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Abstract. We consider a non-standard mixed method for the Stokes problem in R",
n € {2,3}, with Dirichlet boundary conditions, in which, after using the incompress-
ibility condition to eliminate the pressure, the pseudostress tensor ¢ and the velocity
vector u become the only unknowns. Then, we apply the Babuska-Brezzi theory to
prove the well-posedness of the corresponding continuous and discrete formulations.
In particular, we show that Raviart-Thomas elements of order k>0 for o and piecewise
polynomials of degree k for u ensure unique solvability and stability of the associated
Galerkin scheme. In addition, we introduce and analyze an augmented approach for
our pseudostress-velocity formulation. The methodology employed is based on the
introduction of the Galerkin least-squares type terms arising from the constitutive and
equilibrium equations, and the Dirichlet boundary condition for the velocity, all of
them multiplied by suitable stabilization parameters. We show that these parameters
can be chosen so that the resulting augmented variational formulation is defined by a
strongly coercive bilinear form, whence the associated Galerkin scheme becomes well
posed for any choice of finite element subspaces. For instance, Raviart-Thomas ele-
ments of order k>0 for ¢ and continuous piecewise polynomials of degree k+1 for u
become a feasible choice in this case. Finally, extensive numerical experiments illustrat-
ing the good performance of the methods and comparing them with other procedures
available in the literature, are provided.
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1 Introduction

In the last decade there has been an increasing interest in new mixed finite element meth-
ods for linear and nonlinear Stokes problems. In particular, the velocity-pressure-stress
formulation and its natural applicability to non-Newtonian flows has gained notoriety
in recent years. Among the main strengths of this and other related mixed formulations,
we highlight the fact that, besides the original unknowns, they provide direct approxi-
mations of several other variables of physical interest. In addition, the stress-based for-
mulations yield a unified analysis for linear and nonlinear flows. However, the increase
in the number of degrees of freedom of the resulting discrete systems and the symmetry
requirement for the stress tensor constitute the main drawbacks of the approaches in-
volving this unknown. In order to circumvent these disadvantages two important ideas
have already been suggested in the literature. The first one, which goes back to [13] con-
sists of imposing the symmetry of the stress in a weak sense through the introduction of a
suitable Lagrange multiplier (rotation in elasticity and vorticity in fluid mechanics). The
second one, which is more appealing nowadays, is given by the use of the pseudostress
tensor instead of the stress in the corresponding setting of the Stokes equations.

As a consequence of the latter idea mentioned above, two new approaches for incom-
pressible flows, namely the velocity-pressure-pseudostress and velocity-pseudostress fo-
rmulations, arised specially in the context of least-squares and augmented methods (see,
e.g. [5,7,12]). In fact, augmented mixed finite element methods for both pseudostress-
based formulations of the stationary Stokes equations, which extend the results derived
for the Lamé system in [15], are introduced and analyzed in [12]. The corresponding
augmented mixed finite element schemes for the stress-based formulations of the Stokes
problem, in which the vorticity is introduced as the Lagrange multiplier taking care of the
weak symmetry of the stress, had been previously studied in [11]. Other related meth-
ods for the steady Stokes problem, based on least-squares formulations with two or three
fields among velocity, velocity gradient, pressure, vorticity, stress, and pseudostress, can
be found in [2, 3, 6,9], and the references therein. Similarly, the extension of the results
in [15] to the case of non-homogeneous Dirichlet boundary conditions in linear elasticity
was provided in [14]. The use of the first Korn’s inequality, as done in [15], is not possi-
ble in this case, and hence, an additional consistency term, determined precisely by the
Dirichlet boundary condition, had to be incorporated into the augmented formulation.
This extra term yielded the application of a modified Korn’s inequality, which turned out
to be crucial for the analysis in [14]. The results from [15] and [14] were extended in [17]
to three-dimensional linear elasticity problems, while keeping the same advantages of
the 2D case in the resulting augmented formulation.

Interestingly, the mixed finite element methods for the pure velocity-pseudostress for-
mulation of the Stokes equations, that is without augmenting or employing least-squares
terms, had not been studied in details until [8]. It is shown there that Raviart-Thomas ele-
ments of order k>0 for the pseudostress and piecewise discontinuous polynomials of de-
gree k for the velocity lead to a stable Galerkin scheme with quasi-optimal accuracy. The
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pressure and other physical quantities (if needed) can be computed via a post process-
ing procedure without affecting the accuracy of approximation. In the recent paper [18]
we reconsider the pure velocity-pseudostress formulation from [8] and provide further
related results. More precisely, we incorporate the pressure unknown into the discrete
analysis, which does not necessarily yield an equivalent formulation at that level, and
derive reliable and efficient residual-based a posteriori error estimators for both Galerkin
schemes. It is important to remark that the idea of reintroducing the pressure in [18] is to
allow further flexibility in approximating this unknown. To this respect, we show there
that a Galerkin scheme for the velocity-pressure-pseudostress formulation only makes
sense for pressure finite element subspaces not containing the traces of the pseudostresses
subspace. Otherwise, both discrete schemes coincide and hence one obviously stays with
the simplest one. Furthermore, the extension of the results from [18] to a class of non-
linear problems, particularly those studied in [16,22], has been provided recently in [19].
Indeed, in [19] we develop the a priori and a posteriori error analyses of the velocity-
pseudostress formulation as applied to quasi-Newtonian Stokes flows whose kinematic
viscosities are a nonlinear monotone function of the velocity gradient of the fluid. The
latter is introduced as an auxiliary unknown, and the pressure is eliminated using the in-
compressibility condition, whence the resulting variational formulation shows a twofold
saddle point structure (as in [16] and [22]). In addition, an augmented version of this for-
mulation, which, thanks to its single saddle point structure, simplifies the requirements
for well-posedness of the associated Galerkin scheme, is also introduced and analyzed.

Now, in spite of the numerous contributions available in the literature concerning the
application of pseudostress-based formulations in continuum mechanics, it is surprising
to realize that most of them, except possibly [17], have to do with 2D boundary value
problems. According to the above, the purpose of the present paper is to extend the re-
sults provided in [12, 18] to the three-dimensional case. More precisely, in this first part
we develop the a priori error analysis of the velocity-pseudostress formulation from [18]
and its augmented version from [12] as applied to the Stokes problem in R", n € {2,3}.
For simplicity we do not include the pressure unknown into our analysis since, simi-
larly as observed in [12,18], the corresponding results arise from simple modifications
of those obtained for the velocity-pseudostress formulations. In a subsequent paper we
will address the corresponding a posteriori error analyses and the associated adaptive
algorithms.

In order to describe the boundary value problem of interest, we now let (2 be a
bounded and simply connected polyhedral domain in R”, n € {2,3}, and boundary T.
Our goal is to determine the velocity u, the pseudostress tensor o, and the pressure p of a
steady flow occupying the region (), under the action of external forces. More precisely,
given a volume force f € [L2(Q)]" and g€ [H'/?(T)]", we seek a tensor field ¢, a vector
field u, and a scalar field p such that

oc=2uVu—pl in Q, div(c)=—f in Q,

1.1
div(u)=0 in Q, u=g onT, -
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where y is the kinematic viscosity and div stands for the usual divergence operator div
acting along each row of the tensor. As required by the incompressibility condition, we
assume from now on that the datum g satisfies the compatibility condition

/rg~1/:0, (1.2)

where v stands for the unit outward normal at I The rest of this work is organized
as follows. In Section 2 we introduce the pseudostress-velocity approach and analyze
the corresponding continuous and discrete formulations. In particular, we prove that
Raviart-Thomas elements of order k >0 for the pseudostress and piecewise polynomials
of degree k for the velocity yield unique solvability and stability of the Galerkin scheme.
Next, in Section 3 we consider an augmented version of the pseudostress-velocity ap-
proach, whose resulting variational formulation is defined by a strongly coercive bilinear
form. As a consequence, the corresponding Galerkin scheme becomes well posed for
any choice of finite element subspaces. Finally, several numerical results illustrating the
good performance of our mixed finite element schemes and comparing them with other
methods available in the literature, are provided in Section 4.

We end this section with several notations, some of them already employed above and
other to be used below. Given any Hilbert space U, U" and U"*" denote, respectively,
the space of vectors and square matrices of order n with entries in U. In addition, I is the
identity matrix of R"*", and given 7:=(1;;), {:= ({;;) € R"*", we write as usual

n 1 n
™= (1), tr(7):=)_Ti, Td::'r—;tr('r)l, and T:0:=) Tl
i=1 =1

Also, in what follows we utilize the standard terminology for Sobolev spaces and norms,
employ 0 to denote a generic null vector, and use C and ¢, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization param-
eters, which may take different values at different places.

2 The pseudostress-velocity approach

2.1 The continuous formulation

In this section we follow very closely [8,18] to introduce and analyze the pseudostress-
velocity approach for the Stokes problem. We begin by observing from the first equation
in (1.1), using that tr(Vu) = div(u) in Q, that the incompressibility condition div(u) =
0 in () can be stated in terms of the pseudostress tensor and the pressure as follows

p+ %tr(cr) =0 in Q. (2.1)
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Conversely, starting from (2.1), and using the first equation in (1.1), we recover the incom-
pressibility condition div(u) =0 in Q. In other words, the pair of equations given by

c=2uVu—pl in QO and div(u)=0 in Q,

is equivalent to
. 1 .
c=2uVu—pl in QO and p—l—atr(a):O in Q,

and therefore, instead of (1.1), we now consider:

c=2uVu—pl in Q, div(e)=—-f in Q,
. . 2.2)
p-l-;tr((r):O in Q, u=g onT.

Moreover, we proceed to eliminate the pressure, that is we replace p by — %tr((r) in the
first equation of (2.2), which yields the following reduced problem with the pseudostress
o and the velocity u as the only unknowns:

1

ﬂnd:Vu in Q, div(c)=—f in Q, u=g on . (2.3)
Next, we adopt the usual procedure and test the two field equations of (2.3) with

T € H(div;QQ) and v € [L?*(Q)]", respectively. In this way, noting that ¢?: T = ¢?: 79,

integrating by parts the expression [, Vu:T, and using the Dirichlet boundary condition,

we arrive at the variational formulation: Find (o, u) in H(div;Q) x [L2(Q)]" such that

1
2;4/0 T+/ud1v T)=(1v,8),

/v div(co /f v, (2.4)
for all (t,v) € H(div;Q) x [L?(Q)]", where
H(div;Q) := {T € [L2(Q)]"": div(7) € [L*(Q)]"},

and (-,-) denotes the duality pairing between [H~1/2(T')]" and [H!/?(T')]", with respect
to the [L?(T')]"-inner product.

The following lemma establishes the non-uniqueness of the problem (2.4) and hence
the need of reformulating it to guarantee its unique solvability.

Lemma 2.1. The set of solutions of the homogeneous version of (2.4) is given by

{(cI,O): celR}.
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Proof. Let (o,u) in H(div;Q) x [L2(Q)]" such that

21;4/17 Td—l—/udlv T)=0,
/Qv-dlv((r):O, (2.5)

for all (7,v) € H(div;Q)) x [L2(Q)]". Tt is clear from the second equation of (2.5) that
div(c) =0, and taking T = ¢ in the first equation of (2.5), we deduce that c¢ = 0, which
yields o =cI with c€R. Finally, thanks to the surjectivity of the operator div:H(div;Q}) —
[L2(Q))]", we conclude from the first equation of (2.5) that u=0 in Q). In fact, it suffices to
take T:= Vz, where z € [H}(Q)]" is the unique solution of the Dirichlet problem: Az =u
inQ,z=00onT. O

In order to handle this non-uniqueness, we consider the well known decomposition
H(div;Q)) = Hy® RI, (2.6)

where
Ho::{TEH(div;Q): /Qtr('r):O}.

In fact, any T € H(div;()) can be uniquely decomposed as T = T +dI, with
1
d::—/tr T)€R and To:=71—dIcH)y.
a0 Jo™ () ° °

Then, we require from now on that ¢ belongs to Hy. Equivalently, we are just going to
look for the Hyp-component of the original pseudostress o. The following lemma guaran-
tees that the corresponding test space can also be restricted to Hp, which throughout the
rest of the paper is endowed with ||| 4iv,, the norm of H(div; Q).

Lemma 2.2. Any solution of (2.4) with o € Hy is also solution of: Find (c,u) € Hy x [L?(Q))]"
such that

1 d
2y/a T+/ud1v T)=(Tv,8),

/V div(co /f v, (2.7)

for all (T,v) € Hy x [L?(Q)]". Conversely, any solution of (2.7) is also a solution of (2.4).

Proof. It is immediate that any solution of (2.4) with o € Hy is also a solution of (2.7). Con-
versely, let (o, u) be a solution of (2.7). Because of (2.6) it suffices to prove that (¢, u) also
satisfies (2.4) if tested with (I,0), which can be seen to be true thanks to the compatibility
condition (1.2). O



G. N. Gatica et al. / Commun. Comput. Phys., 12 (2012), pp. 109-134 115

According to the previous lemma we now focus our analysis on problem (2.7). To this
end, we first introduce the space Q :=[L?(Q)]" and the bilinear forms a: Hy x H) — R
and b: Hy x Q — R defined by

a(f,t) = %/ﬂgd: ¢ V({,7) € HyxHy, (2.8)

and
b(g,v) = /Qv-div@) Y(L,v) € Hox Q.
Then, the variational formulation (2.7) can be rewritten as: Find (o,u) € Hy x Q such that

a(o,t)+b(t,u)=(tv,g) VTE€H),,

2.9
b(cr,v):—/f-v YveQ. @9)
O
The following well known estimate is needed to prove that (2.9) is well-posed.
Lemma 2.3. There exists c; > 0, depending only on ), such that
2 2 . 2
alltllon < [[T0[gq +div(T)lga VT € Ho.

Proof. See Lemma 3.1 in [1] or Proposition 3.1 of Chapter IV in [4]. O

Then we have the following main result, which was first established in [8, Theorem
2.3]. However, we provide here a slightly different proof adapted from the 2D analysis
in [18].

Theorem 2.1. Problem (2.9) has a unique solution (o,u) € Hyx Q. Moreover, there exists a
positive constant C, depending only on (), such that

1) 110 < C{ Il + I8l o } -

Proof. 1t suffices to prove that the bilinear forms a and b satisfy the hypotheses of the
Babuska-Brezzi theory. Indeed, given v in Q, we proceed as in the proof of Lemma 2.1
and let z € [H}(Q)]" be the unique weak solution of the boundary value problem:

Az=v in Q, z=—0 onT.

Then, we let T:= Vz, note that T € H(div;(2), and decompose T = Ty + oI, with T € Hp
and ¢p € R. It follows that div (7o) = div(T) = v, which proves that the bounded linear
operator div:Hy—[L?(Q)]" is surjective, as well. Equivalently, the bilinear form b satisfies
the continuous inf-sup condition, which means that there exists g >0 such that

/ v-div(T)

TeH, ||7Hdiv,0
T#0

>Blvloa  Vve[LFH(Q)]" (2.10)
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Now, let V be the kernel of the operator induced by b, that is
V:={t€Hy: b(t,v)=0 VveQ}={t€Hy: div(t)=0}. (2.11)
Then, applying Lemma 2.3, we find that for each 7 € V there holds

€1

1 2
a(t,t)= ﬂ HTdHO,Q = ﬂ

2 ‘1 2
HTHO,Q:ﬂ Tl 3iv,0- (2.12)
which shows that the bilinear form a is strongly coercive in V. Finally, a direct application
of Theorem 4.1 in Chapter I of [20] completes the proof. O

We end this section with the converse of the derivation of (2.9). More precisely, the
following theorem establishes that the unique solution (¢, u) € Hyp x Q of (2.9) solves the
original boundary value problem (2.3).

Theorem 2.2. Let (o,u) € Hyx Q be the unique solution of (2.9). Then, there hold in the
distributional sense
1

ﬂad:Vu in Q, divie)=—f in Q, u=g onT,

which shows, in particular, that u € [H'(Q)]".

Proof. 1t is clear from the second equation of (2.9) that div(c) = —f in Q). Next, we recall
from Lemma 2.2 that the occurrence of the first equation of (2.9) is equivalent to require it
for each T € H(div;Q)). Hence, the other two identities follow by integrating backwardly
the left hand side of this equation. We omit further details. O

2.2 The Galerkin scheme

Let Hg’ , and Qy be arbitrary finite element subspaces of Hy and Q, respectively. Then,
the Galerkin scheme associated with (2.9) reads: Find (¢, u;,) € Hf ), x Qj such that

a(op,T)+b(tu,)=(tv,8) VTecH],

b(op,v) :—/Qf-v VveQy. 213)

In order to introduce explicit finite element subspaces guaranteeing the unique solva-
bility and stability of (2.13), we now let {7}, , be a regular family of triangulations of
the region () by tetrahedrons T of diameter /17 such that Q=U{T: T € 7),} and define h:=
max{hr: T € T, }. Here, the concept regular means that there exists a positive constant c,
independent of /1, such that

h—Tgc vTeT, VYh>0,
or
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where p7 is the diameter of the largest sphere contained in T. The faces of the tetrahe-
drons of 7j are denoted by e and their corresponding diameters by k.. Certainly, we are
assuming here that n =3. In the case n =2 we just need to replace tetrahedrons by trian-
gles and faces by edges in what follows. Now, given an integer £ >0 and a subset S of
R", we denote by IP;(S) the space of polynomials of total degree at most ¢ defined on S.
Then, for each integer k> 0 and for each T € T}, we define the local Raviart-Thomas space
of order k (see, e.g. [4,23])

RT(T) = [Pe(T)]" @Pr(T)x,

where x:= (x1,---,x,)" is a generic vector of R", and let RT(7;) be the corresponding
global space, that is

R () := {re H(div;Q0): (T, Tin)* € RTR(T) Vie {L,--,n}, wen}.
We also let IPx(7;,) be the global space of piecewise polynomials of degree <k, that is
Py(Ty):={veL}(Q): v|r €P(T) VTET,}.

Then we introduce the following finite element subspaces of Hy and Q, respectively,

HY = { TeRTY(T;): /Qtr('r):O}, Qu:=[Px(Ti)]"- (2.14)

Next, we provide the main approximation properties of these subspaces. For this
purpose, we first let £ : [H(Q)]"*" — RT,(7},) be the usual equilibrium interpolation
operator (see, e.g. [4,23]), which, given T € [H(Q)]"*", is characterized by the following
identities:

/fﬁf(r)wr:/grv-r Vfaceec€T,, Vre[Py(e)]", when k>0, (2.15)
/Te,’;(r):r:/Tr:r VTET,, Vre[Pp (T)]"", when k>1. (2.16)

It is easy to show, using (2.15) and (2.16), that
div(&f (7)) =P (div(T)), (2.17)

where Pf is the orthogonal projector from [L*(Q))]" into [IPx(7;)]". In addition, it is well
known (see, e.g. [10]) that for each v € [H™(Q))]", with 0 <m <k+1, there holds

Iv=Pi(v)llor < CHE|V|mr  VTET. (2.18)
Furthermore, the operator 5{1‘ satisfies the following estimates (see, e.g. [4,23]):

lT—E (D)o <CHE|T|mr  VTET, (2.19)
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for each T € [H™(Q))]"*", with 1<m <k+1,
|div(T—E&F(T))|lor < CHE|AivV(T) |t VT ET, (2.20)
for each T € [H' (Q)]"*" such that div(t) € [H"(Q))]", with 0 <m <k+1, and
|Tv—EF(T)vlo. < CHY?| 7|11, Vfacee e Ty, (2.21)

for each T € [H!(Q))]"*", where T, is any tetrahedron of 7;, having e as a face. In particular,
note that (2.20) follows easily from (2.17) and (2.18). Moreover, it turns out (see, e.g.
Theorem 3.16 in [21]) that 5;1‘ can also be defined as a bounded linear operator from the
larger space [H*(Q))]"*" N H(div;Q)) into RT(7,) for all s € (0,1], and that in this case
there holds the following interpolation error estimate

le=&k (@) lor <Chir{lITlsr+|div(t) ;| VTET. (222)

Then, as a consequence of (2.18), (2.19), (2.20), (2.22), and the usual interpolation es-
timates, we find that the subspaces Hf, and Q) given by (2.14) satisty the following
approximation properties:

(APg;,) For each s € (0,k+1] and for each T € [H*(Q)]"*"NHp with div(t) € [H*(Q)]" there
exists T, € Hg/h such that

I Tullaie < CH* {1l 0+ div(T) 0}

(AP}}) For each s € [0,k+1] and for each v € [H*(Q))]" there exists v, € Q) such that
IV=villoa=Ch|vl;a-

Having provided the above, we now establish the unique solvability, stability, and
convergence of the Galerkin scheme (2.13) with the finite element subspaces given by
(2.14). We begin the analysis with the discrete inf-sup condition for the bilinear form b.
The original version of the corresponding proof was given in [8, Lemma 3.2].

Lemma 2.4. Let Hy, and Qy, be given by (2.14). Then, there exists p >0, independent of h, such
that
sup b(t,v)
ceng, 1 Tllaiv.o
T#0
Proof. Since b satisfies the continuous inf-sup condition (cf. (2.10) in the proof of Theorem
2.1), we just need to construct a Fortin operator I1j,: Hy — H(‘)f e 10 this end, we first let

G be a bounded convex polyhedral domain containing (). Then, given T € Hy, we let
z€ [H}(G)]" be the unique weak solution of the boundary value problem:

> Blvloo  VveEQy.

Az = { divT, in €, z=0 on JG. (2.23)

0, in G\Q),
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Thanks to the elliptic regularity result for (2.23) we have that z€ [H?(G)]" and
12ll2.6 < efldiv(T)[lo-
Also, it is clear that Vz|q € [H}(Q)]"*", div(Vz) = Az =div(7) in (), and
IVzllLa < lzllz0 < lzll2c < clldiv(T) oo (224)

According to the above, we define IT,(7) as the Hy-component of £f(Vz) determined by
the decomposition (2.6), that is

I1,(7):= &£ (Vz) — {ﬁ /Qtr(é’;f(Vz)) } L.
It follows, using (2.17), that
div(TT, (7)) = div(EF(Vz)) = Pi(div(Vz)) = Pf(div(T)) in Q,

and hence for each v € Q;, = [IP¢(7})]" there holds

b(I13(v),v) = |

Qv-div(nh(r)):/Qv-P,f(div(r)):/Qv-div(r):b(r,v). (2.25)

In addition, using the stability of the decomposition (2.6), and applying (2.19) (with m=1)
and (2.24), we find that

10 (7) [3iv,00 < 165 (V2) .0 = 1€5(V2) 3 + [P (div(T)) 3
<c{IVz-&i(Va) B o+ V2l + lIdiv(o) o } < Clldiv(o) q,

which shows that ITj, is uniformly bounded. The above estimate and (2.25) prove that ITj,
becomes a Fortin operator, which finishes the proof. O

We are now in a position to establish the following theorems (cf. [8, Theorem 3.3]).

Theorem 2.3. Let Hg’ i and Qy, be given by (2.14). Then the Galerkin scheme (2.13) has a unique
solution (oy,,uy) € Hg’ i X Qu, and there exist positive constants C, C, independent of h, such that

1@l < C{ 1Elo e+ lglh/ar }.

and

u)— (o, <C inf u)— (1), : 2.26
@) =@l =C  nf low (@)l 220
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Proof. Since div(H,) € Qy, we find that the discrete kernel of b is given by
Vii={T€H,: b(rv)=0 vveQ,b={TeHf,: div(r)=0 in O},

which is clearly contained in V' (cf. (2.11)), the continuous kernel of b, and hence, thanks
to (2.12), a is strongly coercive in V}, as well. This fact, Lemma 2.4, and a direct applica-
tion of the classical Babuska-Brezzi theory (see, e.g. Theorem 1.1 in Chapter II of [20])
complete the proof. O

Theorem 2.4. Let H{, and Qy, be given by (2.14) and let (¢",u) € Hyx Q and (o, uy,) € H ), x Qy
be the unique solutions of the continuous and discrete formulations (2.9) and (2.13), respectively.
Assume that o € [H*(Q)]"*", div(c) € [H*(Q)]", and u € [H*(Q)]", for some s € (0,k+1].
Then there exists C >0, independent of h, such that

(o) = (@) 100 < CH* { I rlly 0+ i (@) |+ ully o -

Proof. It follows from the Céa estimate (2.26) and the approximation properties (APg )
and (AP}). O

3 The augmented pseudostress-velocity approach

In this section we extend the results from [12] to the three-dimensional case.

3.1 The continuous formulation

We begin by enriching the formulation (2.9) with residuals arising from the modified
constitutive equation, the equilibrium equation, and the Dirichlet boundary condition
(all of them displayed respectively in (2.3)). More precisely, following the same procedure
from [12,14,15], we subtract the second from the first equation in (2.9) and then add the
Galerkin least-squares terms given by

Kl/Q (Vu—%o’“? : (Vv-l—%rd) =0, (3.1)
Kz/Qdiv(a)-diV('r) — —Kz/Qf-div(T), (3.2)
K3/ru'V:K3/rg‘V, (3.3)

for all (t,v) € Hox [H'(Q)]", where (x1,%,%3) is a vector of positive parameters to be
specified later. We notice that (3.1) and (3.3) implicitly require now the velocity u to live
in the smaller space [H!(Q)]" instead of [L2(Q)]".
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Thus, we propose to replace (2.9) by the following augmented variational formula-
tion: Find (o, u) € Hy = Hy x [H' (Q)]" such that

A((o,u),(T,v)) =F(T,V) V(T,v) € Hy, (3.4)

where the bilinear form A : Hyp x Hy— R and the functional F : Hy — R are defined by
1 1
A((C,w),(t,v)) :==a(l,T)+b(T,w)—b(l,v)+K1 /Q (Vw— ﬂ§d> : (VV-I- ﬂrd>

+K2/Qdiv(g).div<—r)+x3/rw.v (3.5)
and
F(T,v) ::/Qf-(v—xzdiv('r))+('rv,g>+1<3/rg-v, (3.6)

for all (¢, w), (t,v) € H.

In what follows we aim to show the well-posedness of (3.4). The main idea is to
choose the vector of parameters (k1,%p,k3) in such a way that the bilinear form A(,-)
becomes strongly coercive in Hy with respect to the norm ||- || g, defined by

1/2
| (w9l = {ITlBwa+IvI3a} ~  V(rv)eH,,

and then to simply apply the classical Lax-Milgram Lemma. Indeed, we first observe that

1 4. T e\ o L ape
[ (v 5w ) (Tt ) = o
and hence, according to the definitions of 2 and A(+,-) (cf. (2.8) and (3.5)), we find that

1 K1 .
A((T,v),(T,v))= o <1 - ﬂ) 178150+ 2| div(T) [§o +x1 V[ o +xs VG

for each (7,v) € Hy. Then, choosing «1, %, and x3 such that 0 < x; < 2u and 0 < k2,3, and
applying Lemma 2.3, we deduce that

. K2 1.
A7), (tv) Za { |7 3o+ 1 div(e) 3 |+ 2 lIdiv(n) B a+ae{ v o+ I VIEr ]
K2 1.
> i | 7|30 + 21l div(o) o+ a2 { [vEq+ VIl |
> a3t 3wa +e{lvEa+IvIir}  V(Tv)eH,

where c; is the constant from Lemma 2.3,

1 K1\ K2 . . K
= mm{ 2 <1 2 > 5 } , ap:=min{xy,k3}, and az:= mm{cwq, > } . (3.7)
In order to complete the required estimate for A(-,-) we need the following Korn type
inequality.
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Lemma 3.1. There exists c; > 0, depending only on ), such that
ollvifa < vEa+vI§:  Yve[H (Q)". (3.8)

Proof. It suffices to apply the Peetre-Tartar Lemma (cf. [20, Theorem 2.1, Chapter I]) and
the generalized Poincaré inequality. We omit further details and refer to [14, Section 3]
for the proof of a similar estimate. O

It follows from the previous inequality satisfied by A(+,-) and Lemma 3.1 that
A((t,v), (V) Z || (7,v) [}, V(T,v)€Ho, (3.9)

where a := min{as,c2a,}, which confirms the strong coerciveness of A(-,-).
As a consequence of the above analysis we can establish the following main result.

Theorem 3.1. Assume that there hold 0 <xy <2u and 0<xp,«k3. Then, the augmented vari-
ational formulation (3.4) has a unique solution (o,u) € Hy, which coincides with the unique so-
lution of (2.9). Moreover, there exists a positive constant C, depending only on y and (x1,%2,%3),
such that

(e, w) [, < CllFlly < C{liflloa+lIglli/2r} (3.10)

Proof. 1t is clear from (3.5) and (3.9) that A(-,-) is bounded and strongly coercive on Hy
with constants depending only on u and (x1,x2,%3). In addition, the Cauchy-Schwarz
inequality in [L2(Q)]" and [L?(T)]", and the trace inequalities in H(div;Q) and [H'(Q)]"
imply that the linear functional F (cf. (3.6)) is also bounded. Therefore, thanks to the
Lax-Milgram Lemma, we deduce the existence of a unique (o,u) € Hy solution to (3.4),
which satisfies the stability estimate (3.10). Furthermore, it follows from Theorem 2.2
that the unique solution of (2.9) is also a solution of (3.4), and hence the solutions of both
problems coincide. O

It is important to remark here that the introduction of the equation (3.3) in the aug-
mented formulation (3.4) is crucial to obtain, thanks to the inequality (3.8) (cf. Lemma
3.1), the term ||v||7 5 in the estimate (3.9). However, when the Dirichlet boundary con-
dition is homogenéous, that is g = 0, the equation (3.3) and the inequality (3.8) are not
necessary since in this case the unknown u would live in [H}(Q))]", space where the usual
norm and semi-norm of [H!(Q})]" are equivalent.

3.2 The Galerkin scheme

We now let Hf, and Hj be arbitrary finite element subspaces of Hy and [H L))", re-
spectively, and define Hy := Hg;, x Hj'. Then, the Galerkin scheme associated with (3.4)
reads: Find (o, uy,) € Hyj, such that

A((op,up),(t,v)) =F(T,Vv) V(t,v) € Hyy. (3.11)
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Since the bilinear form A(-,-) is strongly coercive on any finite element subspace H,
of Hy, the analogue of Theorem 2.3 for the augmented scheme (3.11) is easily established
as follows.

Theorem 3.2. Assume that the parameters 1, %, and k3 satisfy the same assumptions of Theorem
3.1, and let Hy, be any finite element subspace of Ho. Then, the Galerkin scheme (3.11) has a
unique solution (op,u;,) € Hyy, and there exist positive constants C,C, independent of h, such
that

l@nwi) g, <C{ IEloq+ gl }, (3.12a)
l(e) = (@nw)lg, <€ inf [l(ow) = (2,9) |, (3.12b)
(Thfvh) € HO,h

Proof. 1t follows from a straightforward application of the Lax-Milgram Lemma and the
corresponding Céa estimate. O

At this point we find it important to make a remark concerning the choice of the vector
of parameters (k1,k2,k3). In fact, besides the assumptions in Theorem 3.1, we may adopt
as a criterion the maximization of the coerciveness constant « (cf. (3.9)). However, since
the constants c; and ¢, from Lemmas 2.3 and 3.1 are not known explicitly, we simply aim
to partially satisfy this goal. In this way, we can at least maximize the values of 1 and a»
(cf. (3.7)) by choosing, respectively,

. 1 K1 .
Kp = ﬁ <1 - ﬂ) and K3 = K1. (3.13)

In particular, x; = p, which obviously satisfies the assumption x; € (0,2p), yields x» =
1/(2p) and x3=p. This constitutes precisely one of the vector of parameters utilized in the
numerical examples shown below in Section 4. However, any other choice of «; € (0,2)
combined with (3.13) would certainly lead to a feasible set of parameters, as well. In
particular, k1 = u/4 gives k; =7/(8u) and x3 =1 /4. In general, when other feasible set
of parameters is used, the values of the individual and global errors may vary, but the
corresponding rates of convergence must remain the same. This fact is illustrated below
in Section 4.

Now, in order to provide the rate of convergence of the augmented scheme (3.11) we
need to consider a specific finite element subspace H ;. Indeed, with the same notations
and definitions from Section 2.2, and given an integer k > 0, we now let Hf, be the fi-
nite element subspace defined in (2.14), and introduce the usual Lagrange finite element
subspace of [H!(Q)]":

HY = {vi € [C(Q)]": vyl € [Py (T))" VTEE}. (3.14)

It is well known (see, e.g. [10]) that H}! satisfies the following approximation property:
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(AP}) For each s € [0,k+1] and for each v € [H*5(Q)]" there exists vj € H}' such that
IV=vull,0 < CH V][50

Hence, the analogue of Theorem 2.4 for the augmented scheme (3.11) is stated next.

Theorem 3.3. Let Hyj, 1= Hg’h X H}! with H(()T,h and H;' given by (2.14) and (3.14), and let
(o,u) e Hyand (oy,uy) € Hy ), be the unique solutions of the continuous and discrete augmented
formulations (3.4) and (3.11), respectively. Assume that o € [H*(Q))]"*", div(c) € [H*(Q)]",
and u € [H'5(Q)]", for some s € (0,k+1]. Then there exists C >0, independent of h, such that

(e0) = (en,w) |, < CI* {0+ [1div(0) [+ 1]y}

Proof. 1t follows straightforwardly from the Céa estimate (3.12) and the approximation
properties (AP{;,) and (AP}). O

We end this section by observing that the extension of the previous results in 2D
(cf. [12]) to the current a priori error analysis of the augmented scheme in 3D presents
almost no difficulties. However, the computational implementation of the resulting al-
gorithm, which yielded the numerical results shown next in Section 4, constitutes the
most complex aspect of this extension. In addition, we remark in advance that further
complexities emerge in the associated a posteriori error analysis (to be communicated in
a separate work).

4 Numerical results

In this section we present four numerical examples in IR? illustrating the performance of
the mixed finite element schemes (2.13) and (3.11). For examples in R? we refer to [12,18].
In all the computations we consider the specific finite element subspaces Hy,, Qp, and
Hj! given by (2.14) and (3.14) with k=0. In particular, this means that the stress ¢ is
approximated on each T € 7, with RT(T), the local Raviart-Thomas space of order 0. In
addition, similarly as in [12,15], the zero integral mean condition for tensors in the space
Hg,, is imposed in both discrete schemes via a real Lagrange multiplier. Furthermore,
as already mentioned in Section 3, the vector of parameters (ki,%2,%3) = (u,1/(2u),u)
is employed for the implementation of each one of the augmented schemes (3.11). We
remark that, though we do not present all the corresponding tables here, the same rates
of convergence are obtained with other sets of feasible parameters, which suggests the
robustness of (3.11) with respect to the vector («1,%2,k3). This fact is illustrated below
in Example 2 (cf. Table 4) where we also display the results obtained with (x1,%2,k3) =
(u/4,7/(8u),u/4). In what follows, N stands for the total number of degrees of freedom
(unknowns) of (2.13) and (3.11), which can be proved (see [17, Section 4] for details) to
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behave asymptotically as 9 and 6.5 times, respectively, the number of tetrahedrons of
each triangulation. Also, the individual and total errors are given by

e(0):=llo=anllgva,  ep):=lp=—pulloa,  e(w):=lu-wloq,

e0(0) = llo—culoq,  and e(o,u)={(e(c))>+(e(w))*}"”,

where the approximate pressure pj, is computed though the post processing formula su-
ggested by the identity (2.1), that is p, = —(1/3)tr(¢7},). In addition, we define the exper-
imental rates of convergence

. log(e(e)/¢(0)) . log(e(p)/¢'(p)) . log(e(u)/¢'(u))
= gy T gy T gy
_ log(eo(0) /¢h(c)) _ log(e(o,u) /¢ (o))
ro(o):= lc())g(h/h?) , and r(o,u):= log(h/17) ,

where e and ¢’ denote the corresponding errors at two consecutive triangulations with
mesh sizes h and IV, respectively.

The examples to be considered in this section are described next. We take the kine-
matic viscosity =1 in Examples 1, 2, and 3, and y=1/2 in Example 4. Example 1 is em-
ployed to illustrate the performance of the mixed finite element schemes when applied
to a typical academic problem. Then, Examples 2 and 3 deal with two more realistic situ-
ations in fluid mechanics. Finally, in Example 4 we consider the standard test case given
by a driven cavity, and compare the results provided by our methods with those obtained
by the numerical techniques proposed in [24-26], which are based on a velocity-vorticity
formulation.

In Example 1 we consider the L-shaped domain Q:=]0,1[> —{[1/2,1]x [0,1] x[1/2,1]},
and choose the data f and g so that the exact solution is given by

£5/3 2(x3—0.5)(x240.5) 1

u(x)=—| (05—x1)(x3—05) |, (x)= —po,
2 ((0.5—x1)(x2+0.5)) AR

with r = {(x;—0.5)24 (x+0.5)% 4+ (x3—0.5)2}1/2, for all x:= (x1,%2,%3)* € ), where pg € R
is such that [,p=0.
In Example 2 we consider a 90 degrees elbow duct () := () U, UQ3, where

O := {(xl,xz,x3)t ER’: x¥+x3<1, 0<x; Sl},

Oy := {(xl,xz,x3)t ER: xi+(x3-2)2<1, 1<x< 2},

O3 := {(xl,xz,x3)t eR3: (1— \/(x2—1)2+(x3—1)2)2+x% <1,x%<1,x3> 1},
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and choose the data f and g so that the exact solution is given by
2 (22 (52)n ()
= | (222 (5)on () |
—sin? (ﬂ) sin (ﬂ) sin (@)
8 4 4

p(x) :sin<%) sin(%) sin(%) —Po,

for all x:= (x1,x2,x3)* € ), where pp € R is such that pr =0.
In Example 3 we consider a diffusor duct (2:=Q; U, UQ3, where

O = {(xl,xz,X3)t €ER®: ¥+xd<1, —1<xs go},

Q= {(xl,xz,m)t ER3: ¥ +x3<05, 1<x3 <2},

O3:= {(xl,xz,xg)t eER?: ¥ +ad< (1—%)2, 0§x3§1},
and choose the data f and g so that the exact solution is given by

1
2 sinxj cosxp
X3
u(x) =exp(—x1)exp (7) sinx (sinx; —cosx1) |-
cosx; (cosxy —sinxy)

p(x) = cosxy cosxp exp(—x3) — po.

for all x:= (x1,x2,x3)* € (), where pp € R is such that pr:O.
In Example 4 we consider the cubic cavity () :=]0,1[3, and take the right hand side
f=0 on () and the Dirichlet boundary condition

( ) (11010)t/ if ngl Sll OSXZSL x3:O/
X) =
& (0,0,0)t, otherwise.

The numerical results shown below were obtained in a Pentium Xeon computer with
dual processors, using a MATLAB code. In Tables 1 and 2 we summarize the convergence
history of the mixed finite element schemes (2.13) and (3.11), respectively, as applied to
Example 1 for sequences of quasi-uniform triangulations of the domain. In addition,
the approximate pressure p; has been computed according to the post processing for-
mula indicated above. We observe here that the experimental rate of convergence of each
unknown tends asymptotically to the theoretical rate of convergence O(h) predicted by
Theorems 2.4 and 3.3 (when s =1). Then, in order to emphasize the good performance
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Table 1: EXAMPLE 1, quasi-uniform scheme (2.13).

N| h e(0) r@) | eo(o) | rolo) e(u) r(u)

391 | 1/2 | 5.131E—00 — 1.526E—00 — 1.810E—-01 -
2857 | 1/4 | 4.679E—00 | 0.133 | 1.066E—00 | 0.517 | 9.446E—02 | 0.939
9343 | 1/6 | 4.127E—00 | 0.310 | 8.260E—01 | 0.630 | 6.325E—02 | 0.989
21793 | 1/8 | 3.613E—00 | 0.462 | 6.667E—01 | 0.745 | 4.742E—02 | 1.001
42151 | 1/10 | 3.180E—00 | 0.573 | 5.550E—01 | 0.822 | 3.790E—02 | 1.005
72361 | 1/12 | 2.823E—00 | 0.654 | 4.732E—01 | 0.874 | 3.155E—02 | 1.005
114367 | 1/14 | 2.528E—00 | 0.716 | 4.114E—01 | 0.908 | 2.702E—02 | 1.005
170113 | 1/16 | 2.283E—00 | 0.763 | 3.633E—01 | 0.932 | 2.363E—02 | 1.005
241543 | 1/18 | 2.078E—00 | 0.800 | 3.248E—01 | 0.950 | 2.100E—02 | 1.004
330601 | 1/20 | 1.904E—00 | 0.829 | 2.935E—01 | 0.963 | 1.889E—02 | 1.004

N| h e(p) r(p) | elow) | r(ou)

391 | 1/2 | 5.114E-01 - 5.135E—-00 -
2857 | 1/4 | 4.288E—01 | 0.254 | 4.680E—00 | 0.134
9343 | 1/6 | 3.481E—01 | 0.514 | 4.128E—00 | 0.310
21793 | 1/8 | 2.852E—01 | 0.693 | 3.614E—00 | 0.462
42151 | 1/10 | 2.384E—01 | 0.804 | 3.180E—00 | 0.573
72361 | 1/12 | 2.033E—01 | 0.873 | 2.823E—00 | 0.654
114367 | 1/14 | 1.765E—01 | 0.918 | 2.528E—00 | 0.716
170113 | 1/16 | 1.555E—01 | 0.949 | 2.283E—00 | 0.763
241543 | 1/18 | 1.387E—01 | 0.971 | 2.078E—00 | 0.800
330601 | 1/20 | 1.250E—01 | 0.986 | 1.904E—00 | 0.829

of our schemes, in Fig. 1 we display two components of the approximate (left side) and
exact (right side) solutions for Example 1.

Next, in Tables 3 to 6 we provide the convergence history of the mixed finite element
schemes (2.13) and (3.11), as applied to Examples 2 and 3 for sequences of quasi-uniform
triangulations of the respective domains. The approximate pressure p;, is again computed
via the post processing formula. We observe now that the experimental rates of conver-
gence also tend asymptotically to the theoretical rate of convergence O(h) predicted by
Theorems 2.4 and 3.3 (when s=1), but in a more oscillating way than in Example 1. Actu-
ally, these oscillations are more pronounced in Example 2 than in Example 3, which could
be caused by the geometry more complicated of the former. Furthermore, the augmented
scheme (3.11) seems to converge a bit faster than (2.13) in these examples, specially for
Example 3 (cf. Tables 5 and 6). Nevertheless, both discrete schemes show very satisfac-
tory performances, which is confirmed by Fig. 2, where we display two components of
the approximate (left side) and exact (right side) solutions, one for each example.

Finally, we utilize Example 4 to compare our schemes with those proposed in [24-26],
which are all based on a velocity-vorticity formulation and employ meshless BEM, tra-
ditional BEM-FEM, and multiquadrics methods, respectively. Actually, since Example 3
in [26], which coincides with our present Example 4, already makes the comparison with
the results obtained in the previous papers [24, 25], we just proceed here to incorporate
the numerical results arising from our schemes into the same kind of figures provided
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Table 2: EXAMPLE 1, quasi-uniform scheme (3.11.) with (x1,x2,x3)=(1,1/(2u), ).

N| h e(0) r(o) eo(e) | ro(e) e(u) r(w)

355 | 1/2 | 5.259E—00 - 1.909E—00 — 7.753E—01 —
2308 | 1/4 | 4.706E—00 | 0.160 | 1.178E—00 | 0.696 | 4.651E—01 | 0.737
7267 | 1/6 | 4.134E—00 | 0.320 | 8.594E—01 | 0.779 | 3.213E—01 | 0.912
16636 | 1/8 | 3.615E—00 | 0.466 | 6.747E—01 | 0.841 | 2.432E—01 | 0.968
31819 | 1/10 | 3.180E—00 | 0.575 | 5.540E—01 | 0.883 | 1.950E—01 | 0.991
54220 | 1/12 | 2.822E—00 | 0.655 | 4.691E—01 | 0.912 | 1.624E—01 | 1.001
85243 | 1/14 | 2.527E—00 | 0.716 | 4.064E—01 | 0.932 | 1.391E—01 | 1.006
126292 | 1/16 | 2.282E—-00 | 0.763 | 3.581E—01 | 0.946 | 1.216E—01 | 1.008
178771 | 1/18 | 2.077E—00 | 0.800 | 3.199E—01 | 0.957 | 1.079E—01 | 1.009
244084 | 1/20 | 1.903E—00 | 0.829 | 2.890E—01 | 0.966 | 9.706E—02 | 1.009
323635 | 1/22 | 1.755E—00 | 0.853 | 2.634E—01 | 0.972 | 8.816E—02 | 1.009

N h e(p) r(p) e(o,u) r(o,u)

355 1/2 7.105E—01 — 5.316E—00 —
2308 1/4 | 4.796E—01 | 0.567 | 4.729E—00 0.169
7267 1/6 | 3561E—01 | 0.734 | 4.146E—00 0.324
16636 1/8 2.810E—01 | 0.823 | 3.623E—00 0.469
31819 | 1/10 | 2.310E—01 | 0.878 | 3.186E—00 | 0.576
54220 | 1/12 | 1.956E—01 | 0914 | 2.827E—00 0.656
85243 | 1/14 | 1.692E—01 | 0.938 | 2.531E—00 0.717
126292 | 1/16 | 1.489E—01 | 0.956 | 2.285E—00 0.764
178771 | 1/18 | 1.329E—01 | 0.969 | 2.080E—00 0.800
244084 | 1/20 | 1.199E—01 | 0.979 | 1.906E—00 0.830
323635 | 1/22 | 1.091E—-01 | 0.986 | 1.757E—00 0.853

Figure 2: u3 (EXAMPLE 2) and 033 (EXAMPLE 3) for scheme (3.11) with 1=0.246 and h=0.201, respectively.
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Table 3: EXAMPLE 2, quasi-uniform scheme (2.13).

N| h e(0) r(o) e(u) r(w) e(p) rp) | elow) |rlou)
7318 | 1.000 | 6.308E—01 — 8.820E—02 - 1.894E—01 — 6.370E—01 —
20767 | 0.642 | 4.688E—01 | 0.670 || 6.657E—02 | 0.636 | 1.402E—01 | 0.679 | 4.735E—01 | 0.670
28945 | 0.536 | 4.082E—01 | 0.765 || 5.953E—02 | 0.617 | 1.213E—01 | 0.799 | 4.125E—01 | 0.762
51703 | 0.468 | 3.357E—01 | 1.436 || 4.902E—02 | 1.427 | 9.773E—02 | 1.588 | 3.393E—01 | 1.436
79921 | 0414 | 2.897E—01 | 1.206 || 4.241E—02 | 1.185 | 8.276E—02 | 1.360 | 2.928E—01 | 1.206
110248 | 0.352 | 2.575E—-01 | 0.726 || 3.739E—02 | 0.777 | 7.301E-02 | 0.774 | 2.602E—01 | 0.727
156391 | 0.323 | 2.288E—01 | 1.358 || 3.352E—02 | 1.255 | 6.442E—02 | 1.437 | 2.313E—01 | 1.355
208492 | 0.301 | 2.088E—01 | 1.321 || 3.061E—02 | 1.310 | 5.824E—02 | 1.451 | 2.110E—01 | 1.320
286951 | 0.264 | 1.895E—01 | 0.737 || 2.788E—02 | 0.709 | 5.260E—02 | 0.774 | 1.915E—01 | 0.736
Table 4: EXAMPLE 2, quasi-uniform scheme (3.11) with (x1,%0,%3) = (u,1/(2p),1) and (x,%p,%63) =

(/4,77 (8p),p/4).

N| h e(0) r(o) e(u) r(w) e(p) rp) | elow) | rlou)
5602 | 1.000 | 6.345E—01 - 2.917E—-01 - 1.484E—-01 - 6.983E—01 -
15625 | 0.642 | 4.651E—01 | 0.701 | 2.147E—01 | 0.693 | 1.093E—01 | 0.692 | 5.123E—01 | 0.700
21745 | 0.536 | 4.021E—01 | 0.805 | 1.859E—01 | 0.795 | 9.127E—02 | 0.994 | 4430E—01 | 0.803
38479 | 0.468 | 3.318E—01 | 1.411 | 1.540E—01 | 1.382 | 7.586E—02 | 1.358 | 3.658E—01 | 1.406
59137 | 0.414 | 2.875E—01 | 1.173 | 1.342E—01 | 1.130 | 6.507E—02 | 1.255 | 3.172E—01 | 1.166
81538 | 0.352 | 2.560E—01 | 0.715 | 1.210E—01 | 0.640 | 5.788E—02 | 0.723 | 2.832E—01 | 0.701
115348 | 0.323 | 2.278E—01 | 1.343 | 1.073E—01 | 1.374 | 5.165E—02 | 1.307 | 2.518E—01 | 1.348
153271 | 0.301 | 2.078E—01 | 1.318 | 9.753E—02 | 1.376 | 4.690E—02 | 1.387 | 2.296E—01 | 1.328
210343 | 0.264 | 1.889E—01 | 0.725 | 8.950E—02 | 0.653 | 4.245E—02 | 0.758 | 2.091E—01 | 0.712
270109 | 0.246 | 1.726E—01 | 1.279 | 8.192E—02 | 1.250 | 3.869E—02 | 1.311 | 1.910E—01 | 1.274
5602 | 1.000 | 6.232E—01 - 2.987E—01 - 1.794E—-01 - 6.911E—01 -
15625 | 0.642 | 4.630E—01 | 0.671 | 2.170E—-01 | 0.722 | 1.329E—01 | 0.677 | 5.114E—01 | 0.680
21745 | 0.536 | 4.027E—01 | 0.772 | 1.878E—01 | 0.799 | 1.145E—01 | 0.828 | 4.443E—01 | 0.776
38479 | 0.468 | 3.317E—01 | 1.425 | 1.551E—01 | 1.407 | 9.264E—02 | 1.553 | 3.661E—01 | 1.422
59137 | 0.414 | 2.863E—01 | 1.203 | 1.349E—01 | 1.143 | 7.840E—02 | 1.364 | 3.165E—01 | 1.192
81538 | 0.352 | 2.546E—01 | 0.724 | 1.214E—01 | 0.648 | 6.922E—02 | 0.769 | 2.821E—01 | 0.710
115348 | 0.323 | 2.264E—01 | 1.351 | 1.077E—01 | 1.379 | 6.120E—02 | 1.415 | 2.507E—01 | 1.356
153271 | 0.301 | 2.066E—01 | 1.314 | 9.781E—02 | 1.384 | 5.540E—02 | 1.433 | 2.286E—01 | 1.327
210343 | 0.264 | 1.875E—01 | 0.737 | 8.971E—02 | 0.657 | 5.001E—02 | 0.777 | 2.079E—01 | 0.722
270109 | 0.246 | 1.710E—01 | 1.301 | 8.209E—02 | 1.255 | 4.524E—02 | 1.417 | 1.897E—01 | 1.292

in [26]. The correspondence of the figures in this paper and in [26] is as follows
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In particular, Figs. 3 and 4 display some components of the approximate solutions ob-
tained with our scheme (2.13). This includes an approximation of the vorticity unknown,
denoted by w := (w,ws,w3)*, which is computed via a simple post-processing formula:
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Table 5: EXAMPLE 3, quasi-uniform scheme (2.13).

N h e(o) r(o) e(u) r(u) e(p) r(p) e(o,u) r(o,u)
5125 | 1.000 | 3.593E—00 — 6.511E—01 — 9.342E—01 — 3.652E—00 —

16168 | 0.613 | 2.137E—00 | 1.061 | 4.033E—01 | 0.978 | 5.367E—01 | 1.132 | 2.175E—00 1.059
22165 | 0.601 | 2.032E—00 | 2.547 | 3.887E—01 | 1.866 | 5.141E—01 | 2.180 | 2.069E—00 2.524
33367 | 0.494 | 1.692E—00 | 0.937 | 3.224E—01 | 0.958 | 4.290E—01 | 0.927 | 1.723E—00 0.938
60892 | 0.371 | 1.383E—00 | 0.704 | 2.662E—01 | 0.669 | 3.375E—01 | 0.838 | 1.409E—00 0.703
68290 | 0.361 | 1.331E—00 | 1.380 | 2.562E—01 | 1.369 | 3.168E—01 | 2.269 | 1.355E—00 | 1.379
126337 | 0.303 | 1.081E—00 | 1.200 | 2.079E—01 | 1.202 | 2.557E—01 | 1.233 | 1.100E—00 1.200
201415 | 0.256 | 9.209E—01 | 0.933 | 1.779E—01 | 0.910 | 2.156E—01 | 0.994 | 9.379E—01 0.932
266860 | 0.233 | 8.355E—01 | 1.073 | 1.618E—01 | 1.041 | 1.929E—01 | 1.228 | 8.510E—01 1.072
289885 | 0.225 | 8.086E—01 | 0.890 | 1.561E—01 | 0.977 | 1.891E—01 | 0.532 | 8.235E—01 0.893

Table 6: EXAMPLE 3, quasi-uniform scheme (3.11) with (x1,x2,x3) = (p,1/(2p),1).

N h e(o) r(o) e(u) r(u) e(p) r(p) e(o,u) r(o,u)
3943 | 1.000 | 3.672E—00 — 1.777E—00 — 5.744E—-01 — 4.080E—00 —
12196 | 0.613 | 2.145E—00 | 1.098 | 1.106E—00 | 0.968 | 3.004E—01 | 1.324 | 2.414E—00 1.072
16810 | 0.601 | 2.050E—00 | 2.312 | 1.055E—00 | 2.404 | 2.834E—01 | 2.964 | 2.305E—00 2.331
25018 | 0.494 | 1.682E—00 | 1.011 | 8.721E—-01 | 0.975 | 2.231E—01 | 1.225 | 1.895E—00 1.004
45469 | 0.371 | 1.376E—00 | 0.702 | 7.235E—01 | 0.653 | 1.792E—01 | 0.766 | 1.555E—00 0.692
66199 | 0.349 | 1.245E—00 | 1.603 | 6.348E—01 | 2.102 | 1.636E—01 | 1.460 | 1.398E—00 1.709
93679 | 0.303 | 1.071E—00 | 1.081 | 5.620E—01 | 0.872 | 1.344E—01 | 1.412 | 1.210E—00 1.037
149026 | 0.256 | 9.120E—01 | 0.937 | 4.828E—01 | 0.885 | 1.143E—01 | 0.944 | 1.032E—00 0.926
197092 | 0.233 | 8.275E—01 | 1.072 | 4.381E—01 | 1.070 | 1.019E—01 | 1.264 | 9.363E—01 1.072
214078 | 0.225 | 8.003E—01 | 0.909 | 4.241E—01 | 0.887 | 1.003E—01 | 0.428 | 9.057E—01 0.904
264484 | 0.215 | 7.433E—01 | 1.644 | 3.913E—01 | 1.792 | 9.288E—02 | 1.714 | 8.400E—01 1.676
328606 | 0.201 | 6.902E—01 | 1.088 | 3.658E—01 | 0.986 | 8.551E—02 | 1.212 | 7.811E—01 1.065

curl operator applied to the velocity vector. For instance, Fig. 4(a) shows the resulting
approximation for wq, which confirms the expected symmetry with respect to the x and
y directions. In addition, Figs. 4(b)and 4(c) reveal that the effect of the wall (given by
the Dirichlet boundary condition g) makes vorticity distribution more concentrated on
the edges of the cavity. Then, Figs. 5(a) and 5(b) make an explicit comparison of some
velocity profiles resulting from (2.13) and the methods from Tsai et al. (2002) [24], Young
et al. (1999) [25], and Young et al. (2004) [26]. We observe there that our results also
capture the effect of wall at driven direction similarly as the results from the other pa-
pers do. The above analysis is repeated in Figs. 6 to 8 for the augmented scheme (3.11),
obtaining the same conclusions. Now, while it is true that the profiles of our solution pro-
vided by Figs. 5 and 8, though showing the same trend, do not match exactly those given
in [24-26], it is also true that the remaining ten figures of this example do coincide with
the corresponding figures in those works. Perhaps, the fact that we are using different
variational formulations (primal them and dual-mixed us) explains some of the differ-
ences observed. In particular, their methods do not yield direct approximations of the
stresses, as ours do. Any way, since the exact solution is not known, it is hard to identify
the discrete solutions that yield a better approximation of the continuous solution.
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Figure 3: Velocity vectors in x-y plane at z=0.5 (EXAMPLE 4) for scheme (2.13) with h=1/18.
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Figure 4: (a) wj in x-y plane at z=0.5 (EXAMPLE 4); (b) w; in y—2z plane at x=0.5 (EXAMPLE 4); (c) w1y
in y—z plane at x=0.5 (EXAMPLE 4), for scheme (2.13) with 1=1/18.
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Figure 5: (a) up along z at (x,y)=(0.5,0.5) (EXAMPLE 4); (b) u3 along x at (y,z) =(0.5,0.5) (EXAMPLE 4),
for scheme (2.13) with h=1/18.
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Figure 7: (a) wj in x-y plane at z=0.5 (EXAMPLE 4); (b) w; in y—2z plane at x=0.5 (EXAMPLE 4); (c) w1
in y—z plane at x=0.5 (EXAMPLE 4), for scheme (3.11) with 1=1/18.
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Figure 8: (a) up along z at (x,y)=(0.5,0.5) (EXAMPLE 4); (b) u3 along x at (y,z) =(0.5,0.5) (EXAMPLE 4),
for scheme (3.11) with h=1/18.



G. N. Gatica et al. / Commun. Comput. Phys., 12 (2012), pp. 109-134 133

As a final remark, we would like to mention that, in general, the numerical results
obtained with the augmented and non-augmented schemes look very similar and pro-
vide the same rates of convergence. The only differences between them have to do with
the way they approximate the unknowns and with the resulting number of degrees of
freedom involved. In fact, because of the strong coerciveness of the bilinear form A(,-),
one can choose any finite element subspace of Hy x [H!(Q)]" for defining (3.11), whereas
the non-augmented scheme (2.13) requires subspaces of Hy x [L?(Q)]" satisfying the co-
rresponding discrete inf-sup conditions. In particular, with the finite elements employed
in this section, the augmented and non-augmented approaches yield discontinuous and
continuous approximations, respectively, of the velocity field. In addition, as commented
at the beginning of this section on the value of N, (3.11) is cheaper than (2.13) by a factor
of 2.5 times the number of tetrahedrons.

Summarizing, we believe that there is enough support to consider the mixed finite
element schemes (2.13) and (3.11) as valid and competitive alternatives to solve the sta-
tionary Stokes equations in R3.
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