̂S|−

1
2

(
cos

( δ

2

)
−isin

( δ

2

))
.

For harmonic boundary data, g(t)= eiωt, the solution can be written

u(x,t)= eiω(t−x/cs)e−α|ω|x, cs =
|M̂S|

1
2

ρ
1
2 cos(δ/2)

, α=
1

cs
tan

( δ

2

)
. (5.7)

The wave travels to the right (increasing x) with phase velocity cs and wave length
2πcs/|ω|. The amplitude of the wave decays by a factor exp(−2πtan(δ/2)) per wave
length.

Since the phase velocity depends on ω, it is necessary to specify at what reference
frequency cs(ω) is given. The definition of the viscoelastic shear modulus (5.1) gives

c2
s (ω)=

µ0|ms(ω)|
ρcos2(δ/2)

, ms(ω)=1−
n

∑
ν=1

βν
ω2

ν−iωων

ω2
ν+ω2

. (5.8)

The function ms(ω) can be evaluated once βν and ων have been determined. The unre-
laxed modulus corresponding to shear speed cs, measured at reference frequency ωr, is
then given by

µ0=
ρc2

s (ωr)cos2(δ/2)

|ms(ωr)|
. (5.9)

Once µ0 and βν are determined, (5.2) gives

µν =µ0βν, ν=1,2,··· ,n.

Since compressional and shear waves are observed to attenuate at different rates, it is
desirable to use two quality factors in the material model: QP and QS. The attenuation
of compressional waves is modeled by introducing the stress-relaxation function (not the
bulk modulus) κ(t)=: λ(t)+2µ(t), where

κ(t)=κ0−
n

∑
ν=1

κν(1−e−ωνt), γν=
κν

κ0
. (5.10)
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Corresponding to (5.1), the Fourier transform of the viscoelastic modulus for compres-
sional waves is defined by

M̂P(ω)=: iωκ̂(ω)=κ0−
n

∑
ν=1

κν

1+iω/ων
.

The quality factor for compressional waves, QP, follows by replacing βν by γν in (5.2).
We substitute βν by γν and QS by QP in (5.3) and solve for γν, using the same relaxation
and collocation frequencies as before.

The unrelaxed compressional modulus, κ0, is determined by the compressional wave
speed cp, measured at reference frequency ωr,

κ0=
ρc2

p(ωr)cos2(δp)

|mp(ωr)|
, mp(ω)=1−

n

∑
ν=1

γν
ω2

ν−iωων

ω2
ν+ω2

,

where tan(δp)=1/QP. Given κ0 and γν, we have κν =κ0γν.
After the coefficients µν and κν have been determined, the coefficients of the first Lamé

parameter are given by
λν =κν−2µν, ν=0,1,··· ,n. (5.11)

5.1 Numerical evaluation of viscoelastic properties

A wave with frequency f traveling through a media with shear speed cs has wave length
ls=cs/ f . On a computational grid with grid size h, the accuracy of the numerical solution
can be characterized by the number of grid points per shortest wave length,

Ppw=
ls

h
=

cs

f h
=

2πcs

ωh
, (5.12)

where ω=2π f is the angular frequency. Depending on the order of accuracy and other
details of the numerical method, the numerical solution has acceptable accuracy if the
shortest wave satisfies Ppw ≥ Pmin. For example, our second order accurate finite differ-
ence method requires Pmin≈15, see [21].

When modeling viscoelastic wave propagation, it is natural to let (5.12) guide the
upper limit of the frequency band for approximating Q(ω),

ωmax=C
2πcs

Pminh
, C=O(1). (5.13)

The lower limit of the frequency band, ωmin, can be estimated using the size of the com-
putational domain, Lmax, which in large scale three-dimensional computations often cor-
responds to O(100) of the shortest wave lengths, or more. The lowest resolvable angular
frequency can therefore be estimated by

ωmin=
2πcs

Lmax
≈ 2πcs

100ls
=

ωmax

100
.
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Figure 1: Actual quality factor Q(ω) approximating Q0 = 100 in the frequency band ω̃∈ [1,100], for different
numbers of viscoelastic mechanisms.

Hence, it is desirable for the viscoelastic model to satisfy Q(ω)≈ Q0 over two decades
in frequency. As computers grow larger, it will be possible to resolve a wider range of
wave lengths in numerical simulations. This will result in additional requirements on the
fidelity in the viscoelastic modeling.

Because the computational cost of viscoelastic modeling increases with the number of
mechanisms, n, it is desirable to use the smallest value of n that gives acceptable accuracy
in the approximation of Q(ω). When evaluating the properties of the viscoelastic modu-
lus (5.1), we note that it depends on the frequency ratios ω/ων. Hence, the properties of
M̂ and Q can be studied in terms of the normalized frequency

ω̃=
ω

ωmin
,

as long as the relaxation and collocation frequencies are normalized in the same way.
We start the numerical evaluation of our viscoelastic model by evaluating the quality

factor (5.2) for different number of mechanisms, n. In Fig. 1, we present Q(ω) when the
coefficients βν are chosen to approximate Q0 = 100 using the above least squares proce-
dure, in the frequency band ω̃∈ [1,100]. Clearly, n=2 provides inadequate modeling of a
constant Q over two decades in frequency, but n=3 gives a much better approximation.
Increasing n further only leads to small improvements.

It is interesting to note that in all models, Q(ω) grows rapidly for ω>ωmax. Hence
the viscoelastic model does not provide significant damping of higher (poorly resolved)
frequencies in the numerical solution, and does not act as an artificial dissipation.

To evaluate how wide the frequency band can be for different numbers of viscoelastic
mechanisms, we set ω̃min=1 and study the maximum relative error,

e(ω̃max)= max
ω̃∈[1,ω̃max]

|Q(ω̃)−Q0|
Q0
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Figure 2: Max relative error (Q(ω̃)−Q0)/Q0 over the frequency band ω̃∈[1,ω̃max], as function of ω̃max. Here,
Q0=100 and the different lines correspond to different numbers of viscoelastic mechanisms.

Figure 3: Max relative error (Q(ω̃)−Q0)/Q0 over the frequency band ω̃∈[1,ω̃max], as function of ω̃max. Here,
the number of viscoelastic mechanisms is n=3 and the different lines correspond to different values of Q0.

Figure 4: Relative phase velocity |ms|1/2/cos(δ/2) over the frequency band ω̃∈ [1,100]. Here, n=3, and the
different colors correspond to different values of Q.
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as function of ω̃max. In Fig. 2, we see that all values of n give small errors for sufficiently
small values of ω̃max, and that the error grows rapidly when the frequency band exceeds
a certain width. Max relative errors of about 3% are obtained at ω̃max ≈ 10 for n= 2, at
ω̃max ≈80 for n=3, at ω̃max ≈150 for n=4, and at ω̃max ≈2000 for n=5. These findings
are comparable to the results in [23].

So far, we have only evaluated the viscoelastic model for Q0 = 100. To investigate
how the error depends on Q0, we take n = 3 and repeat the previous experiment for
different values of Q0, see Fig. 3. The results show that the error depends very weakly
on Q0 for Q0 ≥100. For smaller values of Q0, the relative error gets larger, but the shape
of the curves remains essentially unchanged. However, the relative error grows much
slower than 1/Q0, so the absolute error gets smaller with Q0. Also note that the value of
ω̃max≈80, beyond which the error starts to grow rapidly, is independent of Q0.

To demonstrate how the phase velocity varies with ω, we evaluate the factor
|m1/2|/cos(δ/2) in (5.8). The results shown in Fig. 4 illustrate that the frequency depen-
dence on the phase velocity increases dramatically when Q gets smaller. Also note that
the phase velocity grows approximately linearly on a logarithmic scale in ω, throughout
the frequency band [ωmin,ωmax]. Outside this band, the phase velocity tends to constant
values.

6 Numerical experiments

6.1 Comments on the implementation

Our implementation of the purely elastic wave equation [19, 20, 22], is based on the dis-
crete formulation (4.1), with n= 0. This approach requires one subroutine to be imple-
mented for evaluating the term Lh(λ,µ)um. Note that the same subroutine can be used to
evaluate the viscoelastic terms Lh(λν,µν)ū(ν),m when n>0, by passing different material
properties and applying it to ū(ν),m instead of um. Hence, once the purely elastic imple-
mentation has been verified, it is rather straight forward to include viscoelastic effects in
our formulation.

The memory variables do not need boundary conditions because they satisfy ordinary
differential equations. That is, once um has been calculated at all grid points (including
ghost points), (4.2) can be used to evaluate u(ν),m+1 everywhere. To impose the free sur-
face boundary condition (3.7) on um+1, we first calculate u(ν),m+1, which enters the free
surface boundary condition as a forcing term.

The energy conserving grid refinement interface condition, described in [22], is also
easily generalized to the viscoelastic case. Here, we only need to add contributions from
the memory variables to the normal stresses in the grid interface equations. Compared
to the grid interface coupling equations in the purely elastic case, only the right hand
side in the linear system is modified. There is not enough space to present the details
here, but because the boundary terms cancel along the grid refinement interface, the en-
ergy conservation at the grid interface for the purely elastic case generalizes to a proof
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of energy decay for the viscoelastic equations with grid refinement interface. Some of
the computations presented below use grid refinements, and illustrate the accuracy and
computational efficiency of this approach.

All calculations in this section were obtained with version 2.1 of the parallel open
source code WPP [21].

6.2 Method of manufactured solutions

We start by evaluating the error in the numerical solution, when both the material and the
solution are smooth. Let the computational domain be the cube (x,y,z)∈ [0,5]3 , impose
a free surface boundary condition on the z = 0 boundary and Dirichlet conditions on
all other boundaries. The test will use one viscoelastic mechanism (n= 1). We take the
material properties to be

ρ(x,y,z)=Aρ

(
2+sin(ωmx+θm)cos(ωmy+θm)sin(ωmz+θm)

)
,

µ0(x,y,z)=Aµ

(
3+cos(ωmx+θm)sin(ωmy+θm)sin(ωmz+θm)

)
,

λ0(x,y,z)=Aλ

(
2+sin(ωmx+θm)sin(ωmy+θm)cos(ωmz+θm)

)
,

µ1(x,y,z)=Aµ

(3

2
+

1

2
cos(ωmx+θm)cos(ωmy+θm)sin(ωmz+θm)

)
,

λ1(x,y,z)=Aλ

(1

2
+

1

4
sin(ωmx+θm)cos(ωmy+θm)sin(ωmz+θm)

)
,

where ωm=3.2, θm =0.8, Aρ=2, Aµ=3, and Aλ=1. Note that these material parameters
satisfy conditions (4.5a)-(4.5b) of Theorem 4.1. The internal forcing, boundary forcing
and initial conditions are chosen such that the exact (manufactured) solution becomes

ue(x,y,z,t)=sin(ω(x−cet))sin(ωy+θ)sin(ωz+θ), (6.1a)

ve(x,y,z,t)=sin(ωx+θ)sin(ω(y−cet))sin(ωz+θ), (6.1b)

we(x,y,z,t)=sin(ωx+θ)sin(ωy+θ)sin(ω(z−cet)), (6.1c)

ue(x,y,z,t)=cos(ω(x−cet)+θ)sin(ωx+θ)cos(ω(z−cet)+θ), (6.1d)

ve(x,y,z,t)=sin(ω(x−cet))cos(ω(y−cet)+θ)cos(ωz+θ), (6.1e)

we(x,y,z,t)=cos(ωx+θ)cos(ωy+θ)sin(ω(z−cet)+θ), (6.1f)

with ω=3, θ=0.2, and ce=1.3. Here, ū(1)=(u,v,w). Table 1 gives the errors in the numer-
ical solution, evaluated in maximum norm for both the displacement and the memory
variables at time t= 4.8, for different grid sizes. The maximum norm is computed over
the computational domain and over the three components of the vector variables. The
errors in both variables clearly decrease as O(h2).

Next, we perform the same test with the same data, but on a composite grid with one
base grid and one refinements. The base grid has grid size 2h in 2≤ z≤5 and the refined
grid has size h in 0≤z≤2. In terms of the number of grid points in the x-direction on the
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Table 1: Errors in the numerical solution at time t= 4.8, on a uniform grid, when the exact solution is (6.1).

Here, p and p are convergence exponents for u and ū(1), respectively.

Nx h ‖u(·,t)−ue(·,t)‖∞ ‖ū(1)(·,t)−ū
(1)
e (·,t)‖∞ p p

31 1.67×10−1 1.63×10−1 1.19×10−1 – –

61 8.33×10−2 4.74×10−2 3.45×10−2 1.78 1.79

121 4.17×10−2 1.24×10−2 9.14×10−3 1.93 1.92

241 2.08×10−2 3.15×10−3 2.33×10−3 1.98 1.97

Table 2: Errors in the numerical solution at time t=4.8, on a composite grid, when the exact solution is (6.1).

Here, p and p are convergence exponents for u and ū(1), respectively.

Nx 2h ‖u(·,t)−ue(·,t)‖∞ ‖ū(1)(·,t)−ū
(1)
e (·,t)‖∞ p p

31 1.67×10−1 1.18×10−1 9.73×10−2 – –

61 8.33×10−2 2.90×10−2 2.41×10−2 2.02 2.01

121 4.17×10−2 7.36×10−3 5.97×10−3 1.99 2.01

base grid, the grid sizes are

2h=
5

Nx−1
, h=

5

2(Nx−1)
,

in the base and refined grids, respectively. Table 2 gives the errors in the numerical solu-
tions, evaluated in maximum norm for both the displacements and the memory variables
at time t=4.8. Table 2 shows that both errors are of the order O(h2).

This test verifies that the implementation is second order accurate, and also supports
our mathematical results concerning the stability of the method.

6.3 Point source in a uniform material

To evaluate the convergence properties of our scheme and the influence of the num-
ber of viscoelastic mechanisms, we consider the half-space problem with homogeneous
material properties (using SI units): ρ = 2,650, cs = 2,000, cp = 4,000, QP = 200, and
QS=100. In the simulation, the half-space z≥0 is truncated to the computational domain
(x,y)∈ [0,4×104]2, z∈ [0,2×104]. A small earthquake is modeled by placing a moment
tensor point source at location xs, using the forcing function

F(x,t)= g(t)M∇δ(x−xs), M=1018




0 1 0
1 0 0
0 0 0


 (6.2)

located at xs=104(2,2,0.21)T . Here ∇δ denotes the gradient of the Dirac distribution. We
use the second order accurate technique described in [22] to discretize the singular source
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Figure 5: Semi-analytical solutions as function of time at receiver location xr =2.6×104, yr =2.8×104, zr =0
in a homogeneous material. The red line corresponds to the solution in a viscoelastic material with QP = 200
and QS =100. The black line corresponds to a purely elastic material with the same density and wave speeds
as in the viscoelastic material.

term. The time-function is given by the Gaussian,

g(t)=
1

σ
√

2π
e
− (t−t0)

2

2σ2 (6.3)

with spread σ=0.25 and offset t0=1.5. Using notation from seismology, this moment ten-
sor point source is characterized by the seismic moment m0=1018 and the angles dip=90◦,
rake=0◦, and strike=0◦ (when the x-axis is directed towards North), see [1]. The solution
is recorded in time at xr=2.6×104, yr=2.8×104, zr=0 and compared to a semi-analytical
frequency-wavenumber (FK) solution [26] using the FK code [25]. This solution is de-
noted us(xr,t). An example is shown in Fig. 5, where we present the radial, transverse,
and vertical components of the solution, illustrating the effects of viscoelasticity. These
components are defined in a polar coordinate system centered at the (x,y)-location of
the source, with the vertical component in the z-direction (positive down), i.e., uvert=w.
Since xr−xs =6×103, yr−ys =8×103, the radial component is urad =0.6u+0.8v, and the
transverse component is utran=−0.8u+0.6v.

We measure the error in the time interval 0≤ t≤T using the L2-norm in time, i.e.,

‖u(xr ,·)‖2
2=

1

T

∫ T

0

(
urad(xr ,t)2+utran(xr,t)

2+uvert(xr ,t)2
)
dt. (6.4)

We estimate the convergence rate using the formula p2(h)= log2(e(2h)/e(h)), where e(h)
is the norm of the error in the solution with grid size h.
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Table 3: Errors and convergence rates in the numerical solution when the material is homogeneous in space.
The norms are taken over the period 0≤ t≤10.

Uniform grid Composite grid
h ‖u(xr,·)−us(xr,·)‖2 p2 h ‖u(xr,·)−us(xr,·)‖2 p2

200 1.08×10−1 – 400/200 2.32×10−1 –

100 2.82×10−2 1.94 200/100 6.96×10−2 1.73

50 7.40×10−3 1.93 100/50 1.59×10−2 2.12

A free surface boundary condition is imposed on the z = 0 boundary and homoge-
neous Dirichlet conditions are used on all other boundaries together with a damping
sponge layer, which reduces artificial reflections. Three viscoelastic mechanism were
used in these experiments with ω1/2π = 0.05, ω2/2π = 0.5 and ω3/2π = 5. The phase
velocities were specified at reference frequency 1Hz.

We first discretize the computational domain on a uniform grid and study the error
for the grid sizes h=400, 200, and 100, see Table 3. We then repeat the experiment using
a composite grid, where a fine grid with size h discretizes 0≤ z ≤ 1,000, and a coarser
grid with size 2h is used for z≥1,000. Our results indicate that the solutions on both grid
configurations converge to zero as O(h2), when the grid is sufficiently fine. Note that the
error levels for each composite grid are in between those on uniform grids with the same
grid sizes as in the base and refined grids, respectively.

6.4 The LOH.3 layer over half-space problem

We consider test problem LOH.3 which was used by Day et al. [5] to evaluate the accuracy
of anelastic attenuation in seismic wave propagation codes. This test uses a simple mate-
rial model with piecewise constant material properties. In the top layer (0≤z≤1,000), the
material properties are (in SI units) ρ=2,600, cp=4,000, cs=2,000, QP=120, and QS=40.
In the half-space below the top layer (z > 1,000), the material properties are ρ = 2,700,
cp = 6,000, cs = 3,464, QP = 155.9, and QS = 69.3. Phase velocities are given at reference
frequency 2.5Hz. We model the half-space problem using a computational domain of
size (x,y)∈ [0,40000]2 and 0≤ z≤20000. As before, a free surface boundary condition is
imposed on the z= 0 boundary, and homogeneous Dirichlet conditions together with a
sponge layer are used to reduce artificial reflections from all other boundaries. A small
earthquake is modeled by the moment tensor point source (6.2) located at xs = 20,000,
ys = 20,000, at depth zs = 2,000. The time-function is given by the Gaussian (6.3) with
spread σ=0.05 and offset t0=0.2, corresponding to the center frequency f0≈3.18Hz. We
evaluate the solution at receiver # 10, located at xr = 26,000, yr = 28,000, zr = 0. A semi-
analytical frequency-wavenumber solution was obtained using a modified version of the
method described in Apsel and Luco [2]. This solution is denoted ue(xr ,t).

The velocity structure of this problem makes it an ideal candidate for grid refinement,
and we use a fine grid with size h=25 in the top layer (0≤z≤1000) and a base grid with
size h= 50 in the half-space z≥ 1,000, resulting in a computational mesh with approxi-



218 N. A. Petersson and B. Sjögreen / Commun. Comput. Phys., 12 (2012), pp. 193-225

0 2 4 6 8 10
−2

0

2

R
ad

ia
l

 

 

0 2 4 6 8 10
−2

0

2

T
ra

ns
ve

rs
e

 

 

0 2 4 6 8 10
−1

0

1

Time

V
er

tic
al

 

 

Figure 6: Solution of the LOH.3 test problem at receiver # 10. The black line is the semi-analytical solution,
and the red line shows the numerical solutions with n=3 mechanisms.

mately 349 million grid points. At this resolution, the discretization errors are sufficiently
small to distinguish the influence of the number of mechanisms, n, in the viscoelastic
model. In all cases, the lowest and highest relaxation frequencies were ω1/2π= 0.15Hz
and ωn/2π=15Hz, respectively. We ran the simulations to end time T=10, correspond-
ing to approximately 2560 time steps (the exact number depends on n). The simulations
were performed on 64 nodes on the Atlas Linux cluster at LLNL, where each node has
8 cores. The L2-norm of the error in the numerical solutions, as well as the CPU time,
are reported in Table 4. The error is significantly smaller with n = 3 mechanisms than
with n= 2. However, the error does not decrease further for n= 4, which indicates that
discretization errors dominate the overall error at this grid resolution. Our results in Sec-
tion 5.1 only show minor improvements of the modeling error between n= 3 and n= 4.
A significant reduction of the grid size would probably be necessary to make the model-
ing error discernible for n> 3. However, grid refinement is computationally expensive.
For example, reducing the grid size by a factor of two would result in a mesh with ap-

Table 4: CPU timings and L2 norm of the error in the numerical solution of the LOH.3 test problem, for different
number of viscoelastic mechanisms.

n ‖u(xr,·)−ue(xr,·)‖2 CPU time (64 nodes × 8 cores)

2 1.31×10−1 25 min., 30 sec.

3 4.84×10−2 31 min., 14 sec.

4 5.09×10−2 36 min., 7 sec.
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proximately 2.8 billion (109) grid points, and twice the number of time steps would be
required to advance the solution to the same end time. Unfortunately, we did not have
access to sufficiently large computational resources for repeating the numerical experi-
ment on such a fine grid.

A visual comparison of the semi-analytical and the numerical solutions with n = 3
mechanisms can be found in Fig. 6. We note that the agreement is very good in general,
but some overshoots are distinguishable in the transverse component. To estimate the
number of grid points per shortest wave length, we evaluate (5.12) using the highest
significant frequency in the source time-function,

fup≈2.5
1

2πσ
=

50

2π
, Ppw=

cs

fuph
=

2000×2π

50×25
≈10.05.

7 Conclusions

We have described an energy stable finite difference approximation of the three-
dimensional viscoelastic wave equation with an n-SLS material model. The proposed
scheme discretizes the governing equations in second order displacement formulation
using 3n memory variables, making it significantly more memory efficient than the com-
monly used first order velocity-stress formulation. The discretization is a generaliza-
tion of our summation-by-parts finite difference discretization of the elastic wave equa-
tion [19, 20, 22]. We have derived sufficient conditions on the material parameters for
well-posedness of the viscoelastic wave equation. We have also proven that our scheme
is stable and satisfies an energy estimate under two conditions. First, the material param-
eters must satisfy the conditions for well-posedness and, secondly, the time step must
satisfy a CFL-type time step restriction.

The new method has been implemented as part of version 2.1 of the open source
software WPP [21], which also allows for grid refinements with hanging nodes as well as
free surface boundaries on realistic topographies.

Plans for the near future include generalizations to fourth order accuracy. This will
improve the efficiency of the method in terms of the number of grid points per wave
length that is required to obtain a given accuracy. A smaller discretization error might
make it necessary to also reduce the viscoelastic modeling error, which can be done by
increasing the number of viscoelastic mechanisms.
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A Detailed expression for S
(h)
ν (v,u)

A detailed expression for S
(h)
ν (v,u) was derived in [20]. Here we re-state the result using

the vector notation v=(v1,v2,v3)T and u=(u1,u2,u3)T. For simplicity we drop subscript
ν on S(h), λ, and µ. We have,

S(h)(v,u)h=A(v,u)+
h2

4
R(v,u), (A.1)

where

A(v,u)=2(Dx
+v1,Ex

1
2
(µ)Dx

+u1)mx+2(D
y
+v2,E

y
1
2

(µ)D
y
+u2)my+2(Dz

+v3,Ez
1
2
(µ)Dz

+u3)mz

+(D̃x
0 v1+D̃

y
0v2+D̃z

0v3,λ(D̃x
0u1+D̃

y
0u2+D̃z

0u3))h+(D̃
y
0v1+D̃x

0 v2,µ(D̃
y
0u1+D̃x

0 u2))h

+(D̃z
0v1+D̃x

0 v3,µ(D̃z
0u1+D̃x

0 u3))h+(D̃z
0v2+D̃

y
0v3,µ(D̃z

0u2+D̃
y
0u3))h. (A.2)

The term R(v,u) is given by

R(v,u)=(Dx
+Dx

−v1,λDx
+Dx

−u1)rx+(D
y
+D

y
−v1,µD

y
+D

y
−u1)ry+(Dz

+Dz
−v1,µDz

+Dz
−u1)rz

+(Dx
+Dx

−v2,µDx
+Dx

−u2)rx+(D
y
+D

y
−v2,λD

y
+D

y
−u2)ry+(Dz

+Dz
−v2,µDz

+Dz
−u2)rz

+(Dx
+Dx

−v3,µDx
+Dx

−u3)rx+(D
y
+D

y
−v3,µD

y
+D

y
−u3)ry+(Dz

+Dz
−v3,λDz

+Dz
−u3)rz. (A.3)

We mention in passing that there is a typo in Eq. (A.9) in [20]. In that paper the Dx
+Dx

−,
D

y
+D

y
−, and Dz

+Dz
− operators were incorrectly given as Dx

+Dx
+, etc. The restricted scalar

products are defined by

(u,v)mx=h3
Nx−1

∑
i=1

Ny

∑
j=1

Nz

∑
k=1

ui,j,kvi,j,k, (u,v)rx =h3
Nx−1

∑
i=2

Ny

∑
j=1

Nz

∑
k=1

ui,j,kvi,j,k

and (u,v)my is defined by a similar expression, but with the sum over i taken from 1 to
Nx and the sum over j from 1 to Ny−1. In the same way, (u,v)ry has the sum over i taken
from 1 to Nx and the sum over j from 2 to Ny−1. The sums in (u,v)mz and (u,v)rz are
defined by corresponding permutations.

Note that both A and R are symmetric in their arguments. If µ>0 and λ>0, all terms
in S(h)(u,u) are non-negative, i.e., S(h)(u,u) is positive semi-definite. Finally, note that

due to the restricted norms and the one-sided operators (D̃x
0 etc.) at the boundaries, no

ghost points values are used in any of the terms in (A.2) and (A.3).

B The null-space of S
(h)
ν (u,u)

In this section we discuss when S
(h)
ν (u,u) = 0. We simplify the notation of the vector

components according to u=(u,v,w)T and drop the ν-index on the material parameters
λ and µ. Throughout the section we assume

λ≥λmin>0, µ≥µmin >0
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at all grid points. By inspection of (A.1)-(A.3), we see that S(h)(u,u) is a sum of quadratic
terms. Hence, S(h)(u,u)= 0 if and only if all terms are zero at each grid point. In order
to make the term R(u,u)=0, all second divided differences of u must be zero at all grid
points. Hence, u can only vary linearly in x, y and z.

The expression for A(u,u) in (A.2) is a sum of seven non-negative terms. The only
way A(u,u) = 0 is if all seven terms in the sum are identically zero at all grid points.

For all functions u that are linear in x, both Dx
+u and D̃x

0u are exact expressions of the
x-derivative of u. Since u is linear in all three coordinate directions, we can therefore
replace all divided differences in by derivatives, and write the terms in A(u,u) as

s1=(ux)
2, s2=(vy)

2, s3=(wz)
2, s4=(uy+vx)

2,

s5=(uz+wx)
2, s6=(vz+wy)

2, s7=(ux+vy+wz)
2.

If s1 = s2 = s3 = 0, all terms in s7 are also zero. Hence, there are only six independent
conditions on u for making S(h)(u,u)=0:

ux =0, vy =0, wz=0, (B.1)

uy+vx =0, uz+wx =0, vz+wy=0. (B.2)

After some trivial compatibility arguments we arrive at the most general form of f (y,z),
g(x,z), and h(x,y) that satisfy (B.1), (B.2)

u(y,z)= f0+y fy0+z fz0+yz fyz0, (B.3a)

v(x,z)= g0+xgx0+zgz0+xzgxz0, (B.3b)

w(x,y)=h0+xhx0+yhy0+xyhxy0. (B.3c)

Inserting (B.3a)-(B.3c) into (B.2) gives

fy0+z fyz0+gx0+zgxz0 =0,

fz0+y fyz0+hx0+yhxy0 =0,

gz0+xgxz0+hy0+xhxy0=0.

These expressions should be satisfied for any x, y, z. Taking x=y= z=0 gives

fy0+gx0=0, fz0+hx0=0, gz0+hy0=0. (B.4)

Therefore,
fyz0+gxz0=0, fyz0+hxy0 =0, gxz0+hxy0=0.

This non-singular linear system has the trivial solution fyz0=gxz0=hxy0=0. Relation (B.4)
provides three linear equations for q=( fy0, fz0,gx0,gz0,hx0,hy0)T,

Cq=0, C=




1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 1


.
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Obviously, rank(C)= 3. There are therefore three linearly independent non-trivial solu-
tions of (B.4). In addition, the three undetermined constants f0, g0, and h0 result in six
linearly independent solutions of (B.1)-(B.2). They are often called the translational and
rotational invariants, and can be written as




u
v
w


=

6

∑
q=1

αqaq, a1=




1
0
0


, a2=




0
1
0


, a3=




0
0
1


, (B.5)

and

a4 =




y
−x
0


, a5=



−z
0
x


, a6=




0
z
−y


. (B.6)

In summary, the null space for S(h)(u,u) has dimension six and is spanned by {aq}6
q=1.

C Proof of Lemma 4.1

Throughout this section, we simplify the notation by dropping the superscript (h) on the

bilinear forms in (3.3) and denote S
(h)
ν and B

(h)
ν by Sν and Bν respectively. To reduce the

amount of algebra, we assume n=1, and introduce the notation ū(1),m= ūm.
We start by writing (4.1) (for the case n=1) as

ρ
um+1−um

∆t2
−ρ

um−um−1

∆t2
=Lh(λ0,µ0)u

m−Lh(λ1,µ1)ū
m

and form the scalar product with um+1−um−1 to obtain

(
um+1−um−1,ρ

um+1−um

∆t2
−ρ

um−um−1

∆t2

)
h

=(um+1−um−1,Lh(λ0,µ0)u
m)h−(um+1−um−1,Lh(λ1,µ1)ū

m)h.

For the left hand side, we write

um+1−um−1=(um+1−um)+(um−um−1)

and use
(v+w,v−w)h=‖v‖2

h−‖w‖2
h.

For the right hand side we use identity (3.3) on both terms. We obtain

∥∥∥√ρ
um+1−um

∆t

∥∥∥
2

h
−
∥∥∥√ρ

um−um−1

∆t

∥∥∥
2

h

=−S0(u
m+1−um−1,um)+B0(u

m+1−um−1,um)

+S1(u
m+1−um−1,ūm)−B1(u

m+1−um−1,ūm). (C.1)
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The term I1=: S1(u
m+1−um−1,ūm) can be written

I1=S1(u
m+1,ūm)+S1(u

m,ūm+1)−S1(u
m,ūm−1)

−S1(u
m−1,ūm)+S1(u

m,ūm−1−ūm+1).

By substituting (4.2) into the last term of I1,

S1(u
m,ūm−1−ūm+1)=− 1

2ω1∆t
S1

(
ūm+1−ūm−1,ūm+1−ūm−1

)

− 1

2
S1

(
ūm+1+ūm−1,ūm+1−ūm−1)

)
.

Since S1(u,v)=S1(v,u),

I1=S1(u
m+1,ūm)+S1(u

m,ūm+1)−S1(u
m,ūm−1)−S1(u

m−1,ūm)

− 1

2
S1(ū

m+1,ūm+1)+
1

2
S1(ū

m−1,ūm−1)− 1

2ω1∆t
S1

(
ūm+1−ūm−1,ūm+1−ūm−1

)
.

Adding and subtracting S1(ū
m,ūm)/2 to I1 and reorganizing the terms in (C.1) gives

e
m+ 1

2
1 = e

m− 1
2

1 +B0(u
m+1−um−1,um)−B1(u

m+1−um−1,ūm)

− 1

2ω1∆t
S1

(
ūm+1−ūm−1,ūm+1−ūm−1

)
,

where

e
m+ 1

2
1 =

∥∥∥√ρ
um+1−um

∆t

∥∥∥
2

h
+S0

(
um+1,um

)
−S1

(
um+1,ūm

)
−S1

(
um,ūm+1

)

+
1

2

[
S1

(
ūm+1,ūm+1

)
+S1

(
ūm,ūm

)]
.

This is equivalent to (4.3) for the case n= 1. The case n≥ 2 is treated analogously. For
general n≥1, the expression for the discrete energy becomes

em+ 1
2 =

∥∥∥√ρ
um+1−um

∆t

∥∥∥
2

h
+S0(u

m+1,um)−
n

∑
ν=1

(
Sν(u

m+1,ū(ν),m)+Sν(u
m,ū(ν),m+1)

)

+
1

2

n

∑
ν=1

(
Sν(ū

(ν),m+1,ū(ν),m+1)+Sν(ū
(ν),m,ū(ν),m)

)
. (C.2)

By expanding all quadratic terms in (4.4) it is straight forward to verify that it is equiva-
lent to (C.2). This concludes the proof of Lemma 4.1.
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